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1 Introduction

The theory of generalizations of analytic functions goes back to the eHidgfi
(see, e.g., the survey by Tutschke [1] and references therein). t&redt to the
developing of this area is connected first of all with different type apiidina

of these functions called usualgeneralized analytic functionsee [2—4]). The
most known constructions are those generalized analytic functions ob\ghe
(see [4]) defined as a solution to elliptic systems of differential equations-ge
ralizing the Cauchy-Riemann system, or pseudo-analytic functions oftiees
determined by ordinary differential equations in complex domains containing s
called(F, G)-derivatives (see [5]). Different methods are developed for thaystu
of the corresponding differential equations and the correspondimgdawy value
problems. One can mention here the method of integral representations which
was started by Vekua himself (see [4], and [6]), related to it method ofjan)
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integral equations (see [2]), topological methods (see [7]), as wetledsin
methods of functional analysis (see [1,5, 8-10]).

Let us represent the most interesting results in this direction.

Any solution of the inhomogeneous differntial equation

Wz = f7 S G7 (1)
can be represented ( [4], p. 29) in the following form

whereg is a function analytic inG, and
d d
Taf(z =——//f s ®

is the so called Pompeiu integral operator.
Generalized Beltrami equation

wz + pw, + pw, +aw+bw = f, z€GqG, (4)

with coefficients satisfying the relatidp, (2)| + |12(2)| < go < 1 has a solution
of the form (see [6], p. 225)

w = Tgp, (5)
wherep is a unique solution to the singular integral equation
p+mIgp + mIlgp +aTgp +bTep = f, (6)

where

Mo f(z) = // s déd” (7)

is the Calderon-Zygmund type singular integral operator.
The Riemann-Hilbert boundary value problem

Re [)‘(Z)w} =7(2), z€0G=T, (8)
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in the class of generalized analytic functions, i.e. those satisfying inhoraogen
differential equation

Lw = 0zw+ A(z)w + B(z)w = F(z), z¢€G, 9)

with A, B,F € Ly5(G),p > 2, T € C,,, ;A7 €C(D), |\ =1, has the
solution of the following form

w = wy + w, (10)
wherewy is a solution to the homogeneous equatian= 0

wn(z) = B(2)e),  w(z) = ~Ta(A+ B%), (11)

= __// Q1 (2 ¢)dédn — —// Qo (2, Q) F(¢)dédn, (12)

andQ(z,t,G),Qa(z,t,G) are the principal kernels of the clas$, »(A, B, G),
p > 2, which is the class of all regular solutions to the linear differential equations
Lw = 0 with coefficientsA, B € L, »(G) for a fixedp.

In the next sections we will consider certain ideas of nonlinear analysehwh
can be applied at the study nonlinear generalizations of Vekua (or Bgrs)
differential equations and/or nonlinear boundary value problems feethqua-
tions. Some results of such a type were obtained by different authasgsg,
[8,10,11], and references therein).

2 Nonlinear Vekua-Bers type equations

Let us described the situation which leads to the problems we would like to
discuss here. Consider the most simple nonlinear analog of the Cauatmaifitie
equations in one of the following forms

’U}g:Fl(Z,'U}), (13)
or

wz = F(z,w,W). (14)
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For the simplicity we will study either equations on the unit disdVoreover, for
the beginning we will not fix any class for the solutions of (13) and (14)\aifl
not pose any boundary value problem for these equations. These tsomikbe
specified later.

We will not consider more general equations of the type

wz = F3(z,w,w,w,), (15)
or

Fy(z,w,w,w,,ws) =0, (16)
since it leads to the problems on the type of these differential equations.

2.1 Banach-Cacciopolli fixed point principle

One can apply to each of the equations (13), (14) the same ideas as todhe inh
mogeneous equation (1), i.e. rewrite these equations as integral equations

1 déd

w+ [ Ru@) 22 —o a7)

a
—— déd

wt - [[ Palcwl0.wi0) E <o, (19

a
or in operator form
(I-TpF)w=0, j=1,2. (19)

HereF;, j = 1,2, are so called superposition operators (or Nemytsky operators)
defined by one of the following formulas

Fi:w(z) — Fy (z, w(z)), (20)

Fo: w(z) — Fy (z,w(z),m). (21)

These operators (mostly in real-valued settings) are intensively studiedthe
We have to mention here the book [12] which is devoted to the general questio
of the theory of operators of type (20) as well as to the study of thesatmpe in
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the classical functional spaces. The book [13] deals with the set-vapsrdtors
(20) (or (21)), i.e. when the values of functioly are sets but not numbers.
These operators can be applied e.g. in the case of the discontinuoubaight-
sides in (13) and (14) by using concepts of sub- and super-solutidhgast
in the book [14] the superposition operators are studied in Sobolev tguesp
The corresponding results are applicable to the study of weak (gemeraliz
distributional type) solutions of the equations on the discussion.

Let us return to the operator equation (19). Denoting by

Pj = T]D)Fj, ] = 1, 2, (22)
we arrive at so called fixed point equation (see [15], p. 510)
w = Pjw. (23)

The idea of Banach-Cacciopolli approach is well-known. We will getlatim
of (23) in a metric spacgY’, p) if the operatoiP; is contructive, i.e. if there exists
a € (0,1) such that

p(Pj(wi), Pj(w2)) < ap(wi,wa), wi,wz € X, (24)

More delicate forms of this conditions are presented in the books [16Q7¢

of the most simple generalizations is the following: 1&f be a given point in
the spaceY. Denote byB = B(wy, R) the ball of radiusk centered atuvy.
Equation (23) has a solution in the ballif inequality (24) is valid for all points
w1, wy € B. If the existence of a solution to (23) is known then the solution itself
can be obtained by the limit of the successive approximatiens:

w1 = Pj(wy), n=0,1,.... (25)

The speed of convergence is usually described in terms of elements dftihe e
mates of the type (24).

How one can apply Banach-Cacciopolli principle to equation (23) with the
operatorsP; of the form (22)? Consider solvability of (23) on the whole space
X. First property which the operatoBs; have to satisfy is the following:

(¥) the operator® ; should act on the spack, i.e.

P;(X)CX. (26)
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It really gives certain additional relations to be checked (or assumegl)itE
is known [4], pp. 38,47, 51 that fof € L, (D) we have

1) Tpf eCC), a =22 if p>2;

2) Tpfelt(D), 1<y<zZ,a=L-22 if 1<p<2

The requirement (26) leads then to certain conditions on the superpogitoa-o
torsF;. Since it is not always possible (and sometimes even impossible) to have
F;: X — X then our question is to find suitable metric spatsuch that

F: XxX-)Y, Tp:)Y—AX. 27)

These are acting properties of the superposition operatpesid of the integral
operatorTp. Since the latters are known and described in the literature then the
choice of the spacg is more or less clear. But one have to be careful even in
a very simple cases. Thus for the case of acting of superposition ofgenato
the Lebesgue spaces the well-known Krasnosel'skii theorem shotddkée into
account. In real setting this result reads (see, e.g., [12]): if the typera

F: z(t) — F(t, z(t))

mapsL,(Q2) into L,(2), where2 is a bounded subset & andq > p, then the
function F'(¢, u) is linear with respect to the second variable, i.e.

F(t,u) = a(t) + b(t)u.

The second condition we have to consider is a form of contructness

(xx) the operator®; should be contructive on the spagg i.e. for certain
a<l

p(Pj(w1),Pj(ws)) < ap(wr, wa). (28)

Since the operatdFy is linear then in those pairs of spades, )) in which
Tp is bounded (and thus continuous) the requirenter} is simply the condi-
tion on the superposition operatdrg. Usually it is enough to suppose that the
operatorsF; are Lipschitz-continuous with respect to functional variables and
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the Lipschitz constant satisfies certain inequality involving the norriTgfas
an element ofC (X,)). Forj = 1 itis quite predictible that the Lipschitz-
continuity of the operatoF; follows from the differentiability of the functior
with respect to the second variable. The cgses2, 3, 4 are less studied and the
corresponding conditions on the functidig, j = 2, 3, 4, have to be found.

At last the difference between the above discussed case (solutionwhdhe
spaceX) and another case (solution in a bl = B(wg, R) C X) is not too
essential. First of all one have to choose the starting point of the coasater
(the center of a ball B). Then, since we are looking for the solution in thevea
need to check the condition

p(w, wO) <R,

which means that the operatdPg possess their values in the b&l(wo, R). The
standard procedure is the following: to find a bBvy,r) C Y, o = Fjwo
such that

{py(Fjw,l/Jo) <r, Yw e B(wy,R), (29)

PX(TJDﬂ/J; UJ()) <, V¢ € B(woﬂ 7").

Both conditions means boundedness of the corresponding operakt@se ¢on-
ditions are described e.qg. in [4,12]. A little bit more delicate is to find a variint o
Lipschitz condition in a ball. Since we do not know in advance the possiblevalu
of the solution then we have to assume the fulfillment of the Lipschitz condition
on the set which surely cover the set of all possible values of the soletignfor

the operatoiF'; this condition has a form

‘F1(Z,w1) - F1(2’7w2)} < Lw; — wal,
Vz €D, Ywy,ws € E = {w € C: |w| < sup,5|wo(2)| + R}
2.2 Differentiation and implicit functions theorem

The above discussed approach deals mainly with the case of “small noitlihea
F;. It means that the Lipschitz constahthave to be small enough. It leads
immediately to smallness df; with respect to possible changes of solutions

w(z).
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In order to study more general situation one can linearize the opeiajons
one of the following forms

Pjw=Ajw+ l:Tjw, (30)
or
P;(w, @) = Ajw + B;w + P;(w,w), (31)

where the operatorﬁj are small in norm with respect to their variables (e.qg.
]\ﬁw\| = o(||w||) in the case of representation (30)). The representation (30) (or
(31)) is valid if the operatoP; is differentiable with respect to the wariabie
(respectively, with respect to both variablesandw). Both cases are possible but
leed to different meaning of the operatd®s. In order to get the representation
(30) one needs to suppose tlixt depends only or and the functional variable

w. These are “complex variabld® ;-operators. In the second case we have to
separate the dependence with respeat smdw. Such situation is quite common

in the theory of generalized analytic functions. We deals with “real varidBle
operators, i.eP; depends in fact in variables v (Whereu + iv = w).

Since the operatdFy is linear, all we need to discover either (30) or (31) is
to get the differentiation of the superposition operaloysn one of the above said
sense. The corresponding conditions are described in [12, 14].

The most straightforward way to study the problem (23) in this case is to find
coefficients4,(z), B;(z) explicitly (or describe them as completely as possible),
and to inverse then the linearized equation

wz + Aj(2)w + Bj(2)w = C(z,w, W), (32)

supposing for the moment that the right-hand gitldepends solely in. After
that we arrive at the following equation

w() - QC(,w(),E()) =0, (33)

whereQ is an inverse operator to the left-hand side of (32). The last equation
can be also considered as the fixed point equation. Anyway it is quiteutliffic
formulate the corresponding conditions in terms of the initial functibns
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There are some ways to study the operator equations (33) in differentiable
case. One of them is connected with application of a form of the Implicit Fumctio
Theorem (in fact, we can apply such theorems already to the starting equatio
(23)). Certain variants of implicit function theorems are presented in thegur
[18]. The most suitable for considered equations is the following

Theorem 1. ([18], Thm. 15)Let Z be an ideal space such that C L, C Z,
whereZ’ is the associate space .

Let Fj: A x  x R® — R" be a Caratheodory functions satisfying the
following inequality:

<Fj()\,s,u1) — Fj(X\, s,u2),u1 — u2> > ylup — u2]2 (ug,us € R"). (34)

Denote byy(F}) the supremum of all constanisfor which inequality(34) holds.
Let the linear integral operato'p be bounded frong’ into Z having fi-
nite number of negative eigenvalues of finite multiplicity. Denote-{) the
smallest of these eigenvalues. Let at laéT'p )~ (F;) < —1.
Assume also that one of the following two conditions is satisfied:

() the operatorTy is compact;

(i) the set{F;(N)z: A € A, ||z|] < r} (r > 0) admits for anye > 0 a
U-bounded:-netin Z’.

Then for any sufficiently small> 0 one can find & > 0 such that for each with
IA—Xo| < 6, equation(19) has a unique solutiom = x (A, t) with ||z — x| < e.

It has to be noted that the differentiation condition on the functibnsvith
respect to (complex!) functional variables is in fact fairly strong andgémme-
diately to the analyticity of the nonlinear functioh%. From this point of view it
is better to apply the Implicit Function Theorem approach directly to the equation
(23).

2.3 Newton-Kantorovich method

In the above described method one needs usually to have a starting point fo
consideration of the solvability (the center of the suitable ball in the local @ana
Cacciopolli method or the starting point of extension in the case of the implicit
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function theorem approach). As the procedures which allow us to fictdsoints
one can take those of Newton or Newton-Kantorovich method.
The Newton method is applied to the solution of the equation

Gz =0 (35)

in a Banach spac& with the operator& acting from the Banach space into
another Banach spage Its procedure is described by the equation

o1 = 2 — [G'(22)] 71 (Glan), (36)

with the initial pointx, chosen under certain conditions. In the case of the
Newton-Kantorovich method one have to replace all derivatfi¥és:,) are chan-
ged for the derivative at the initial point,.

The standard assumptions of the Newton and Newton-Kantorovich methods
are described in the literature (see, e.g., [15, 16, 19]). One of the seshtéal
condition is an existence of the Frechet derivatives of the ope€tora neigh-
bourhood of a poink and invertibility of the corresponding linear operator.

In the considered cage = I -P; = I - TpF;, and such a condition means
again the analyticity of the superposition operators with respect to funttiona
variables. It restricts in a sense the applicability of such approach tolieasy
nonlinear generalizations of the Vekua-Bers type equations.

3 Boundary value problems for nonlinear Vekua-Bers type equabns

The above discussed methods deals with the general solution to the nonlinear
differential equations (13), (14). The aim of this discussion is either tb dim
integral representation for a class of the solutions or to show the way how to
obtain the general solution of these equations.

The most interesting for applications is to solve the corresponding bogundar
value problems for the above equations. Let us briefly outline certaittsdsu
the solution of boundary value problems for the complex differential equstio

An existence for the Schwarz boundary value problem for the homogene
equation (9) in the case of Wiener type domains is shown in [20]. The Riemann
Hilbert-type boundary value problem for the same equation (9) but in e afa
singular coefficients is studied in [21] (see also [22]).
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In [8] by means of the contraction principle are considered two examples
from ordinary differential equation and elliptic differential equations impex
form. The right-hand sides of differential equations are supposed ltipbehitz
continuous.

The paper [23] is devoted to the solution in the class:of-generalized
analytic functions of the Cauchy problem

O = f(t,z,u,d,u), u(0,z) = up(z).

The main idea is to associate this problem with the boundary value problem for
linear differential equation and to apply Cauchy-Kovalevski theorem.

Boundary value problems of the conjugation type are studied in [24] for so
called generalized-analytic functions, i.e. the solutions of the equation

dzw — q(2)0.w + A(z)w + B(2)w =0, |q(z)| < q0 < 1.

Existence and uniguenes are established in [25] for nonlinear bouvalae
problems of Riemann-Hilbert type for generalized analytic functions. @onto
former investigations the nonlinearity in the boundary conditions need na to b
Lipschitz continuous with a small constant.

Conditions of existence of periodic solutions of cla’s’é(Q), p > 2, to the
inhomogeneous equation (9) are found in [26]. The solutions aresemed via
Weierstrass elliptic functions.
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