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1 Introduction

The theory of generalizations of analytic functions goes back to the early fifties

(see, e.g., the survey by Tutschke [1] and references therein). An interest to the

developing of this area is connected first of all with different type applications

of these functions called usuallygeneralized analytic functions(see [2–4]). The

most known constructions are those generalized analytic functions of Vekua type

(see [4]) defined as a solution to elliptic systems of differential equations gene-

ralizing the Cauchy-Riemann system, or pseudo-analytic functions of Berstype

determined by ordinary differential equations in complex domains containing so

called(F,G)-derivatives (see [5]). Different methods are developed for the study

of the corresponding differential equations and the corresponding boundary value

problems. One can mention here the method of integral representations which

was started by Vekua himself (see [4], and [6]), related to it method of (singular)
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integral equations (see [2]), topological methods (see [7]), as well ascertain

methods of functional analysis (see [1,5,8–10]).

Let us represent the most interesting results in this direction.

Any solution of the inhomogeneous differntial equation

wz = f, z ∈ G, (1)

can be represented ( [4], p. 29) in the following form

w = φ+ TGf, (2)

whereφ is a function analytic inG, and

TGf(z) = −
1

π

∫∫

G

f(ζ)
dξdη

ζ − z
(3)

is the so called Pompeiu integral operator.

Generalized Beltrami equation

wz + µ1wz + µ2wz + aw + bw = f, z ∈ G, (4)

with coefficients satisfying the relation|µ1(z)|+ |µ2(z)| ≤ q0 < 1 has a solution

of the form (see [6], p. 225)

w = TGρ, (5)

whereρ is a unique solution to the singular integral equation

ρ+ µ1ΠGρ+ µ1ΠGρ+ aTGρ+ bTGρ = f, (6)

where

ΠGf(z) = −
1

π

∫∫

G

f(ζ)
dξdη

(ζ − z)2
(7)

is the Calderon-Zygmund type singular integral operator.

The Riemann-Hilbert boundary value problem

Re
[
λ(z)w

]
= γ(z), z ∈ ∂ G ≡ Γ, (8)
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in the class of generalized analytic functions, i.e. those satisfying inhomogeneous

differential equation

Lw = ∂zw +A(z)w +B(z)w = F (z), z ∈ G, (9)

with A,B, F ∈ Lp,2(G), p > 2; Γ ∈ C1
µ,ν1,...,νk

; λ, γ ∈ Cν(Γ), |λ| = 1, has the

solution of the following form

w = w0 + w̃, (10)

wherew0 is a solution to the homogeneous equationLw = 0

w0(z) = Φ(z)eω(z), ω(z) = −TG

(
A+B

w0

w

)
, (11)

w̃(z) = −
1

π

∫∫

G

Ω1(z, ζ)F (ζ)dξdη −
1

π

∫∫

G

Ω2(z, ζ)F (ζ)dξdη, (12)

andΩ1(z, t, G),Ω2(z, t, G) are the principal kernels of the classNp,2(A,B,G),

p > 2, which is the class of all regular solutions to the linear differential equations

Lw = 0 with coefficientsA,B ∈ Lp,2(G) for a fixedp.

In the next sections we will consider certain ideas of nonlinear analysis which

can be applied at the study nonlinear generalizations of Vekua (or Bers)type

differential equations and/or nonlinear boundary value problems for these equa-

tions. Some results of such a type were obtained by different authors (see, e.g.,

[8,10,11], and references therein).

2 Nonlinear Vekua-Bers type equations

Let us described the situation which leads to the problems we would like to

discuss here. Consider the most simple nonlinear analog of the Cauchy-Riemann

equations in one of the following forms

wz = F1(z, w), (13)

or

wz = F2(z, w,w). (14)
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For the simplicity we will study either equations on the unit discD. Moreover, for

the beginning we will not fix any class for the solutions of (13) and (14) and will

not pose any boundary value problem for these equations. These moments will be

specified later.

We will not consider more general equations of the type

wz = F3(z, w,w,wz), (15)

or

F4(z, w,w,wz, wz) = 0, (16)

since it leads to the problems on the type of these differential equations.

2.1 Banach-Cacciopolli fixed point principle

One can apply to each of the equations (13), (14) the same ideas as to the inho-

mogeneous equation (1), i.e. rewrite these equations as integral equations

w +
1

π

∫∫

G

F1

(
ζ, w(ζ)

) dξdη
ζ − z

= 0, (17)

w +
1

π

∫∫

G

F2

(
ζ, w(ζ), w(ζ)

) dξdη
ζ − z

= 0, (18)

or in operator form

(I − TDFj)w = 0, j = 1, 2. (19)

HereFj , j = 1, 2, are so called superposition operators (or Nemytsky operators)

defined by one of the following formulas

F1 : w(z) 7→ F1

(
z, w(z)

)
, (20)

F2 : w(z) 7→ F2

(
z, w(z), w(z)

)
. (21)

These operators (mostly in real-valued settings) are intensively studied recently.

We have to mention here the book [12] which is devoted to the general questions

of the theory of operators of type (20) as well as to the study of these operators in
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the classical functional spaces. The book [13] deals with the set-valuedoperators

(20) (or (21)), i.e. when the values of functionsFj are sets but not numbers.

These operators can be applied e.g. in the case of the discontinuous right-hand

sides in (13) and (14) by using concepts of sub- and super-solutions.At last

in the book [14] the superposition operators are studied in Sobolev type spaces.

The corresponding results are applicable to the study of weak (generalized or

distributional type) solutions of the equations on the discussion.

Let us return to the operator equation (19). Denoting by

Pj ≡ TDFj , j = 1, 2, (22)

we arrive at so called fixed point equation (see [15], p. 510)

w = Pjw. (23)

The idea of Banach-Cacciopolli approach is well-known. We will get a solution

of (23) in a metric space(X , ρ) if the operatorPj is contructive, i.e. if there exists

α ∈ (0, 1) such that

ρ
(
Pj(w1),Pj(w2)

)
≤ αρ(w1, w2), w1, w2 ∈ X . (24)

More delicate forms of this conditions are presented in the books [16, 17].One

of the most simple generalizations is the following: letw0 be a given point in

the spaceX . Denote byB = B(w0, R) the ball of radiusR centered atw0.

Equation (23) has a solution in the ballB if inequality (24) is valid for all points

w1, w2 ∈ B. If the existence of a solution to (23) is known then the solution itself

can be obtained by the limit of the successive approximations(wn):

wn+1 = Pj(wn), n = 0, 1, . . . . (25)

The speed of convergence is usually described in terms of elements of the esti-

mates of the type (24).

How one can apply Banach-Cacciopolli principle to equation (23) with the

operatorsPj of the form (22)? Consider solvability of (23) on the whole space

X . First property which the operatorsPj have to satisfy is the following:

(∗) the operatorsPj should act on the spaceX , i.e.

Pj (X ) ⊂ X . (26)
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It really gives certain additional relations to be checked (or assumed). E.g. it

is known [4], pp. 38, 47, 51 that forf ∈ Lp

(
D

)
we have

1) TDf ∈ Cα(C), α = p−2
2p

if p > 2;

2) TDf ∈ La
γ

(
D

)
, 1 < γ < 2p

2−p
, a = 1

γ
− 2−p

2p
if 1 ≤ p ≤ 2.

The requirement (26) leads then to certain conditions on the superposition opera-

torsFj . Since it is not always possible (and sometimes even impossible) to have

Fj : X → X then our question is to find suitable metric spaceY such that

Fj : X → Y, TD : Y → X . (27)

These are acting properties of the superposition operatorsFj and of the integral

operatorTD. Since the latters are known and described in the literature then the

choice of the spaceY is more or less clear. But one have to be careful even in

a very simple cases. Thus for the case of acting of superposition operators in

the Lebesgue spaces the well-known Krasnosel’skii theorem should betaken into

account. In real setting this result reads (see, e.g., [12]): if the operator

F : x(t) 7→ F
(
t, x(t)

)

mapsLp(Ω) into Lq(Ω), whereΩ is a bounded subset ofR
n andq ≥ p, then the

functionF (t, u) is linear with respect to the second variable, i.e.

F (t, u) = a(t) + b(t)u.

The second condition we have to consider is a form of contructness

(∗∗) the operatorsPj should be contructive on the spaceX , i.e. for certain

α < 1

ρ
(
Pj(w1),Pj(w2)

)
≤ αρ(w1, w2). (28)

Since the operatorTD is linear then in those pairs of spaces(X ,Y) in which

TD is bounded (and thus continuous) the requirement(∗∗) is simply the condi-

tion on the superposition operatorsFj . Usually it is enough to suppose that the

operatorsFj are Lipschitz-continuous with respect to functional variables and
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the Lipschitz constant satisfies certain inequality involving the norm ofTD as

an element ofL (X ,Y). For j = 1 it is quite predictible that the Lipschitz-

continuity of the operatorF1 follows from the differentiability of the functionF1

with respect to the second variable. The casesj = 2, 3, 4 are less studied and the

corresponding conditions on the functionsFj , j = 2, 3, 4, have to be found.

At last the difference between the above discussed case (solution on thewhole

spaceX ) and another case (solution in a ballB = B(w0, R) ⊂ X ) is not too

essential. First of all one have to choose the starting point of the consideration

(the center of a ball B). Then, since we are looking for the solution in the ball we

need to check the condition

ρ(w,w0) < R,

which means that the operatorsPj possess their values in the ballB(w0, R). The

standard procedure is the following: to find a ballB(ψ0, r) ⊂ Y, ψ0 = Fjw0

such that
{
ρY(Fjw,ψ0) < r, ∀w ∈ B(w0, R),

ρX (TDψ,w0) < r, ∀ψ ∈ B(ψ0, r).
(29)

Both conditions means boundedness of the corresponding operators. These con-

ditions are described e.g. in [4,12]. A little bit more delicate is to find a variant of

Lipschitz condition in a ball. Since we do not know in advance the possible values

of the solution then we have to assume the fulfillment of the Lipschitz condition

on the set which surely cover the set of all possible values of the solution,e.g. for

the operatorF1 this condition has a form

∣∣F1(z, w1) − F1(z, w2)
∣∣ ≤ L|w1 − w2|,

∀z ∈ D, ∀w1, w2 ∈ E =
{
ω ∈ C : |ω| ≤ supz∈D

∣∣w0(z)
∣∣ +R

}
.

2.2 Differentiation and implicit functions theorem

The above discussed approach deals mainly with the case of “small nonlinearity”

Fj . It means that the Lipschitz constantL have to be small enough. It leads

immediately to smallness ofFj with respect to possible changes of solutions

w(z).
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In order to study more general situation one can linearize the operatorsPj in

one of the following forms

Pjw = Ajw + P̃jw, (30)

or

Pj(w,w) = Ajw +Bjw + P̃j(w,w), (31)

where the operators̃Pj are small in norm with respect to their variables (e.g.

‖P̃jw‖ = o(‖w‖) in the case of representation (30)). The representation (30) (or

(31)) is valid if the operatorPj is differentiable with respect to the wariablew

(respectively, with respect to both variablesw andw). Both cases are possible but

leed to different meaning of the operatorsPj . In order to get the representation

(30) one needs to suppose thatPj depends only onz and the functional variable

w. These are “complex variable”Pj-operators. In the second case we have to

separate the dependence with respect tow andw. Such situation is quite common

in the theory of generalized analytic functions. We deals with “real variable” Pj-

operators, i.e.Pj depends in fact in variablesu, v (whereu+ iv = w).

Since the operatorTD is linear, all we need to discover either (30) or (31) is

to get the differentiation of the superposition operatorsFj in one of the above said

sense. The corresponding conditions are described in [12,14].

The most straightforward way to study the problem (23) in this case is to find

coefficientsAj(z), Bj(z) explicitly (or describe them as completely as possible),

and to inverse then the linearized equation

wz +Aj(z)w +Bj(z)w = C(z, w,w), (32)

supposing for the moment that the right-hand sideC depends solely inz. After

that we arrive at the following equation

w(·) − QC
(
·, w(·), w(·)

)
= 0, (33)

whereQ is an inverse operator to the left-hand side of (32). The last equation

can be also considered as the fixed point equation. Anyway it is quite difficult to

formulate the corresponding conditions in terms of the initial functionsFj .
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There are some ways to study the operator equations (33) in differentiable

case. One of them is connected with application of a form of the Implicit Function

Theorem (in fact, we can apply such theorems already to the starting equation

(23)). Certain variants of implicit function theorems are presented in the survey

[18]. The most suitable for considered equations is the following

Theorem 1. ( [18], Thm. 15)LetZ be an ideal space such thatZ ⊆ L2 ⊆ Z ′,

whereZ ′ is the associate space toZ.

Let Fj : Λ × Ω × R
n → R

n be a Caratheodory functions satisfying the

following inequality:

〈
Fj(λ, s, u1) − Fj(λ, s, u2), u1 − u2

〉
≥ γ|u1 − u2|

2 (u1, u2 ∈ R
n). (34)

Denote byγ(Fj) the supremum of all constantsγ for which inequality(34)holds.

Let the linear integral operatorTD be bounded fromZ ′ into Z having fi-

nite number of negative eigenvalues of finite multiplicity. Denote byκ(TD) the

smallest of these eigenvalues. Let at lastκ(TD)γ(Fj) < −1.

Assume also that one of the following two conditions is satisfied:

(i) the operatorTD is compact;

(ii) the set{Fj(λ)x : λ ∈ Λ, ‖x‖ ≤ r} (r > 0) admits for anyε > 0 a

U -boundedε-net inZ ′.

Then for any sufficiently smallε > 0 one can find aδ > 0 such that for eachλwith

|λ−λ0| ≤ δ, equation(19)has a unique solutionx = x(λ, t) with ‖x−x0‖ ≤ ε.

It has to be noted that the differentiation condition on the functionsFj with

respect to (complex!) functional variables is in fact fairly strong and leads imme-

diately to the analyticity of the nonlinear functionsFj . From this point of view it

is better to apply the Implicit Function Theorem approach directly to the equation

(23).

2.3 Newton-Kantorovich method

In the above described method one needs usually to have a starting point for

consideration of the solvability (the center of the suitable ball in the local Banach-

Cacciopolli method or the starting point of extension in the case of the implicit
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function theorem approach). As the procedures which allow us to find such points

one can take those of Newton or Newton-Kantorovich method.

The Newton method is applied to the solution of the equation

Gx = 0 (35)

in a Banach spaceX with the operatorsG acting from the Banach spaceX into

another Banach spaceY. Its procedure is described by the equation

xn+1 = xn −
[
G′(xn)

]−1(
G(xn)

)
, (36)

with the initial point x0 chosen under certain conditions. In the case of the

Newton-Kantorovich method one have to replace all derivativesG′(xn) are chan-

ged for the derivative at the initial pointx0.

The standard assumptions of the Newton and Newton-Kantorovich methods

are described in the literature (see, e.g., [15, 16, 19]). One of the most essential

condition is an existence of the Frechet derivatives of the operatorG in a neigh-

bourhood of a pointx0 and invertibility of the corresponding linear operator.

In the considered caseG = I−Pj = I−TDFj , and such a condition means

again the analyticity of the superposition operators with respect to functional

variables. It restricts in a sense the applicability of such approach to the arbitrary

nonlinear generalizations of the Vekua-Bers type equations.

3 Boundary value problems for nonlinear Vekua-Bers type equations

The above discussed methods deals with the general solution to the nonlinear

differential equations (13), (14). The aim of this discussion is either to find an

integral representation for a class of the solutions or to show the way how to

obtain the general solution of these equations.

The most interesting for applications is to solve the corresponding boundary

value problems for the above equations. Let us briefly outline certain results for

the solution of boundary value problems for the complex differential equations.

An existence for the Schwarz boundary value problem for the homogeneous

equation (9) in the case of Wiener type domains is shown in [20]. The Riemann-

Hilbert-type boundary value problem for the same equation (9) but in the case of

singular coefficients is studied in [21] (see also [22]).
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In [8] by means of the contraction principle are considered two examples

from ordinary differential equation and elliptic differential equations in complex

form. The right-hand sides of differential equations are supposed to beLipschitz

continuous.

The paper [23] is devoted to the solution in the class ofµ, ν-generalized

analytic functions of the Cauchy problem

∂tu = f(t, z, u, ∂zu), u(0, z) = u0(z).

The main idea is to associate this problem with the boundary value problem for

linear differential equation and to apply Cauchy-Kovalevski theorem.

Boundary value problems of the conjugation type are studied in [24] for so

called generalizedq-analytic functions, i.e. the solutions of the equation

∂zw − q(z)∂zw +A(z)w +B(z)w = 0,
∣∣q(z)

∣∣ ≤ q0 < 1.

Existence and uniquenes are established in [25] for nonlinear boundary value

problems of Riemann-Hilbert type for generalized analytic functions. Contrary to

former investigations the nonlinearity in the boundary conditions need not to be

Lipschitz continuous with a small constant.

Conditions of existence of periodic solutions of classW 1
p (Ω), p > 2, to the

inhomogeneous equation (9) are found in [26]. The solutions are represented via

Weierstrass elliptic functions.
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