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Abstract. Natural convection heat transfer fluid flow past an inclined semi-
infinite surface in the presence of solute concentration is investigated by Lie
group analysis. The governing partial differential equations are reduced to
a system of ordinary differential equations by the translation and scaling
symmetries. An exact solution is obtained for translation symmetry and
numerical solutions for scaling symmetry. It is found that the velocity increases
and temperature and concentration of the fluid decrease withan increase in the
thermal and solutal Grashof numbers. The velocity and concentration of the
fluid decrease and temperature increases with increase in the Schmidt number.
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1 Introduction

The study of natural convection flow for an incompressible viscous fluid past a

heated surface has attracted the interest of many researchers in view ofits impor-

tant applications to many engineering problems such as cooling of nuclear reac-

tors, the boundary layer control in aerodynamics, crystal growth, food processing

and cooling towers. In this paper, symmetry methods are applied to a natural

convection boundary layer problem. The main advantage of such methods isthat

they can successfully be applied to non-linear differential equations. The sym-

metries of a differential equations are those continuous groups of transformations

under which the differential equations remain invariant, that is, a symmetry group
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maps any solution to another solution. The symmetry solutions are quite popular

because they result in the reduction of the number of independent variables of the

problem.

Chen [1] performed an analysis to study the natural convection flow overa

permeable inclined surface with variable wall temperature and concentration. The

results show that the velocity is decreased in the presence of a magnetic field.

Increasing the angle of inclination decreases the effect of buoyancy force. Heat

transfer rate is increased when the Prandtl number is increased. Ibrahim et al.

[2] investigated the similarity reductions for problems of radiative and magnetic

field effects on free convection and mass-transfer flow past a semi-infinite flat

plate. They obtained new similarity reductions and found an analytical solution

for the uniform magnetic field by using Lie group method. They also presented

the numerical results for the non-uniform magnetic field.

Kalpadides and Balassas [3] studied the free convective boundary layer prob-

lem of an electrically conducting fluid over an elastic surface by group theoretic

method. Their results agreed with the existing result for the group of scaling

symmetry. They found that the numerical solution also does so. The Navier-

Stokes and boundary layer equations for incompressible flows were derived using

a convenient coordinate system by Pakdemirli [4]. The results showed that the

boundary layer equations accept similarity solutions for the constant pressure

gradient case. The importance of similarity transformations and their applications

to partial differential equations was studied by Pakdemirli and Yurusoy [5]. They

investigated the special group transformations for producing similarity solutions.

They also discussed spiral group of transformations.

Using Lie group analysis, three dimensional, unsteady, laminar boundary

layer equations of non-Newtonian fluids are studied by Yurusoy and Pakdemirli

[6,7]. They assumed that the shear stresses are arbitrary functions of the velocity

gradients. Using Lie group analysis, they obtained two different reductions to

ordinary differential equations. They also studied the effects of a movingsurface

with vertical suction or injection through the porous surface. They further studied

exact solution of boundary layer equations of a special non-Newtonianfluid over

a stretching sheet by the method of Lie group analysis. They found that the

boundary layer thickness increases when the non-Newtonian behaviour increases.

202



Lie Group Analysis of Natural Convection Heat and Mass Transfer

They also compared the results with that for a Newtonian fluid. Yurusoyet al. [8]

investigated the Lie group analysis of creeping flow of a second grade fluid. They

constructed an exponential type of exact solution using the translation symmetry

and a series type of approximate solution using the scaling symmetry. They also

discussed some boundary value problems. So far no attempt has been madeto

study the heat and mass transfer in an inclined surface using Lie groups and hence

we study the problem of natural convection heat and mass transfer flow past an

inclined plate for various parameters using Lie group analysis.

2 Mathematical analysis

Consider the heat and mass transfer by natural convection in laminar boundary

layer flow of an incompressible viscous fluid along a semi-infinite inclined plate

with an acute angleα from the vertical. The surface is maintained at a constant

temperatureTw which is higher than the constant temperatureT∞ of the surround-

ing fluid and the concentrationCw is greater than the constant concentrationC∞.

The fluid properties are assumed to be constant. The governing equationsof the

mass, momentum, energy and concentration for the steady flow can be written as,

∂u

∂x
+

∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβ(T − T∞) cos α + gβ∗(C − C∞) cos α, (2)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
, (3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
(4)

with the boundary conditions

u = v = 0, T = Tw, C = Cw at y = 0,
(5)

u = 0, T = T∞, C = C∞ as y → ∞,

whereu andv are velocity components;x andy are space coordinates;T is the

temperature;C is the concentration;ν is the kinematic viscosity of the fluid;g is

the acceleration due to gravity;β is the coefficient of thermal expansion;β∗ is the
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coefficient of expansion with concentration;k is the thermal conductivity of fluid;

ρ is the density of the fluid;cp is the specific heat of the fluid;D is the diffusion

coefficient andα is the angle of inclination.

The nondimensional variables are

x =
xU∞

ν
, y =

yU∞

ν
, u =

u

U∞

, v =
v

U∞

,

θ =
T − T∞

Tw − T∞

, φ =
C − C∞

Cw − C∞

.

(6)

Substituting (6) into equations (1)–(4) and dropping the bars, we obtain,

∂u

∂x
+

∂v

∂y
= 0, (7)

u
∂u

∂x
+ v

∂u

∂y
=

∂2u

∂y2
+ Grθ cos α + Gcφ cos α, (8)

u
∂θ

∂x
+ v

∂θ

∂y
=

1

Pr

∂2θ

∂y2
, (9)

u
∂φ

∂x
+ v

∂φ

∂y
=

1

Sc

∂2φ

∂y2
(10)

with the boundary conditions

u = v = 0, θ = 1, φ = 1 at y = 0,
(11)

u = 0, θ = 0, φ = 0 as y → ∞,

whereGr = gβ(Tw−T∞)ν
U3
∞

is the thermal Grashof number,Gc = gβ∗(Cw−C∞)ν
U3
∞

is

the solutal Grashof number,Pr =
ρcpν

k is the Prandtl number andSc = ν
D is the

Schmidt number.

3 Symmetry groups of equations

The symmetry groups of equations (7)–(10) are calculated using classical Lie

group approach [9]. The one-parameter infinitesimal Lie group of transformations
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leaving (7)–(10) invariant is defined as

x∗ = x + εξ1(x, y, u, v, θ, φ),

y∗ = y + εξ2(x, y, u, v, θ, φ),

u∗ = u + εη1(x, y, u, v, θ, φ),

v∗ = v + εη2(x, y, u, v, θ, φ),

θ∗ = θ + εη3(x, y, u, v, θ, φ),

φ∗ = φ + εη4(x, y, u, v, θ, φ).

(12)

By carrying out a straightforward and tedious algebra, we finally obtain the

form of the infinitesimals as

ξ1 = 2c1x − c2x − c3,

ξ2 =
1

2
c1y −

1

2
c2y − α(x),

η1 = c1u,

η2 = −uα′(x) −
1

2
c1v +

1

2
c2v,

η3 = c2θ −

Gc

Gr
c4,

η4 = c2φ + c4.

(13)

Imposing the restrictions from boundaries and from the boundary conditions on

the infinitesimals, we obtain the following form for equations (13)

ξ1 = 2c1x − c2x − c3,

ξ2 =
1

2
c1y −

1

2
c2y,

η1 = c1u,

η2 = −

1

2
c1v +

1

2
c2v,

η3 = c2θ −

Gc

Gr
c4,

η4 = c2φ + c4,

(14)

where the parametersc1 and c2 represent the scaling transformations and pa-

rameterc3 represents translation in thex coordinate. In the following sections,

solutions corresponding to the above symmetries are derived.
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4 Translational symmetry

In this section, translation inx coordinate is considered and hence we takec1 =

c2 = 0. The characteristic equations for finding the similarity transformations

would then be

dx

−c3
=

dy

0
=

du

0
=

dv

0
=

dθ

0
=

dφ

0
. (15)

The similarity variables and resulting functions are

η = y, u = F1(η), v = F2(η), θ = F3(η), φ = F4(η). (16)

One now substitutes the similarity variable and the functions into the original

equations of motion and obtains

F1
′′ = F2F

′

1 − GrF3 cos α − GcF4 cos α,

F2
′ = 0,

F3
′′ = PrF2F

′

3,

F4
′′ = ScF2F

′

4.

(17)

Integrating the above system and using the boundary conditions, we obtain

the solutions of the equations as follows:

u =
Gr cos α

c2(Pr − 1)Pr
(e−cy

− e−cPry) +
Gc cos α

c2(Sc − 1)Sc
(e−cy

− e−cScy),

v = −c,

θ = e−cPry,

φ = e−cScy,

(18)

wherec is an arbitrary constant.

5 Scaling symmetry

In this section, parameterc1 is taken to be arbitrary and all other parameters are

zero in (14). The characteristic equations are

dx

2x
=

dy

(1/2)y
=

du

u
=

dv

(−1/2)v
=

dθ

0
=

dφ

0
(19)
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from which the similarity variable, the velocities, the temperature and the concen-

tration turn out to be of the form

η = x−1/4y, u = x1/2F1(η), v = x−1/4F2(η),

θ = F3(η), φ = F4(η).
(20)

Substituting (20) into equations (7)–(10), we finally obtain the system of nonlinear

ordinary differential equations

F1
′′ =

1

2
F1

2
−

1

4
ηF1F

′

1 + F2F
′

1 − GrF3 cos α − GcF4 cos α,

F2
′ =

1

4
ηF1

′
−

1

2
F1,

F3
′′ = Pr(F2F

′

3 −
1

4
ηF1F

′

3),

F4
′′ = Sc(F2F

′

4 −
1

4
ηF1F

′

4).

(21)

The appropriate boundary conditions are expressed as

F1 = F2 = 0, F3 = 1, F4 = 1 at η = 0,
(22)

F1 = 0, F3 = 0, F4 = 0 as η → ∞.

6 Numerical methods for solutions

Since the equations are highly nonlinear, a numerical treatment would be more

appropriate. The system of transformed equations (21) together with the boundary

conditions (22) is numerically solved by employing a fourth order Runge-Kutta

method and Shooting techniques with a systematic guessing ofF ′

1(0), F ′

3(0) and

F ′

4(0). The procedure is repeated until we get the results upto the desired degree

of accuracy, namely10−5. A code is written in MATHEMATICA package and

solutions are presented graphically.

7 Results and discussions

Numerical solutions are carried out for various values of the Prandtl number,

thermal Grashof number, solutal Grashof number and Schmidt number. Prandtl

numberPr is varied from0.1 to 13.67, thermal Grashof numberGr from 0.1 to
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2.5, solutal Grashof numberGc from 0.1 to 1.0 and Schmidt numberSc from

1 to 10 with the angle of inclinationα taking the values0◦, 30◦ and45◦. The

numerical results are depicted graphically in the form of velocity, temperature

and concentration profiles. Most of the investigations are carried out for α = 45◦.

Some results are taken forα = 0◦ (vertical plate case) and30◦.

Fig. 1 show the effect of Schmidt number on velocity, temperature and con-

centration of the water(Pr = 13.67) boundary layer forGr = Gc = 0.1. It is

clearly seen that the velocity is decreased by increasing the Schmidt number. The

thickness of the concentration boundary layer is also decreased. The variation in

the thermal boundary layer is very small corresponding to a moderate change in

Schmidt number.

(a) (b)

(c)

Fig. 1. The velocity (a), temperature (b) and concentration(c) profiles for
Pr = 13.67, Gr = 0.1 andGc = 0.1.

Fig. 2 show the velocity, temperature and concentration profiles for

Pr = 0.71, Gr = 0.1 and Sc = 1. Increasing the solutal Grashof number

increases the velocity whereas it decreases the temperature and concentration.

The effect of the thermal Grashof number on heat and mass fluid flow be-

haviour is depicted in Fig. 3. It is found that the velocity increases rapidly and

suddenly falls near the boundary due to favourable buoyancy force.The thermal

208



Lie Group Analysis of Natural Convection Heat and Mass Transfer

(a) (b)

(c)

Fig. 2. The velocity (a), temperature (b) and concentration(c) profiles for
Pr = 0.71, Gr = 0.1 andSc = 1.

(a) (b)

(c)

Fig. 3. The velocity (a), temperature (b) and concentration(c) profiles for
Pr = 0.71, Gc = 0.1 andSc = 1.
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(a) (b)

(c)

Fig. 4. The velocity (a), temperature (b) and concentration(c) profiles for
Gr = 1, Gc = 0.1 andSc = 1.

(a) (b)

(c)

Fig. 5. The velocity (a), temperature (b) and concentration(c) profiles for
Pr = 0.71, Gr = 0.1 andGc = 0.1.
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and solutal boundary layer thicknesses are monotonically decreased onincreasing

the thermal Grashof number. In the presence of uniform Schmidt number itis

seen that the increase in the Prandtl number leads to a fall in the velocity and

temperature of the fluid and a rise in the concentration of the fluid along the

inclined surface as shown in Fig. 4.

The effect of inclination of the surface for different parameters is depicted

in Fig. 5. At a fixed value of the Schmidt number the velocity is decreased for

all angles. The fluid has higher velocity when the surface is vertical than when

inclined because of the fact that the buoyancy effect decreases dueto gravity

components(g cos α) as the plate is inclined. For a fixed value of Schimidt

number, the fluid has higher temperature whenα = 30◦. Increasing the Schmidt

number increases the temperature and decreases the concentration of thefluid

along the surface. The inclination angleα = 30◦ gives the enhanced heat and

mass distribution of the convective fluid.

8 Conclusions

By using Lie group analysis, we first find the symmetries of the partial differential

equations and then reduce the equations to ordinary differential equations by using

scaling and translational symmetries. Exact solutions for translation symmetry

and numerical solution for scaling symmetry are obtained. From the numerical

results, it is found that the velocity increases and temperature and concentration

of the fluid decrease with an increase in the thermal and solutal Grashof numbers.

The temerature and velocity of the fluid decrease at a very fast rate in the case

of water in comparison with air. Increasing the Prandtl number decreasesthe

temperature and velocity of the fluid and increases the concentration. The velocity

and concentration of the fluid decrease and temperature increases with increase in

the Schmidt number.
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