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Abstract. Natural convection heat transfer fluid flow past an inclinedthis
infinite surface in the presence of solute concentratiomvsdtigated by Lie
group analysis. The governing partial differential equadi are reduced to
a system of ordinary differential equations by the tramstatand scaling
symmetries. An exact solution is obtained for translatigmmetry and
numerical solutions for scaling symmetry. It is found ttieg velocity increases
and temperature and concentration of the fluid decreaseanithcrease in the
thermal and solutal Grashof numbers. The velocity and auraton of the
fluid decrease and temperature increases with increase Bcttimidt number.

Keywords: Lie groups, natural convection, inclined surface, heat arass
transfer.

1 Introduction

The study of natural convection flow for an incompressible viscous flagt p
heated surface has attracted the interest of many researchers in viswgior-

tant applications to many engineering problems such as cooling of nuckear re
tors, the boundary layer control in aerodynamics, crystal growtld fwocessing

and cooling towers. In this paper, symmetry methods are applied to a natural
convection boundary layer problem. The main advantage of such methibds is
they can successfully be applied to non-linear differential equations. sym-
metries of a differential equations are those continuous groups of drametions
under which the differential equations remain invariant, that is, a symmeinpgr
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maps any solution to another solution. The symmetry solutions are quite popular
because they result in the reduction of the number of independentlesritihe
problem.

Chen [1] performed an analysis to study the natural convection flowaver
permeable inclined surface with variable wall temperature and concentratien
results show that the velocity is decreased in the presence of a magnetic field
Increasing the angle of inclination decreases the effect of buoyamcg.f Heat
transfer rate is increased when the Prandtl number is increased.imbeahl.

[2] investigated the similarity reductions for problems of radiative and magnetic
field effects on free convection and mass-transfer flow past a semienfiat
plate. They obtained new similarity reductions and found an analytical solution
for the uniform magnetic field by using Lie group method. They also predente
the numerical results for the non-uniform magnetic field.

Kalpadides and Balassas [3] studied the free convective boundamnydegb-
lem of an electrically conducting fluid over an elastic surface by grouprdieo
method. Their results agreed with the existing result for the group of scaling
symmetry. They found that the numerical solution also does so. The Navier-
Stokes and boundary layer equations for incompressible flows wevedeising
a convenient coordinate system by Pakdemirli [4]. The results shoveedhé
boundary layer equations accept similarity solutions for the constansyees
gradient case. The importance of similarity transformations and their apptisatio
to partial differential equations was studied by Pakdemirli and YuruspyTfey
investigated the special group transformations for producing similarity sokitio
They also discussed spiral group of transformations.

Using Lie group analysis, three dimensional, unsteady, laminar boundary
layer equations of non-Newtonian fluids are studied by Yurusoy andePaikli
[6,7]. They assumed that the shear stresses are arbitrary functitimeswelocity
gradients. Using Lie group analysis, they obtained two different rechgtio
ordinary differential equations. They also studied the effects of a matinigce
with vertical suction or injection through the porous surface. They fughalied
exact solution of boundary layer equations of a special non-Newtdli@over
a stretching sheet by the method of Lie group analysis. They found that the
boundary layer thickness increases when the non-Newtonian behawioceases.
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They also compared the results with that for a Newtonian fluid. Yuresal [8]
investigated the Lie group analysis of creeping flow of a second graide Tihey
constructed an exponential type of exact solution using the translation ggynme
and a series type of approximate solution using the scaling symmetry. They also
discussed some boundary value problems. So far no attempt has beemomade
study the heat and mass transfer in an inclined surface using Lie grodjpeace

we study the problem of natural convection heat and mass transfer dstxap
inclined plate for various parameters using Lie group analysis.

2 Mathematical analysis

Consider the heat and mass transfer by natural convection in laminaddogun
layer flow of an incompressible viscous fluid along a semi-infinite inclined plate
with an acute angler from the vertical. The surface is maintained at a constant
temperaturd, which is higher than the constant temperatiigeof the surround-
ing fluid and the concentratiafi,, is greater than the constant concentratigg.
The fluid properties are assumed to be constant. The governing equattithes
mass, momentum, energy and concentration for the steady flow can be wsitten a
ou  Ov
— 4+ — =0, 1
2 T 3y 1)
0 0 0?
81; 8_Z = ya—yz + gB8(T — Two) cosa + g (C — Cx) cos v, 2

or =~ 9T  k 9°T

— — = 3
“ax+”ay pcp 0y?’ ®)
oC oC 0*C
— — =D— 4
Ox v oy Oy? @)
with the boundary conditions
vw=v=0 T=1T, C=C, at y=0,
®)

u =0, T=T,, C=Cyx as y— o,

whereu andv are velocity componentg; andy are space coordinates;is the
temperature(' is the concentration; is the kinematic viscosity of the fluid is
the acceleration due to gravity;is the coefficient of thermal expansio#; is the
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coefficient of expansion with concentratidnis the thermal conductivity of fluid;
p is the density of the fluid;), is the specific heat of the fluidy is the diffusion
coefficient andy is the angle of inclination.

The nondimensional variables are

= Wo Yo __ v U
T = v 9 y_ v Y U_UOO, ,U_UOO7 (6)
9 — T —Tw b= C—Cx
CTw—Ts' T Cu—Cx
Substituting (6) into equations (1)—(4) and dropping the bars, we obtain,
ou Ov
2
u%—i—vg—; = g—yz + Grécosa+ Gegpcos a, (8)
00 00 1 0%
“or oy~ Proy ©
ol o6 1 0%
Yo +U@y ~ Scoy? (10)
with the boundary conditions
—v=0, =1, ¢=1 at y=0,
U= 10} Y (11)

u =0, =0, ¢=0 as y— oo,

whereGr = 9w T=) i the thermal Grashof numbegc = %77 (G C=)v jg

[ee]

the solutal Grashof numbePr = 2%~ is the Prandtl number anglc = % is the
Schmidt number.

3 Symmetry groups of equations

The symmetry groups of equations (7)—(10) are calculated using clakgica
group approach [9]. The one-parameter infinitesimal Lie group offmamstions
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leaving (7)—(10) invariant is defined as

¥ =x+ €€I(m7y7u70707¢)7
y* =y -+ 652(xayauavuea¢)v
U*:U+6771 x,yauavveaQs)’ (12)

(
v =v+en(x,y,u,0,0,0),
0" =0+ ens(z,y,u,v,0,0)
¢F = ¢+ ena(z,y,u,v,0,0).
By carrying out a straightforward and tedious algebra, we finally obtain th
form of the infinitesimals as

9

& = 2c1x — cax — c3,

§o = %Cly - %Czy — a(x),
m = cu,
ne = —ua/ (v) — 1clv + 1Cgv (13)
2 2 ’
Gce
N3 = cofl — 5647
N1 = 29 + ca.

Imposing the restrictions from boundaries and from the boundary conslita
the infinitesimals, we obtain the following form for equations (13)

& = 2c1x — cox — c3,

1 1
&2 = 3C1Y — 5024,
m = Ccu,

1 (14)
2 = —5eiv+ 5o,
Ge

N3 = 2 — E&b
N4 = C20 + C4,

where the parameteks and c; represent the scaling transformations and pa-
rametercs represents translation in thecoordinate. In the following sections,
solutions corresponding to the above symmetries are derived.
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4 Trandational symmetry

In this section, translation im coordinate is considered and hence we take-
co = 0. The characteristic equations for finding the similarity transformations
would then be

de _dy _du_dv_do_do

= = . 15

—c3 0 0 0 0 0 (15)
The similarity variables and resulting functions are

n=y, u="F), v="F@), 0=F@), ¢=rFMm). (16)

One now substitutes the similarity variable and the functions into the original
equations of motion and obtains

F" = F,F] — GrF;cosa — GeFy cos a,

7 =0, (17)
Fy" = PrEyF),
F4// = SCFQFZ

Integrating the above system and using the boundary conditions, we obtain
the solutions of the equations as follows:

~ Greosa ey —cPry Gc cosa —cy —cScy
v (Pr — I)Pr(e ‘ ) c2(Sc— l)Sc(e ¢ )
o= e (18)
0 — e—cPry
(b _ echcy

wherec is an arbitrary constant.

5 Scaling symmetry

In this section, parametey is taken to be arbitrary and all other parameters are
zero in (14). The characteristic equations are

dx dy du dv — df d¢
20 (1/2)y  uw  (=1/2w 0 0 (19)
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from which the similarity variable, the velocities, the temperature and the concen
tration turn out to be of the form

n= 56_1/43/, U = $1/2F1(77), v = $_1/4F2(77)’

0 =F3(n), ¢=Fun).
Substituting (20) into equations (7)—(10), we finally obtain the system dimear
ordinary differential equations

(20)

1 1
"= iF 2 _ ZnFlF{ + FgF{ — GrFscosa — GeFycos a,
1 1
B =-nF' - -F,
4 2 (21)

1
F3// = P?“(FQFé — Z’nFlFé),
1
F4// = SC(FgFi - ZnFlFZD
The appropriate boundary conditions are expressed as

Fi=F,=0, F3=1, F,=1 at n=0,
F =0, F3=0, F,=0 as n— oo.

(22)

6 Numerical methodsfor solutions

Since the equations are highly nonlinear, a numerical treatment would be more
appropriate. The system of transformed equations (21) together witbtimelary
conditions (22) is numerically solved by employing a fourth order Rungeaku
method and Shooting techniques with a systematic guessify(0f, F;(0) and
F;(0). The procedure is repeated until we get the results upto the desirezbdegr
of accuracy, namely0~5. A code is written in MATHEMATICA package and
solutions are presented graphically.

7 Resultsand discussions

Numerical solutions are carried out for various values of the Pranditbeuy,
thermal Grashof number, solutal Grashof number and Schmidt numtsndtPr
numberPr is varied from0.1 to 13.67, thermal Grashof numbeé&¥r from 0.1 to
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2.5, solutal Grashof numbefc from 0.1 to 1.0 and Schmidt numbe§c from

1 to 10 with the angle of inclinatiorv taking the value$°, 30° and45°. The
numerical results are depicted graphically in the form of velocity, temperatur
and concentration profiles. Most of the investigations are carried out f045°.
Some results are taken faor= 0° (vertical plate case) argi°.

Fig. 1 show the effect of Schmidt number on velocity, temperature and con-
centration of the watefPr = 13.67) boundary layer foGr = Gec = 0.1. Itis
clearly seen that the velocity is decreased by increasing the Schmidt nurhieer
thickness of the concentration boundary layer is also decreased.afiagon in
the thermal boundary layer is very small corresponding to a moderatgelian
Schmidt number.
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Fig. 1. The velocity (a), temperature (b) and concentra{@nprofiles for
Pr =13.67, Gr = 0.1 andGc = 0.1.

Fig. 2 show the velocity, temperature and concentration profiles for
Pr = 0.71, Gr = 0.1 andSc = 1. Increasing the solutal Grashof number
increases the velocity whereas it decreases the temperature andtcatiaren

The effect of the thermal Grashof number on heat and mass fluid flow be-
haviour is depicted in Fig. 3. It is found that the velocity increases rapiddly a
suddenly falls near the boundary due to favourable buoyancy fétmethermal
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Fig. 2. The velocity (a), temperature (b) and concentrafnprofiles for
Pr=20.71,Gr = 0.1 andSc = 1.
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Fig. 3. The velocity (a), temperature (b) and concentrafnprofiles for
Pr=0.71,Ge= 0.1 andSc = 1.
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Fig. 4. The velocity (a), temperature (b) and concentraf©nprofiles for
Gr=1,Gec=0.1andSc = 1.
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Fig. 5. The velocity (a), temperature (b) and concentratnprofiles for
Pr=0.71,Gr = 0.1 andGc = 0.1.
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and solutal boundary layer thicknesses are monotonically decreasscteasing
the thermal Grashof number. In the presence of uniform Schmidt numkser it
seen that the increase in the Prandtl number leads to a fall in the velocity and
temperature of the fluid and a rise in the concentration of the fluid along the
inclined surface as shown in Fig. 4.

The effect of inclination of the surface for different parameters isaleg
in Fig. 5. At a fixed value of the Schmidt number the velocity is decreased for
all angles. The fluid has higher velocity when the surface is vertical themw
inclined because of the fact that the buoyancy effect decreasetodyravity
componentsg cos «) as the plate is inclined. For a fixed value of Schimidt
number, the fluid has higher temperature whes 30°. Increasing the Schmidt
number increases the temperature and decreases the concentratiorfloidithe
along the surface. The inclination angle= 30° gives the enhanced heat and
mass distribution of the convective fluid.

8 Conclusions

By using Lie group analysis, we first find the symmetries of the partial éiffial
equations and then reduce the equations to ordinary differential eqaibtiarsing
scaling and translational symmetries. Exact solutions for translation symmetry
and numerical solution for scaling symmetry are obtained. From the numerical
results, it is found that the velocity increases and temperature and ¢@atomEn

of the fluid decrease with an increase in the thermal and solutal Grasimiians.

The temerature and velocity of the fluid decrease at a very fast rate iraiee c
of water in comparison with air. Increasing the Prandtl number decrehses
temperature and velocity of the fluid and increases the concentration elduity

and concentration of the fluid decrease and temperature increases wgds@m

the Schmidt number.
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