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Abstract. The paper deals with numerical methods for eigenvalue probl
for the second order ordinary differential operator wittriaile coefficient
subject to nonlocal integral condition. FD-method (fuantl-discrete method)
is derived and analyzed for calculating of eigenvaluestiqdary complex
eigenvalues. The convergence of FD-method is proved. IFimaimerical
procedures are suggested and computational results anersch
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1 Introduction

The article deals with the functional-discrete method for eigenvalue problem o
ordinary differential operator with variable coefficients subject to irstegonlo-

cal condition. The eigenvalue problems for differential operators withiaual
conditions, except of a few separate articles, has been systematicafifigated
only over the past decade. Articles [1-7] deal with the eigenvalue prosibject

to nonlocal condition including only boundary values (lonkin-Samarskydé
tions). The eigenvalue problem for one and two-dimensional differespielators
subject to Bitsadze-Samarsky nonlocal condition are investigated in]8xhile
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articles [12—18] deal with the same problem subject to integral nonlooditon.
We mention as well articles [19-22], where similar problems are investigated
subject to other types of nonlocal conditions. Only few articles of mentioned
above deal with the equations with variable coefficients (see [4, 6, 128])4

This article generalizes the results of [15]. The latter deals with a several
eigenvalue problems, all of which are included as separate cases inttidkerfg
more general formulation:

u'(z) + [N —q(z)]u(z) =0, z€(0,1), (1)
1 1

u(0) = /u(a:)dao(a:), u(l) = /u(x)dal(x), 2)
0 0

whereoy(z), o1(x) are given functions with bounded variatioyi;z) is a given
piecewise continuous function, ank) > 0, Vz € [0, 1].

For instance, [15] deals witj{ =) = 0 in the three follwing cases of boundary
value problems (2):

1) op(z) =0, o1(x) = az,

0, 0<z<i,
2) oo(x) =0, oi(x)=qaxr, 1<z<3
0, %<ar§1,

3) oo(z) =ar1z, o1(r) = asx,

wherea, a1, ay are given parameters.

The eigenvalue problem (1), (2) arises in many cases when we cotis&der
numerical solution for ordinary or parabolic differential equations witlalocal
conditions. Although the differential equation (1) is very simple, the strectur
of the spectrum of a differential operator with a nonlocal condition caratiesr
complicated (see, f.e., [7,10]). The analysis of eigenvalues of a@lifteroperator
corresponding to differential problem (1), (2) permits one to analyzettislity
of difference schemes [6,13, 16] and justify the convergence ofiiteraethods
for finite-difference equations [8]. The problem (1), (2) is also ofriesein itself
from mathematical point of view.
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In this article we restrict ourselves to the following problem

u"(z) + (A —q(z)]u(z) =0, z€(0,1), (3)
3/4

u(0) =0, u(l)=a / u(&)dg. 4)
1/4

The method we apply for the problem (3), (4) has twofold importance for the
investigation. Firstly, it allows to investigate qualitative properties of the solution
of (3), (4), i.e., to determine whether eigenvalues are real numbersemre
of complex eigenvalues, multipleness of spectrum, etc. Secondly, the method
under consideration gives an algorithm for numerical solution of thel@mok3),

(4) within any arbitrary accuracy. In a series of articles the method has be
entitled as FD-method (functional-discrete method). The method was inteduce
in [23] to find an approximate solution for Sturm-Liouville problem with Dirichlet
conditions. Further development it gained in [2,4,9, 22]. Specific featfiFD-
method is that for a wide class of eigenvalue problems accuracy incredthes
the increase of the order number of the corresponding eigenvalueovkr the
method does not require to solve complete algebraic eigenvalue problerty,Fina
it allows selective computations and as a result, parallelisation.

The text is organized in the following way. Section 2 introduces the algorithm
of FD-method, the theorem s on convergence of the method, and the estimation
of accuracy. Section 3 presents numerical experiment, as well as tipedbktm
stated and implemented by means of computer application of symbolic mathema-
tics (CASM) Maple [24].

2 FD-method. Estimation of accuracy

According to FD-method, solution of the problem (3), (4) has a form

m

W)=Y ul@), A= fj A9, (5)

j=0 7=0

where summands of (5) are determined through the solutions of recseent
guence of boundary value problems
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2uU+ ()
dz?
J
= =Y AP (@) + [g(2) - q(x)]uV (), @€ (0,1), (6)
p=0 3/4
ubdt0) =0, wUt(1)=a / ut(€)de, j=0,1,...,m—1, (7)

1/4

+ [)\(0) _ q(x)]u(ﬂl)(x)

where m is a rank of the method. Thetgx) is a piecewise constant function,
approximating;(x):

[q(xi_l) + q(xi)], i=1,...,N, z€[x;_1,z].

N =

Initial condition of the problem.(9) (z), A(©) is determined by a solution of
a basic problem

(0)
% + A0 —g(@)]u@(z) =0, =€ (0,1),
3/4 @®)
w0 =0, «W)=a / u® (€)de.
1/4

21 Caseg(z)=0

In this case the basic problem (8) takes the form

d?u ()
(0)4,0) () — 1
72 + A\YuP () =0, x€(0,1),
3/4 (9)
u®0) =0, uV1)=a / u® (&) de.
1/4

This problem was investigated in [15], as well. We note the principal ptigger
of the eigenvalues and eigenfunctions of problem (9):

19 X9 =0 is an eigenvalue of problem (9), if and onlydif= 4. The correspon-
ding eigenfunction is(?) (z) = z.
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20 Inequalitya > 4 is a necessary and sufficient condition of existence of exactly

one simple eigenvalua(® = —a2 wherea is a single positive root of
equation
a2« «
tanh — = — cosh —.
an 5 a COS 1

The corresponding eigenfunction has a form

w9 (z) = sinh oz

3% For any value of: problem (9) has infinitely many positive eigenvalues, de-
pending or: \; = o, whereay, is the positive roots of equation

a a . o
cos — = —sin —.
2 «o 4

Moreover, there exist infinitely many positive eigenvalues of the prob8m (
not depending on : \, = (2k7)%,k=1,2,3,....
In both cases corresponding eigenfunctions are

ug(z) = sin\/ Agz.

For instance, there was proved in [15], that problem (9) over the &iterv
[0, (87)?] has

1) Four distinct eigenvalues, provided a < 4;
2) Three distinct positive eigenvalues akgd= 0, provideda = 4;
3) Three distinct eigenvalues, providéd< a < a* = 18.98891711977085. . .;

4) Asimple eigenvalue and two complex conjugate eigenvalues, prowided*
(complex conjugate eigenvalues were not mentioned in [15]);

5) A simple eigenvalue and one multiple eigenvalue of ordey/2; = /A3 =
19.126182900683865 . . ., provideda = a*.

We note, that for a multiple eigenvalue there exists only one eigenfunction

u(z) = sin vz
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In all case the eigenvalues are the roots of transcendent equation

ol M[ A 30 o

Solution of boundary value problem (6), (7) has a form

(0 J
WG / Sy A e S a0 e
/\

p=0

provided)\,(fﬂ) is determined by

)\glj-i-l)
3/4 ) )
. sin YA (2 — €) (+1-p), (7)
=t/ "0 [ oAU € o€yl ©)] s
1/4 0 n p=
Fsin/ AP0 1,
«f [ZW“‘W”(@—q(&)u;ﬂ)(s)}da}, (12)
0 Ano) p=1
where

3/ in /20 Lo h0
/ / il f)u“)(odsdas— [V RS 0,
1/4 0

luf?| =

where|| - || is the norm in the spack;[0, 1].
With reference to (11), (12), we build the estimatesdf (z) andA¢ V.
Assumlng)\(o) > 0, we have

J
a2 S -] o

\//\TPO
]
0

sin A0 o~ ©)][a(©)] - [u )]
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¢ Jsin? AQ (@ - €)de
S 0
)

.

[ DAL uP ]+ oo 1]

Next,
1 1 z 1/2
[l < [ eSS A<°><x—s>d5d4
/\1(10) 0 0
J
x [ S I ul® ]+ gl 1],
p=0
3/41/4 0)
A MO :
|Ag+1>|:‘_a[ / SV A (@ =8 pt) (¢ ge e
A
1/4 0 n
$da [0
NI
o[ ) OF”*”(@)M]
A0
1/41/4 n
0)
sin\/ Ap (1 =&) _
+ / Féﬁl)(s)ds‘wxnr !
0 AnO)
-/ gn<§>Fé””<f>df] al ™ < gall - IETV @ - bal ™,
where
3/4
—a/sin\/xg[))(x—g)dx+sin\/A,<?>(1—g), ¢ €0,1/4],
1/4
gn(g): = 34
0 a/sin\/)\%o)(xf)d:c+sin\/A£LO)(15), ¢ 1/4,3/4),
3
sin\/ AV (1-¢), €€ [3/4,1],

F (@) = YA (@) - gaa)ud) (@),
p=1
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This implies the estimates

J

GO < Mo | 37 TP 0l + ool (13)
p=0
J
AT < A [ DA )+ gl 1], (14)
p=1
where

1 =z
M, = [ ? A0 —£>dsdr/2,
!O/SID X Xz

VALY (15)
Ay = llgnll - [xnl
Making in (13), (14) the substitution
vj = ([|q|lcc My - Ug) )
5= (I 'H ) JH 6
)‘j = |)‘7(1])’(HQHOOMn) M,
yields
J
Vj+1 < Z Ajt1—p Up + Vj,
- j a7)
Njit1 < Ay [Z Njt1—pUp + vj] i

p=1
It can be easily shown, that the solution of the recurrent system ofiegsa

J
Visi=> AV + Vi, Vo=1,
p=0

J
Ay = An[ Y Ajap Vo + V], =01,
p=1

is a majorant of the solution of previous system of inequalities.

20



Eigenvalue Problem for the Second Order Differential Equation with N@hlGonditions

Applying the method of generating functions [2], [9], the solution of the
previous system of equations, as well as the corresponding estimateth¢ake
form

1+ An>j (25 — 3

(27’)”
L (2p — 3N ( 2]—2p 3)!!

2 < 2
x{l-i—ﬁn] ”p < 2p)l (25— 2p)! Bnp}
(1+An> (25 — 3)!

@)t
1 <1+A )J L (25 —3)

(27)!

. T p-3)(©2j—2p-3

X{1+5’%] (25 —3”;:1 p2p " ]2]—2]?)!!) ﬂgp}

<L(1+An> ~1 (25 —3)
T 26, \ bn @)

where

B = [1+24, +2\/mrl

Utilising substitution (2.12) we obtain the following estimates:

) < 5 (lalloda(1 + 477y 2D
(25)! (18)
i-1(2f — 3)!

¢ \_”q”m(uqumMn<1+Anm;l) Yt

The following propositions are true:

Theorem 1. Suppose thak%o) > (0 —is a eigenvalue of proble@®) withg(z) = 0
and the following condition holds:

T = Mp|qlloo (1 + An)ﬁgl <1, (19)

wherelM,,, A, are determined il{15). Then, using the FD-method, the solution of
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the problem(3), (4) under the integral conditions can be represented as the series

un (@) = un (z,q()) = Y _u(2) =D uff(,0),
7=0 7=0 (20)

A = An(q(-) = fj AP fj AP(0),

j=0 j=0

which converge not slower than a geometric progression with the rati@and
the following prior-posterior accuracy estimates hold:

< lalloo (rn)™ (2m — !
- 28 1—r, 2m+2)IV

A — An| = A=A
7= 1)

- 1(r)™ " (2m =)l

—21-r, (2m+2)1

un(,0()) - Yo w0

Jj=0

Jun = Bl = |

The theorem is proved in the same way as in [2,4,9]. Theorem 1 entails the
following theorem.

Theorem 2. If /\510) is a real eigenvalue and conditiof19) is satisfied, then
the corresponding exact eigenvaldg of problem(1), (2) — is also real. If all
)\%0), n = 1,2,..., — are real eigenvalues and conditi¢h9) holds for eachn,
then all eigenvalues of proble(8), (4) are also real.

In the casdm A&O) = 0 the following proposition analogous to Theorem 1
holds, if M,, is considered to be

1 =z ) 1/2
(//‘sin\/@(z—ﬁ)‘ d{dm) ,
0 0

M, =

1
g

and inr,, expression\,(f]) is substituted with)\,(lo) |.
In case condition (19) is not satisfied, the general rutifrelxmethod (6)—(8)
should be applied witg(x) # 0.
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2.2 General casel q(z) # 0

In order to estimate the accuracy of FD-method we introduce Cauchy fanctio
K, (z,£), provided the solution of the problem (6), (7) is put to the form

W (2,7()) = / Ko (1, €)
0

< N (e (€.a(0)) + [al€) — a(©)]u) (¢ a(0) b, (22)
0

p=

Ko(z,2) =0, [%Kn(x,f)hx ~ 1. (23)

This functionK,, (z, £) plays the same role as the function

sin \/M (z —¢) (24)

AD(0)

in the formula (11) withg(x) = 0. It can be easily verified, that the following
estimates will take place instead of (13), (14):

.

o) | 30 32 G a0 - o) (a0

p=0

+lla = @locl | (7)) ]
J
AZ@EO)] < 4u@0) | Yo AP @O)] - [ulf) (30|
p=1

+llg = @locl | () []

where

xT

; ) 1/2
M, = {O/O/‘Kn(x,g)‘ dgdx} :

A = lgn (O || - [xn (@)~
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3/4 1 1
(@) =a [ [ Kl ul? (6.a0)dsdo ~ [ K10 (€0,
174 0 0
3/4
—a / Ko(z,€)dz + Ko(1,€), €€ [0,1/4],
1/4
gn(fa@()) = 3/4
a / Ko(z, €)dz + Ko(1,6), €€ [1/4,3/4],
3
Ko (1.6), £ 3/4,1).

To determine the Cauchy functids, (z, £), we introduce two functions, (),
a = 1,2 in the form of the solutions of the following problems:

va(@) + M (@() —a@)]va(z) =0, z€(0,1), a=12,
v (0) =0, vi(0)=1, (25)
v2(0) =1, v5(0)=0
The the expression holds:
Ky (z,€) = vi(z)v2(§) — v1(§ve (). (26)

Now we show that estimate of functids, (x, £) with respect o\ (0) behaves
analogously to the estimate of function (24). To show that, we denote

dn(2) = AP(0) = A0 (G() + () (27)

sin n (0)x sin )\%) 0)(x —
(o) = o O =) (i,
A0(0) AP(0)
. o (28)
sin v/ Ay, T —
va(x) = cos )\7(1)(0)$+/ OX E)dn(ﬁ)uz(@d&
A0
0 n (0)
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For)\flo)(o) > 0 in accordance to (28), the Gronwalls lemma yields the estimates

lv1(z)| < éexp [Lx
AL (0) A ((0))

9

(29)
dy,

|v2(2)| < exp [/\T(o) x],

whered,, = max,¢(o,1) |dn(7)|-
In accordance to (26), (29), we get

‘Kn(a:,f)‘ < 2 exp [ 2dn x]
AV (0) ) (0)

n

We show, that analogously to Theorems 1, 2, the following propositions hold
Theorem 3. Suppose thalx(o)( (1)) > 0 is a eigenvalue of probler8) and the
following condition holds:

1

m(q(-)) = Mallg — @lloo [1 + An(a()] 8n(@() < 1. (30)

Then, using thd’ D-method, the solution of the problef®), (4) can be repre-
sented as the series

:iugj)(:c q

j=0
=Y "2\ (q())
=0

with converge not slower than a geometric progression with the ratig(-)),
and the following prior-posterior accuracy estimates hold:

(31)

.

na) = Fufa)] < LTl L OOM om0

mo (2m — 1!l
[un (-5 a()) = un(-70))|| < 5 1[(%( )(])) (2m+2)!!

(32)

25



B. Bandyrskii, I. Lazurchak, V. Makarov, M. Sapagovas

3 Numerical experiment

Let¢(z) = =, a = 20. Then the exact solution of differential equation (1) is of a
form

un (2, Ap) = Cpv/ A — T <J1/3(§()\n _ :c)3/2> Ty (gAim)
a3 =) - (32) )

where.J, 3(z) are either cylindrical or Bessel functions of first type (see [25]).
We notice, that in (33) the first boundary value condition in (4) is taken into
account, and’,, is an arbitrary constant.

The eigenvalue\,, can be found using the second boundary value condition
in (4), i.e., solving equation

(33)

3/4

A(Np) =up(lA\y) — a/ Up (2, A\p)dz = 0. (34)
1/4

Numbering of eigenvaluesgo), n = 1,2,...is arranged in the following

way. The eigenvaluesglo) precede)\fg)rl, if
0
ReA® < ReAl”) .

Table 1 gives the exact eigenvalugs of problem (3), (4), i.e., real roots
of transcendental equation (34) with respect to unknawnvithin the accuracy
of 12 decimal places. We computed the eigenvalues using systems Maple 9.5
with the greatest possible accuracy of interim calculations, which is 24 signifi
digits of mantissa (Digits:=24).

In the same table we give the initial approximatidri%) (0) of the considered
problem forg(z) = 0, i.e., the solutions of the basic problem (9), that is, the
real roots of equation (10) obtained by FD-method, as well as the pomding
values of the ratia-,, of geometric progression in (19), that are used to derive a
priori estimate of convergence of FD method.

Table 2 gives real solutionlsﬁf)(o) of the sequence of problems (6), (7) for
j =1,2,3, correspondingly, as well as the deviations of approximations of rank 3
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3
A (0) (see (5), (6)) of eigenvalues of problem (3), (4) with respect tetexaues
A

n:

Table 1. The exact values, of the problem (3), (4) witte = 20; A'” (0) — the
initial approximationsg(x) = 0); r,, — the ratio of geometric progresion in (19)

n An A0 (0) T
0 —25.428345153905 —26.115663574029 1.680456
1 39.778088064844 39.478417604357 1.380912
2 120.939503405441 120.613292811770 1.666367
3 158.508180719231 157.913670417430 1.354561
4 352.652341253466 355.305758439217 51.64523
7 632.130954512830 631.654681669719 0.355239
8 754.145646810721 753.661340439576 0.303225
9 987.386349218273 986.960440108936 0.210369
10 1241.468978417228 1240.993990218464 0.209989
11 1421.733567796926 1421.223033756868 0.192481
12 1736.658987400562 1736.203921780346 0.202347

Table 2. The solution of the first three boundary value pnoisle(6), (7):
An(0),A7(0), A5(0)

n AM(0) A2 (0) ADO) A An(0)
0 0.687677663347 —0.000357922508 —1.31498E—6 —5.74E—9
1 0.299498512336 0.000171313339 6.27818E—7 6.99E—9
2 0.325898623398 0.000313517863 —1.56314E—6 1.55E—-8
3 0.594988609665 —0.000480592565 2.30150E—6 —1.68E—8
4  —2.906396462699 0.254017485398 6.57684E—3 —7.62E—3
7 0.476252847584 0.000019945174 5.0325E—8 2.78E—11
8 0.484257011559 0.000049360091 —0.5220E—-9 1.69E—-11
9 0.425883029502 0.000026081247 —1.4130E—9 1.04E—12

10 0.475008873007 —0.000020698259 2.4025E—8 —9.25E—12

11 0.510554289963 0.000009761608 —1.1519E—-8 7.23E—12

12 0.455061661246 0.000003945897 1.3086E—8 —1.36E—11

For the presented eigenvalues, beginning with the 7th one, proposition of
Theorem 1 holds and therefore convergence of FD-method is seckmrdhe
eigenvalues No. 0-3 the proposition of the theorem is not true, but dekptte
Table 2 shows that the convergence of the approximaﬁ&ﬁ@)) is preserved.
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However, forn = 4 the valuery > 1 (see Table 1), and FD-method diverges.
Computations extended to the 4th rank give correcl?i{jﬂ(o) = —0.009517,
which absolute value exceedg’) (0), even accuracy of approximations remains

sufficiently sharpi4(0):352.6504394\4 - §\4(0) = 0.001902).

To ensure convergence, we select on the uniform grid
1
Na
an approximating functiog(z) in the shape of piecewise constant function with
number of constant pieces equalNo

QN:{JZi: iZO,...,N}

1 .
q(z) = 5[61(%—1) +q(zi)], i=1,...,N, z€zi1,z) (35)
Solution of basic problem (8) is given in the form
ul® (z,4(-))

_{clsin«/)\—ﬁlx, 0<z<x, i=1,

€2i—28IN \/A—G;x+cC2i—1 COS \/A—G;z, Ti—1 <z <23 21N,

Here with, initial approximations}\ﬁlo)(a(-)) and unknowns:; (i = 1,...,

2N — 1) were found based upon existence condition of nontrivial solution of
homogeneous system of linear algebraic equations

'uglo)(xi,qi) = u%o)(xi,qiﬂ), 1=1,N -1,
[u%o)(a:,qi)];:m = [u%o)(x,ﬁiﬂ)];:x_, i=1,N—1,
374 L (36)
ut(1,gy) =a / ul)) (€,3(-))dé,
174

corresponding conditions of continuity and continuous differentialbilityigée-
functionu” (xz,q(z,-)) in the interior points of the gri , as well as the second
boundary value condition in (8).

In Table 3 forV = 2 we present the refined results of calculation of approxi-
mations of the rank — 2 of the eigenvalues with the order numhes 0, ..., 4.

It is clearly seen, that sequences of approximatibﬁ%(q(-)) converge to

zero, though for a order number= 4 denominator-,(g(-)) remains sufficiently
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larger than one. Therefore, for that number we run extra calculatoié £ 4, 8,
where initial approximationséo) (g(-)) show better accuracy compared to the case
N = 2 (see Tables 3, 4). Moreover, FD-method allows us to find a single complex
conjugate roots of equation (10), i.e., initial approximations (that are sotutibn
basic problem (9)), as well as the following solutions of problems (6)di7)

j = 0, 4. The results are shown in Table 5. However, we failed to find exact
complex values, since expansion of modified Bessel functions involvgdarge
exponents in exponential functions. To complete the search proctstlve of

the roots of the system of two equations of the form (34) with respect tablas
corresponding real and imaginary parts of the eigenvalues, it is re@gdssset
sufficienly high accuracy of calculation®{gits > 400). This usually causes a
breakdown of Maple.

Table 3. The results of the calculation of the eigenvalygsfor different rank
m=0,1,2

MG ADE) Am=dn AD@)) An—re@ (@)
—25.43947506  0.01118416 —0.000054 —0.00005424 —0.00000001 -
39.76261117  0.01558898 —0.000112 —0.00011209 0.00000001 0.347
120.85653350  0.08263282  0.000337 0.00033536  0.00000173 0.410
158.66526344 —0.15684773 —0.000235 —0.00023326 —0.00000173 0.332
354.59171687 —2.03575052 0.096375  0.09789554 —0.00152064 11.59

AWML OIS

Table 4. The results of the calculation of the approximatiofeigenvalues for
different valuesv

N %) M-APa@0) A% @) AN (7))
4 353.17709311 -0.52475186 367.744F28B.79546% 2.28E-6
8 352.59903452 0.09330673 368.0447882047414 2.60E-7

Table 5 indicates the convergence of a sequence of mob@%éﬂﬂ to zero.
Still, to endorse reliability and accuracy of the solution, analogously to thee cas
with the order numben = 4, we choose an approximating functigf) in the
form of (35) and calculate the approximations of rank 0-2 for differehies
of N (see Table 4). It will be observed, that calculation of double integrals of
eigenfunctions, that are in turn integrals with the variable upper limit, requires
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a series of simplifying proceduresmplify, expand, fnormal, evalcNext, in
caseN = 8 when using piecewise constant functign it is necessary to find
a nontrivial solution of the system (36), which exists when determinantualeq
to zero. However, the package LinearAlgebra of Maple 9.5 has no nieans
calculate the zeroes of a polynomial expansion of determinaktit ef 15 matrix,
because of insufficient operational memory, presumably. Since this masia h
7-diagonal structure, the problem was successfully solved by a modifiigod

of LU-factorization, created for sparse systems [26]. Moreovegweeeed in cal-
culation of deviations of the residu@@ (\,,)| in (34) in case of complex conjugate
eigenvalues by setting sufficiently large number of significant digits of mantiss
(Digits:=800).

Table 5. The results of convergence of the sequence of mmglf@(oﬂ to zero

. . J J
j A3(0) IA3(0)] Xs.6(0) 1AQs6))]
0 - - 365.85429628.318952 1.63E-5
1 2.29131%0.526362 2.350992 368.14560728.845314 1.14E-6
2 -0.126955-0.105863 0.165301 368.01865228.951178 1.80E-7
3 -0.003288&-0.026500Q 0.026703 368.01536328.924678 3.52E-8
4 0.004759-0.002318 0.005294 368.02012228.926996 7.70E-9
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