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Abstract. The paper deals with numerical methods for eigenvalue problem
for the second order ordinary differential operator with variable coefficient
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1 Introduction

The article deals with the functional-discrete method for eigenvalue problem of

ordinary differential operator with variable coefficients subject to integral nonlo-

cal condition. The eigenvalue problems for differential operators with nonlocal

conditions, except of a few separate articles, has been systematically investigated

only over the past decade. Articles [1–7] deal with the eigenvalue problem subject

to nonlocal condition including only boundary values (Ionkin-Samarsky condi-

tions). The eigenvalue problem for one and two-dimensional differentialoperators

subject to Bitsadze-Samarsky nonlocal condition are investigated in [8–11], while
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articles [12–18] deal with the same problem subject to integral nonlocal condition.

We mention as well articles [19–22], where similar problems are investigated

subject to other types of nonlocal conditions. Only few articles of mentioned

above deal with the equations with variable coefficients (see [4,6,12,14,18]).

This article generalizes the results of [15]. The latter deals with a several

eigenvalue problems, all of which are included as separate cases into the following

more general formulation:

u′′(x) +
[

λ − q(x)
]

u(x) = 0, x ∈ (0, 1), (1)

u(0) =

1
∫

0

u(x)dσ0(x), u(1) =

1
∫

0

u(x)dσ1(x), (2)

whereσ0(x), σ1(x) are given functions with bounded variation,q(x) is a given

piecewise continuous function, andq(x) ≥ 0, ∀x ∈ [0, 1].

For instance, [15] deals withq(x) ≡ 0 in the three follwing cases of boundary

value problems (2):

1) σ0(x) ≡ 0, σ1(x) = ax,

2) σ0(x) ≡ 0, σ1(x) =















0, 0 ≤ x < 1
4 ,

ax, 1
4 ≤ x ≤ 3

4 ,

0, 3
4 < x ≤ 1,

3) σ0(x) = a1x, σ1(x) = a2x,

wherea, a1, a2 are given parameters.

The eigenvalue problem (1), (2) arises in many cases when we considerthe

numerical solution for ordinary or parabolic differential equations with a nonlocal

conditions. Although the differential equation (1) is very simple, the structure

of the spectrum of a differential operator with a nonlocal condition can berather

complicated (see, f.e., [7,10]). The analysis of eigenvalues of a difference operator

corresponding to differential problem (1), (2) permits one to analyze thestability

of difference schemes [6,13,16] and justify the convergence of iterative methods

for finite-difference equations [8]. The problem (1), (2) is also of interest in itself

from mathematical point of view.
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In this article we restrict ourselves to the following problem

u′′(x) +
[

λ − q(x)
]

u(x) = 0, x ∈ (0, 1), (3)

u(0) = 0, u(1) = a

3/4
∫

1/4

u(ξ)dξ. (4)

The method we apply for the problem (3), (4) has twofold importance for the

investigation. Firstly, it allows to investigate qualitative properties of the solution

of (3), (4), i.e., to determine whether eigenvalues are real numbers, presence

of complex eigenvalues, multipleness of spectrum, etc. Secondly, the method

under consideration gives an algorithm for numerical solution of the problem (3),

(4) within any arbitrary accuracy. In a series of articles the method has been

entitled as FD-method (functional-discrete method). The method was introduced

in [23] to find an approximate solution for Sturm-Liouville problem with Dirichlet

conditions. Further development it gained in [2, 4, 9, 22]. Specific feature of FD-

method is that for a wide class of eigenvalue problems accuracy increaseswith

the increase of the order number of the corresponding eigenvalue. Moreover, the

method does not require to solve complete algebraic eigenvalue problem. Finally,

it allows selective computations and as a result, parallelisation.

The text is organized in the following way. Section 2 introduces the algorithm

of FD-method, the theorem s on convergence of the method, and the estimation

of accuracy. Section 3 presents numerical experiment, as well as the testproblem

stated and implemented by means of computer application of symbolic mathema-

tics (CASM) Maple [24].

2 FD-method. Estimation of accuracy

According to FD-method, solution of the problem (3), (4) has a form

m
u(x) =

m
∑

j=0

u(j)(x),
m
λ =

m
∑

j=0

λ(j), (5)

where summands of (5) are determined through the solutions of recurrentse-

quence of boundary value problems
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d2u(j+1)(x)

dx2
+

[

λ(0) − q(x)
]

u(j+1)(x)

= −
j

∑

p=0

λ(j+1−p)u(p)(x) +
[

q(x) − q(x)
]

u(j)(x), x ∈ (0, 1), (6)

u(j+1)(0) = 0, u(j+1)(1) = a

3/4
∫

1/4

u(j+1)(ξ)dξ, j = 0, 1, . . . , m − 1, (7)

where m is a rank of the method. Thereq(x) is a piecewise constant function,

approximatingq(x):

q(x) =
1

2

[

q(xi−1) + q(xi)
]

, i = 1, . . . , N, x ∈ [xi−1, xi].

Initial condition of the problemu(0)(x), λ(0) is determined by a solution of

a basic problem

d2u(0)(x)

dx2
+

[

λ(0) − q(x)
]

u(0)(x) = 0, x ∈ (0, 1),

u(0)(0) = 0, u(0)(1) = a

3/4
∫

1/4

u(0)(ξ)dξ.

(8)

2.1 Case q(x) ≡ 0

In this case the basic problem (8) takes the form

d2u(0)(x)

dx2
+ λ(0)u(0)(x) = 0, x ∈ (0, 1),

u(0)(0) = 0, u(0)(1) = a

3/4
∫

1/4

u(0)(ξ)dξ.

(9)

This problem was investigated in [15], as well. We note the principal properties

of the eigenvalues and eigenfunctions of problem (9):

10 λ(0) = 0 is an eigenvalue of problem (9), if and only ifa = 4. The correspon-

ding eigenfunction isu(0)(x) = x.
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20 Inequalitya > 4 is a necessary and sufficient condition of existence of exactly

one simple eigenvalueλ(0) = −α2, whereα is a single positive root of

equation

tanh
α

2
=

2α

a
cosh

α

4
.

The corresponding eigenfunction has a form

u(0)(x) = sinhαx.

30 For any value ofa problem (9) has infinitely many positive eigenvalues, de-

pending ona : λk = α2
k, whereαk is the positive roots of equation

cos
α

2
=

a

α
sin

α

4
.

Moreover, there exist infinitely many positive eigenvalues of the problem (9)

not depending ona : λk = (2kπ)2, k = 1, 2, 3, . . ..

In both cases corresponding eigenfunctions are

uk(x) = sin
√

λkx.

For instance, there was proved in [15], that problem (9) over the interval

[0, (8π)2] has

1) Four distinct eigenvalues, provided0 < a < 4;

2) Three distinct positive eigenvalues andλ0 = 0, provideda = 4;

3) Three distinct eigenvalues, provided4 < a < a∗ = 18.98891711977085 . . .;

4) A simple eigenvalue and two complex conjugate eigenvalues, provideda > a∗

(complex conjugate eigenvalues were not mentioned in [15]);

5) A simple eigenvalue and one multiple eigenvalue of order 2:
√

λ2 =
√

λ3 =

19.126182900683865 . . ., provideda = a∗.

We note, that for a multiple eigenvalue there exists only one eigenfunction

u(x) = sin
√

λx.
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In all case the eigenvalues are the roots of transcendent equation

sin

√

λ
(0)
n =

a
√

λ
(0)
n

[

cos

√

λ
(0)
n

4
− cos

3

4

√

λ
(0)
n

]

. (10)

Solution of boundary value problem (6), (7) has a form

u(j+1)
n (x) =

x
∫

0

sin

√

λ
(0)
n (x − ξ)

√

λ
(0)
n

[

−
j

∑

p=0

λ(j+1−p)
n u(p)

n (ξ)+q(ξ)u(j)
n (ξ)

]

dξ, (11)

providedλ
(j+1)
n is determined by

λ(j+1)
n

=
1

χn

{

− a

3/4
∫

1/4

x
∫

0

sin

√

λ
(0)
n (x − ξ)

√

λ
(0)
n

[

j
∑

p=1

λ(j+1−p)
n u(p)

n (ξ)−q(ξ)u(j)
n (ξ)

]

dξdx

+

1
∫

0

sin

√

λ
(0)
n (1 − ξ)

√

λ
(0)
n

[

j
∑

p=1

λ(j+1−p)
n u(p)

n (ξ) − q(ξ)u(j)
n (ξ)

]

dξ

}

, (12)

where

χn = a

3/4
∫

1/4

x
∫

0

sin

√

λ
(0)
n (x − ξ)

√

λ
(0)
n

u(0)
n (ξ)dξdx −

1
∫

0

sin

√

λ
(0)
n (1 − ξ)

√

λ
(0)
n

u(0)
n (ξ)dξ,

‖u(0)
n ‖ = 1,

where‖ · ‖ is the norm in the spaceL2[0, 1].

With reference to (11), (12), we build the estimates ofu
(j+1)
n (x) andλ

(j+1)
n .

Assumingλ(0)
n > 0, we have

∣

∣u(j+1)
n (x)

∣

∣ ≤ 1
√

λ
(0)
n

[

j
∑

p=0

|λ(j+1−p)
n |

x
∫

0

∣

∣

∣
sin

√

λ
(0)
n (x − ξ)

∣

∣

∣
·
∣

∣u(p)
n (ξ)

∣

∣dξ

+

x
∫

0

∣

∣

∣
sin

√

λ
(0)
n (x − ξ)

∣

∣

∣
·
∣

∣q(ξ)
∣

∣ ·
∣

∣u(j)
n (ξ)

∣

∣dξ
]
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≤

√

x
∫

0

sin2

√

λ
(0)
n (x − ξ)dξ

√

λ
(0)
n

[

j
∑

p=0

|λ(j+1−p)
n | · ‖u(p)

n ‖ + ‖q‖∞‖u(j)
n ‖

]

.

Next,

‖u(j+1)
n ‖ ≤ 1

√

λ
(0)
n

[

1
∫

0

x
∫

0

sin2

√

λ
(0)
n (x − ξ)dξdx

]1/2

×
[

j
∑

p=0

|λ(j+1−p)
n | · ‖u(p)

n ‖ + ‖q‖∞‖u(j)
n ‖

]

,

|λ(j+1)
n | =

∣

∣

∣

∣

− a

[

3/4
∫

1/4

1/4
∫

0

sin

√

λ
(0)
n (x − ξ)

√

λ
(0)
n

F
(j+1)
0 (ξ)dξdx

+

3/4
∫

1/4

x
∫

1/4

sin

√

λ
(0)
n (x − ξ)

√

λ
(0)
n

F
(j+1)
0 (ξ)dξdx

]

+

1
∫

0

sin

√

λ
(0)
n (1 − ξ)

√

λ
(0)
n

F
(j+1)
0 (ξ)dξ

∣

∣

∣

∣

· |χn|−1

=

∣

∣

∣

∣

1
∫

0

gn(ξ)F
(j+1)
0 (ξ)dξ

∣

∣

∣

∣

· |χn|−1 ≤ ‖gn‖ ·
∥

∥F
(j+1)
0 (ξ)

∥

∥ · |χn|−1,

where

gn(ξ) =
1

√

λ
(0)
n



















































−a

3/4
∫

1/4

sin

√

λ
(0)
n (x−ξ)dx + sin

√

λ
(0)
n (1−ξ), ξ ∈ [0, 1/4],

−a

3/4
∫

ξ

sin

√

λ
(0)
n (x−ξ)dx + sin

√

λ
(0)
n (1−ξ), ξ ∈ [1/4, 3/4],

sin

√

λ
(0)
n (1−ξ), ξ ∈ [3/4, 1],

F
(j+1)
0 (x) =

j
∑

p=1

λ(j+1−p)
n u(p)

n (x) − gn(x)u(j)
n (x).
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This implies the estimates

‖u(j+1)
n ‖ ≤ Mn

[

j
∑

p=0

|λ(j+1−p)
n | · ‖u(p)

n ‖ + ‖q‖∞‖u(j)
n ‖

]

, (13)

|λ(j+1)
n | ≤ An

[

j
∑

p=1

|λ(j+1−p)
n | · ‖u(p)

n ‖ + ‖q‖∞‖u(j)
n ‖

]

, (14)

where

Mn =
1

√

λ
(0)
n

[

1
∫

0

x
∫

0

sin2

√

λ
(0)
n (x − ξ)dξdx

]1/2

,

An = ‖gn‖ · |χn|−1.

(15)

Making in (13), (14) the substitution

vj =
(

‖q‖∞Mn

)−j‖u(j)
n ‖,

λj = |λ(j)
n |

(

‖q‖∞Mn

)−j
Mn,

(16)

yields

vj+1 ≤
j

∑

p=0

λj+1−p vp + vj ,

λj+1 ≤ An

[

j
∑

p=1

λj+1−pvp + vj

]

.

(17)

It can be easily shown, that the solution of the recurrent system of equations

Vj+1 =

j
∑

p=0

Λj+1−pVp + Vj , V0 = 1,

Λj+1 = An

[

j
∑

p=1

Λj+1−pVp + Vj

]

, j = 0, 1, . . .

is a majorant of the solution of previous system of inequalities.
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Applying the method of generating functions [2], [9], the solution of the

previous system of equations, as well as the corresponding estimates takethe

form

Vj =
1

2

(

1 + An

βn

)j (2j − 3)!!

(2j)!!

×
{

1 + β2j
n − (2j)!!

(2j − 3)!!

j−1
∑

p=1

(2p − 3)!!

(2p)!!

(2j − 2p − 3)!!

(2j − 2p)!!
β2p

n

}

≤ 1

2

(

1 + An

βn

)j (2j − 3)!!

(2j)!!
,

Λj =
1

2βn

(

1 + An

βn

)j−1 (2j − 3)!!

(2j)!!

×
{

1 + β2j
n − (2j)!!

(2j − 3)!!

j−1
∑

p=1

(2p − 3)!!

(2p)!!

(2j − 2p − 3)!!

(2j − 2p)!!
β2p

n

}

≤ 1

2βn

(

1 + An

βn

)j−1 (2j − 3)!!

(2j)!!
,

where

βn =
[

1 + 2An + 2
√

An(1 + An)
]−1

.

Utilising substitution(2.12) we obtain the following estimates:

‖u(j)
n ‖ ≤ 1

2

(

‖q‖∞Mn(1 + An)β−1
n

)j (2j − 3)!!

(2j)!!
,

|λ(j)
n | ≤ ‖q‖∞

2βn

(

‖q‖∞Mn(1 + An)β−1
n

)j−1 (2j − 3)!!

(2j)!!
.

(18)

The following propositions are true:

Theorem 1. Suppose thatλ(0)
n > 0 – is a eigenvalue of problem(8) with q(x) ≡ 0

and the following condition holds:

rn = Mn‖q‖∞(1 + An)β−1
n < 1, (19)

whereMn, An are determined in(15). Then, using the FD-method, the solution of
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the problem(3), (4) under the integral conditions can be represented as the series

un(x) = un

(

x, q(·)
)

=

∞
∑

j=0

u(j)
n (x) ≡

∞
∑

j=0

u(j)
n (x, 0),

λn = λn

(

q(·)
)

=

∞
∑

j=0

λ(j)
n ≡

∞
∑

j=0

λ(j)
n (0),

(20)

which converge not slower than a geometric progression with the ratiorn, and

the following prior-posterior accuracy estimates hold:

|λn −
m
λn| =

∣

∣

∣
λn −

m
∑

j=0

λ(j)
n

∣

∣

∣
≤ ‖q‖∞

2β

(rn)m

1 − rn

(2m − 1)!!

(2m + 2)!!
,

‖un − m
un‖ =

∥

∥

∥
un

(

x, q(·)
)

−
m

∑

j=0

u(j)
n (x)

∥

∥

∥
≤ 1

2

(rn)m+1

1 − rn

(2m − 1)!!

(2m + 2)!!
.

(21)

The theorem is proved in the same way as in [2, 4, 9]. Theorem 1 entails the

following theorem.

Theorem 2. If λ
(0)
n is a real eigenvalue and condition(19) is satisfied, then

the corresponding exact eigenvalueλn of problem(1), (2) – is also real. If all

λ
(0)
n , n = 1, 2, . . ., – are real eigenvalues and condition(19) holds for eachn,

then all eigenvalues of problem(3), (4) are also real.

In the caseIm λ
(0)
n 6= 0 the following proposition analogous to Theorem 1

holds, ifMn is considered to be

Mn =
1

∣

∣

∣

√

λ
(0)
n

∣

∣

∣

(

1
∫

0

x
∫

0

∣

∣

∣
sin

√

λ
(0)
n (x − ξ)

∣

∣

∣

2
dξdx

)1/2

,

and inrn expressionλ(0)
n is substituted with|λ(0)

n |.
In case condition (19) is not satisfied, the general rutine ofFD-method (6)–(8)

should be applied withq(x) 6= 0.
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2.2 General case: q(x) ≡/ 0

In order to estimate the accuracy of FD-method we introduce Cauchy function

Kn(x, ξ), provided the solution of the problem (6), (7) is put to the form

u(j+1)
n

(

x, q(·)
)

=

x
∫

0

Kn(x, ξ)

×
{

j
∑

p=0

λj+1−p
n

(

q(·)u(p)
n

(

ξ, q(·)
))

+
[

q(ξ) − q(ξ)
]

u(j)
n

(

ξ, q(·)
)

}

dξ, (22)

Kn(x, x) = 0,
[ d

dx
Kn(x, ξ)

]

ξ=x
= 1. (23)

This functionKn(x, ξ) plays the same role as the function

sin

√

λ
(0)
n (0)(x − ξ)

√

λ
(0)
n (0)

(24)

in the formula (11) withq(x) ≡ 0. It can be easily verified, that the following

estimates will take place instead of (13), (14):

∥

∥u(j+1)
n

(

·, q(·)
)
∥

∥ ≤ Mn

(

q(·)
)

[

j
∑

p=0

∣

∣λ(j+1−p)
n

(

q(·)
)
∣

∣ ·
∥

∥u(p)
n

(

·, q(·)
)
∥

∥

+ ‖q − q‖∞
∥

∥u(j)
n

(

·, q(·)
)∥

∥

]

,

∣

∣λ(j+1)
n

(

q(·)
)∣

∣ ≤ An

(

q(·)
)

[

j
∑

p=1

∣

∣λ(j+1−p)
n

(

q(·)
)∣

∣ ·
∥

∥u(p)
n

(

·, q(·)
)∥

∥

+ ‖q − q‖∞
∥

∥u(j)
n

(

·, q(·)
)
∥

∥

]

,

where

Mn =

{

1
∫

0

x
∫

0

∣

∣

∣
Kn(x, ξ)

∣

∣

∣

2
dξdx

}1/2

,

An =
∥

∥gn

(

·, q(·)
)
∥

∥ ·
∣

∣χn

(

q(·)
)
∣

∣

−1
,
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χn

(

q(·)
)

= a

3/4
∫

1/4

x
∫

0

Kn(x, ξ)u(0)
n

(

ξ, q(·)
)

dξdx−
1

∫

0

Kn(1, ξ)u(0)
n

(

ξ, q(·)
)

dξ,

gn

(

ξ, q(·)
)

=















































−a

3/4
∫

1/4

Kn(x, ξ)dx + Kn(1, ξ), ξ ∈ [0, 1/4],

−a

3/4
∫

ξ

Kn(x, ξ)dx + Kn(1, ξ), ξ ∈ [1/4, 3/4],

Kn(1, ξ), ξ ∈ [3/4, 1].

To determine the Cauchy functionKn(x, ξ), we introduce two functionsvα(x),

α = 1, 2 in the form of the solutions of the following problems:

v′′α(x) +
[

λ(0)
n (q(·)) − q(x)

]

vα(x) = 0, x ∈ (0, 1), α = 1, 2,

v1(0) = 0, v′1(0) = 1,

v2(0) = 1, v′2(0) = 0.

(25)

The the expression holds:

Kn(x, ξ) = v1(x)v2(ξ) − v1(ξ)v2(x). (26)

Now we show that estimate of functionKn(x, ξ) with respect toλ(0)
n (0) behaves

analogously to the estimate of function (24). To show that, we denote

dn(x) = λ(0)
n (0) − λ(0)

n (q(·)) + q(x) (27)

and put the problems (25) into equivalent form

v1(x) =
sin

√

λ
(0)
n (0)x

√

λ
(0)
n (0)

+

x
∫

0

sin

√

λ
(0)
n (0)(x − ξ)

√

λ
(0)
n (0)

dn(ξ)v1(ξ)dξ,

v2(x) = cos

√

λ
(0)
n (0)x +

x
∫

0

sin

√

λ
(0)
n (0)(x − ξ)

√

λ
(0)
n (0)

dn(ξ)v2(ξ)dξ.

(28)
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Forλ(0)
n (0) > 0 in accordance to (28), the Gronwalls lemma yields the estimates

∣

∣v1(x)
∣

∣ ≤ 1
√

λ
(0)
n (0)

exp

[

dn
√

λ
(0)
n ((0))

x

]

,

∣

∣v2(x)
∣

∣ ≤ exp

[

dn
√

λ
(0)
n (0)

x

]

,

(29)

wheredn = maxx∈[0,1] |dn(x)|.
In accordance to (26), (29), we get

∣

∣Kn(x, ξ)
∣

∣ ≤ 2
√

λ
(0)
n (0)

exp

[

2dn
√

λ
(0)
n (0)

x

]

.

We show, that analogously to Theorems 1, 2, the following propositions hold.

Theorem 3. Suppose thatλ(0)
n (q(·)) > 0 is a eigenvalue of problem(8) and the

following condition holds:

rn

(

q(·)
)

= Mn‖q − q‖∞
[

1 + An

(

q(·)
)]

βn

(

q(·)
)−1

< 1. (30)

Then, using theFD-method, the solution of the problem(3), (4) can be repre-

sented as the series

un

(

x, q(·)
)

=

∞
∑

j=0

u(j)
n

(

x, q(·)
)

,

λn

(

q(·)
)

=

∞
∑

j=0

λ(j)
n

(

q(·)
)

,

(31)

with converge not slower than a geometric progression with the ratiorn(q(·)),
and the following prior-posterior accuracy estimates hold:

∣

∣λn

(

q(·)
)

−
m
λn

(

q(·)
)∣

∣ ≤ ‖q − q‖∞
2β

(

q(·)
)

[

rn

(

q(·)
)]m

1 − rn

(

q(·)
)

(2m − 1)!!

(2m + 2)!!
,

∥

∥un

(

·, q(·)
)

− m
un

(

·, q(·)
)∥

∥ ≤ 1

2

[

rn

(

q(·)
)]m

1 − rn

(

q(·)
)

(2m − 1)!!

(2m + 2)!!
.

(32)
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3 Numerical experiment

Let q(x) = x, a = 20. Then the exact solution of differential equation (1) is of a

form

un(x, λn) = Cn

√

λn − x

(

J1/3

(2

3
(λn − x)3/2

)

· J−1/3

(2

3
λ3/2

n

)

− J−1/3

(2

3
(λn − x)3/2

)

· J1/3

(2

3
λ3/2

n

)

)

,

(33)

whereJ±1/3(z) are either cylindrical or Bessel functions of first type (see [25]).

We notice, that in (33) the first boundary value condition in (4) is taken into

account, andCn is an arbitrary constant.

The eigenvalueλn can be found using the second boundary value condition

in (4), i.e., solving equation

∆ (λn) ≡ un(1, λn) − a

3/4
∫

1/4

un (x, λn)dx = 0. (34)

Numbering of eigenvaluesλ(0)
n , n = 1, 2, . . . is arranged in the following

way. The eigenvaluesλ(0)
n precedeλ(0)

n+1, if

Re λ(0)
n < Re λ

(0)
n+1.

Table 1 gives the exact eigenvaluesλn of problem (3), (4), i.e., real roots

of transcendental equation (34) with respect to unknownλn within the accuracy

of 12 decimal places. We computed the eigenvalues using systems Maple 9.5

with the greatest possible accuracy of interim calculations, which is 24 significant

digits of mantissa (Digits:=24).

In the same table we give the initial approximationsλ
(0)
n (0) of the considered

problem forq(x) ≡ 0, i.e., the solutions of the basic problem (9), that is, the

real roots of equation (10) obtained by FD-method, as well as the corresponding

values of the ratiorn of geometric progression in (19), that are used to derive a

priori estimate of convergence of FD method.

Table 2 gives real solutionsλ(j)
n (0) of the sequence of problems (6), (7) for

j = 1, 2, 3, correspondingly, as well as the deviations of approximations of rank 3
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3
λn(0) (see (5), (6)) of eigenvalues of problem (3), (4) with respect to exact values

λn.

Table 1. The exact valuesλn of the problem (3), (4) witha = 20; λ
(0)
n (0) – the

initial approximations (q(x) ≡ 0); rn – the ratio of geometric progresion in (19)

n λn λ
(0)
n (0) rn

0 −25.428345153905 −26.115663574029 1.680456
1 39.778088064844 39.478417604357 1.380912
2 120.939503405441 120.613292811770 1.666367
3 158.508180719231 157.913670417430 1.354561
4 352.652341253466 355.305758439217 51.64523
7 632.130954512830 631.654681669719 0.355239
8 754.145646810721 753.661340439576 0.303225
9 987.386349218273 986.960440108936 0.210369

10 1241.468978417228 1240.993990218464 0.209989
11 1421.733567796926 1421.223033756868 0.192481
12 1736.658987400562 1736.203921780346 0.202347

Table 2. The solution of the first three boundary value problems (6), (7):
λ1

n(0), λ2
n(0), λ3

n(0)

n λ
(1)
n (0) λ

(2)
n (0) λ

(3)
n (0) λn −

3

λn(0)
0 0.687677663347 −0.000357922508 −1.31498E−6 −5.74E−9
1 0.299498512336 0.000171313339 6.27818E−7 6.99E−9
2 0.325898623398 0.000313517863 −1.56314E−6 1.55E−8
3 0.594988609665 −0.000480592565 2.30150E−6 −1.68E−8
4 −2.906396462699 0.254017485398 6.57684E−3 −7.62E−3
7 0.476252847584 0.000019945174 5.0325E−8 2.78E−11
8 0.484257011559 0.000049360091 −0.5220E−9 1.69E−11
9 0.425883029502 0.000026081247 −1.4130E−9 1.04E−12

10 0.475008873007 −0.000020698259 2.4025E−8 −9.25E−12
11 0.510554289963 0.000009761608 −1.1519E−8 7.23E−12
12 0.455061661246 0.000003945897 1.3086E−8 −1.36E−11

For the presented eigenvalues, beginning with the 7th one, proposition of

Theorem 1 holds and therefore convergence of FD-method is secured. For the

eigenvalues No. 0–3 the proposition of the theorem is not true, but despitethat,

Table 2 shows that the convergence of the approximationsλ
(j)
n (0) is preserved.
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However, forn = 4 the valuer4 � 1 (see Table 1), and FD-method diverges.

Computations extended to the 4th rank give correctionλ
(4)
4 (0) = −0.009517,

which absolute value exceedsλ
(3)
4 (0), even accuracy of approximations remains

sufficiently sharp (
4
λ4(0)=352.650439,λ4 −

4
λ4(0) = 0.001902).

To ensure convergence, we select on the uniform grid

ΩN =
{

xi =
i

N
, i = 0, . . . , N

}

an approximating functionq(x) in the shape of piecewise constant function with

number of constant pieces equal toN

q(x) =
1

2

[

q(xi−1) + q(xi)
]

, i = 1, . . . , N, x ∈ [xi−1, xi]. (35)

Solution of basic problem (8) is given in the form

u(0)
n

(

x, q(·)
)

=

{

c1 sin
√

λ−q1x, 0 ≤ x ≤ x1, i = 1,

c2i−2 sin
√

λ−qix+c2i−1 cos
√

λ−qix, xi−1 ≤ x ≤ xi, 2 ≤ i ≤ N.

Here with, initial approximationsλ(0)
n (q(·)) and unknownsci (i = 1, . . . ,

2N − 1) were found based upon existence condition of nontrivial solution of

homogeneous system of linear algebraic equations


































u
(0)
n (xi, qi) = u

(0)
n (xi, qi+1), i = 1, N − 1,

[

u
(0)
n (x, qi)

]′

x=xi

=
[

u
(0)
n (x, qi+1)

]′

x=xi

, i = 1, N − 1,

u
(0)
n (1, qN ) = a

3/4
∫

1/4

u(0)
n

(

ξ, q(·)
)

dξ,

(36)

corresponding conditions of continuity and continuous differentialbility of eigen-

functionu
(0)
n (x, q(x, ·)) in the interior points of the gridΩN , as well as the second

boundary value condition in (8).

In Table 3 forN = 2 we present the refined results of calculation of approxi-

mations of the rank0 − 2 of the eigenvalues with the order numbern = 0, . . . , 4.

It is clearly seen, that sequences of approximationsλ
(j)
n (q(·)) converge to

zero, though for a order numbern = 4 denominatorrn(q(·)) remains sufficiently
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larger than one. Therefore, for that number we run extra calculations forN = 4, 8,

where initial approximationsλ(0)
n (q(·)) show better accuracy compared to the case

N = 2 (see Tables 3, 4). Moreover, FD-method allows us to find a single complex

conjugate roots of equation (10), i.e., initial approximations (that are solutions of

basic problem (9)), as well as the following solutions of problems (6), (7)for

j = 0, 4. The results are shown in Table 5. However, we failed to find exact

complex values, since expansion of modified Bessel functions involves very large

exponents in exponential functions. To complete the search procedurefsolveof

the roots of the system of two equations of the form (34) with respect to variables

corresponding real and imaginary parts of the eigenvalues, it is necessary to set

sufficienly high accuracy of calculations (Digits � 400). This usually causes a

breakdown of Maple.

Table 3. The results of the calculation of the eigenvalues
m

λn for different rank
m = 0, 1, 2

n λ
(0)
n (q(·)) λ

(1)
n (q(·)) λn −

1

λn λ
(2)
n (q(·)) λn −

2

λn(q) rn(q)
0 −25.43947506 0.01118416 −0.000054 −0.00005424 −0.00000001 –
1 39.76261117 0.01558898 −0.000112 −0.00011209 0.00000001 0.347
2 120.85653350 0.08263282 0.000337 0.00033536 0.00000173 0.410
3 158.66526344 −0.15684773 −0.000235 −0.00023326 −0.00000173 0.332
4 354.59171687 −2.03575052 0.096375 0.09789554 −0.00152064 11.59

Table 4. The results of the calculation of the approximations of eigenvalues for
different valuesN

N λ
(0)
4 (q(·)) λ4 − λ

(0)
4 (q(·)) λ

(0)
5,6(q(·)) |∆(λ(0)(q))|

4 353.17709311 -0.52475186 367.744727±28.795461i 2.28E-6
8 352.59903452 0.09330673 368.0447082±8.947414i 2.60E-7

Table 5 indicates the convergence of a sequence of modules|λ(j)
5,6(0)| to zero.

Still, to endorse reliability and accuracy of the solution, analogously to the case

with the order numbern = 4, we choose an approximating function
_
q(x) in the

form of (35) and calculate the approximations of rank 0–2 for differentvalues

of N (see Table 4). It will be observed, that calculation of double integrals of

eigenfunctions, that are in turn integrals with the variable upper limit, requires
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a series of simplifying proceduressimplify, expand, fnormal, evalc. Next, in

caseN = 8 when using piecewise constant functionqx it is necessary to find

a nontrivial solution of the system (36), which exists when determinant is equal

to zero. However, the package LinearAlgebra of Maple 9.5 has no meansto

calculate the zeroes of a polynomial expansion of determinant of15 × 15 matrix,

because of insufficient operational memory, presumably. Since this matrix has a

7-diagonal structure, the problem was successfully solved by a modifiedmethod

of LU-factorization, created for sparse systems [26]. Moreover, wesucceed in cal-

culation of deviations of the residual|∆(λn)| in (34) in case of complex conjugate

eigenvalues by setting sufficiently large number of significant digits of mantissa

(Digits:=800).

Table 5. The results of convergence of the sequence of modulus |λ(j)
5,6(0)| to zero

j λ
(j)
5,6(0) |λ(j)

5,6(0)|
j

λ5,6(0) |∆(
j

λ5,6)|
0 – – 365.854296±28.318952i 1.63E-5
1 2.291311±0.526362i 2.350992 368.145607±28.845314i 1.14E-6
2 -0.126955±0.105863i 0.165301 368.018652±28.951178i 1.80E-7
3 -0.003288∓0.026500i 0.026703 368.015363±28.924678i 3.52E-8
4 0.004759±0.002318i 0.005294 368.020122±28.926996i 7.70E-9
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