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Abstract. The aim of the present paper is to analyse the influence of some
input quantities on the fatigue resistance of a steel structure. The steel element
subjected to many times repeated in-plane bending moment was analysed. The
fatigue resistance was defined as the number of cycles causing the initial crack
size propagation up to the critical size. The variability influence of input
random quantities on the fatigue resistance variability was studied by means
of the stochastic sensitivity analysis. All input imperfections were considered
to be random quantities. The Latin Hypercube Sampling (LHS)numerical
simulation method (Monte Carlo type method) was used. It hasbeen found by
the stochastic sensitivity analysis that the fatigue resistance variability is most
sensitive to the initial crack variability. The paper presented draws attention
to the necessity of identifying the statistical characteristics of the initial crack
size as exactly as possible because their random variability can largely influence
the failure probability of a structure. Large diversity in applying the statistical
characteristics of initial crack size by numerous specialists is illustrated by the
list of international publications at the end of the presentpaper.
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1 Introduction

When designing a new structure or when evaluating an existing structure stressed

by many times repeated loading (bridges and so on), it is necessary to take into
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consideration fatigue degradation of the structure. There exit numeroushypothe-

ses, theories and calculation methodologies for the analysis of the cumulative

character of fatigue failure in steel structures [1, 2]. All the theories are based

on results of special experiments, see, e.g., [3]. Basic information on the struc-

ture fatigue behaviour is supplied by the experimental analysis of steel structures

having real sizes, see, e.g., [4]. In theoretical analysis, two basic approaches

are applied to the structure fatigue evaluation: the Wöhlerian approaches and the

linear mechanics method.

When evaluating the fatigue, general valid standard approaches are applied

[5], based on the well elaborated Wöhlerian approach. The basic requirement of

the Wöhlerian approach is neither the occurrence of defects and cracks connected

with manufacturing and assembling, nor the initiation of fatigue cracks with mea-

surable dimensions, even during the structure working time. The objective of the

presented paper is an analysis of the influence of some input quantities on the

growth analysis of fatigue cracks which occur in real structures. Provided that the

Wöhlerian approach does not admit the possibility of fatigue crack growth,it is

necessary to apply another approach which enables to describe the fatigue crack

propagation process.

If a small initial crack is supposed in a new structure, then crack growth can

be observed by using the linear fracture mechanics. There are many computing

models which give a good correspondence between computed and measured va-

lues [6]. Although the principles of linear fracture mechanics have been known

for decades, they have not been elaborated, in comparison with the Wöhlerian

approach, in such detail, that they could be applied in Standards.

Therefore the quantities entering the evaluation process by means of the

linear fracture mechanics method cannot be considered by constant numerical

values deterministically due to their random character. The approach to taking the

random character of input quantities into account (material characteristics, geo-

metrical characteristics, and loading effect characteristics) leads to an application

of principles and calculation methods of the probability theory.

In general, it corresponds to the present state of classification of probability

methods into three basic levels elaborated by the International Committee for the

Security of Structures of the JCSS [7]. In the application fields, numericalsimu-
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lation methods of the Monte Carlo type above all showed intensive development

and use [8]. The description of the method in more detail can be found in nume-

rous publications, see, e.g., [9]. In this connection, the applications of reliability

methods are supported by intensive development of computer technology inthe

last decades. Among the frequently applied improved simulation methods of the

Monte Carlo type, there is to be mentioned the method Latin Hypercube Sam-

pling (LHS). The method LHS provides, in comparison with the classic Monte

Carlo method (more exactly termed “Simple Random Sampling”), very good

assessment of mean value, standard deviation, skewness, kurtosis, and of the

distribution function see, e.g., [10]. This method provides important possibility

for research workers to draw statistical conclusions even on the basis of relatively

low number of simulations.

In addition to a simple statistical and/or probabilistic analysis, it can be also

interesting to determine in what manner an input quantity influences the output

one. If the information on the variability of input and output quantities is at our

disposal, the sensitivity of an input quantity to the output one can be determined in

a quantified manner. In this connection, it is spoken about the so-called stochastic

sensitivity analysis [11]. The stochastic sensitivity analysis enabled us to assess

the relative sensitivity of random variability of the phenomenon studied to the

random variability of individual input quantities [12].

The aim of the presented study is a sensitivity analysis of the effect of factors

influencing the fatigue resistance in a steel structure under in-plane bending mo-

ment, see Fig. 1. The linear elastic fracture mechanics based on Paris-Erdogan’s

formula was used. According to the results obtained, it can be recommended

which input quantities, because of their maximum influence on the fatigue resis-

Fig. 1. Element with initial crack.
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tance, should be controlled, both in the manufacturing process and by revisions of

existing structures, with increased attentiveness and accuracy.

2 Linear elastic fracture mechanics

The methodology of calculation algorithm applied in the present paper is based

on the generally most used and recognized model describing the fatigue crack

growth. According to the Paris-Erdogan’s equation, the crack propagation rate is

as follows:

da

dN
= C(∆K)n (1)

wherea – crack size,N – number of cycles,C, n – material constants.C, n are

material constants which can be determined by statistical processing from a set of

experimentally determined data pairs(da/dN, ∆K). The amplitude of the stress

intensity coefficient∆K is defined by the relation:

∆K = Kmax − Kmin = F (a)∆σ
√

πa (2)

where∆σ – constant stress amplitude,F (a) – calibration function.F (a) is the

so-called calibration function depending on the geometry both of the member and

crack. By rearrangement and integration of the Paris-Erdogan’s equation (1) and

by considering the initiation crack propagation from the valuea1 to the final one,

a2, and the corresponding number of cyclesN1 aN2, we get the relation:

a2
∫

a1

da
[

F (a)
√

πa
]n =

N2
∫

N1

C∆σndN. (3)

When assembling a bridge structure (welding, cutting, drilling), the fatigue crack

can initiate and propagate still starting with the first loading cycle. For bridge

structures, it is therefore justified to consider the number of cycles at the timeof

fatigue crack initiation by the valueN0 = 0. Provided that the initial crack size

value is introduced to bea1 = a0, and the final one,a2 = acr, the relation (3) can

be written in the form:
acr
∫

a0

da
[

F (a)
√

πa
]n = CN∆σn (4)
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wherea0 – initial crack size,acr – critical crack size,N – number of cycles,C, n

– material constants.N is the total number of cycles at crack growth froma0 to

acr. The mathematical model describing the fatigue crack growth of an element

stressed by in-plane bending moment is defined, according to [13, 14], by the

calibration function:

F (a) = 1.12 − 1.39
a

b
+ 7.32

(a

b

)2

− 13.08
(a

b

)3

+ 14
(a

b

)4

(5)

wherea – crack size,b – size of element, sets, however, it is possible to describe

the vague notions in themselves.

3 Input random quantities

In the linear elastic fracture mechanics, the initial crack size is one among the

basic input random quantities.

The initial crack size was modelled by lognormal distribution [15, 16]. The

problem is how to define the mean value and the standard deviation [17]. Ac-

cording to the published experimental results [18, 19], obtained based oncrack

propagating from the surface of weld joints, it is possible, for an initiating crack,

to consider the lognormal distribution with mean valuema0 = 0.526 mm and

standard deviationSa0 = 0.504 mm, see Fig. 2.

Fig. 2. Lognormal distribution function of initial crack size.
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The plate widthb and critical lengthacr to which the crack propagates with-

out the rise of macroplastic instability were considered as the other random quan-

tities.

The coefficientn which is the function of many factors [14] was introduced

randomly, as well. The exponent n increases with decreasing fracture toughness.

In our study, the parameter n was supposed, in a simplified way, with the Gaussian

distribution to have the mean valuemn =3 and the variation coefficientvn =0.01.

The strong correlation between the parametersC andn [14] was confirmed

experimentally. Provided that the exponentn is not any universal constant, it

follows from the dimensional analysis of the Paris-Erdogan’s equation (1) that

also the physical dimension of the constantC gets changed in general. According

to [14], the mutual relation betweenC andn can be expressed as follows:

log(C) = c1 + c2n (6)

wherec1 < 0, c2 < 0 are the parameters constants for the given material grade.

In our problem, we considered, in compliance with [14, 20],c1 = −11.141,

c2 = −0.507 for the steel grade S235. The input random quantities are clearly

given in Table 1.

Table 1. Input random quantities

Distribution Mean Standard deviation
Initial crack size Lognormal 0.526 0.504
Parametern Normal 3 0.030
Thickness Normal 400 25
Critical crack size Normal 200 20

4 Sensitivity analysis

According to the relation (4), the number of loading cyclesN was analysed at

which there took place an increase of crack initiationa0 to critical sizeacr. The

variability influence of the maximum number of reached loading cyclesN (fatigue

resistance) on the variability of input random quantities was studied by meansof

the sensitivity analysis.
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The objective of this paper is therefore a stochastic sensitivity analysis which

provides more extended information about the problem studied, see [11,12]. The

first method can be applied practically for all numerical simulation methods of the

Monte Carlo type. The method described is based on the assumption that there

will be higher correlation degree with the output in case of the quantities relatively

more sensitive to the output. The so-called Spearman rank-order correlation ri is

frequently applied within the framework of a simulation method. The Spearman

rank-order correlation can be defined as:

ri = 1 −

6
∑

j

(kji − lj)
2

N(N2 − 1)
, ri ∈ [−1; 1] (7)

whereri is the order representing the value of random variableXi in an ordered

sample amongN simulated values applied in thej-th simulation (the orderki

equals the permutation at LHS),lj is the order of an ordered sample of the resul-

ting variable for thej-th run of the simulation process (kji − lj is the difference

between the ranks of two samples). If the coefficientri had the value near to

1 or −1, it would suggest a very strong dependence of the output on the input.

Opposite to this, the coefficient with its value near to zero will signalise a low

influence.

The second method is based on the comparison of sensitivity coefficientspi,

defined on behalf of variation coefficients by the relation:

pi = 100
v2

yi

v2
y

[%]. (8)

vyi is the variation coefficient of the output quantity, assuming that all the input

quantities except thei-th one (i = 1, 2, . . . , M ; whereM is number of input

variables) are considered to be deterministic ones (during the simulation, theyare

equal to the mean value).vy is the variation coefficient of the output quantity,

assuming that all the input quantities are considered to be random ones.

The realizations of input random quantities were generated by means of the

LHS method for 400 simulation runs. The LHS method is a method of the Monte

Carlo type which makes it possible to simulate the realizations of input random

quantities as if they were obtained by measurements [10]. Within the framework

of each run of the LHS method, the maximum reached loading cyclesN was
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found out by the formula (4). Dependence of the sensitivity coefficients(7) and (8)

on the parameter of constant stress amplitude (deterministic quantity) are studied,

see Figs. 3 and 4.

Fig. 3. Results of sensitivity analysis according to (7).

Fig. 4. Results of sensitivity analysis according to (8).
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5 Conclusion

It is evident from the results given in Fig. 3 and Fig. 4 that the maximum per-

missible number of cyclesN is the most sensitive to the crack initiation sizea0.

The variability of this quantity influences the output quantity variability (number

of cycles up to failure) in dominant manner. The attention is to be drawn to the

lack of knowledge of statistical characteristics of initial crack size. The statistical

characteristics and the distribution function type of the quantity must be known

very exactly for their application in probabilistic calculations. The only possible

method is the statistical evaluation of a larger quantity of experimental results.

In opposite case, the failure probability calculation can be afflicted with a big

mistake [20].

Although the importance of initial crack size for fatigue resistance decrease

is generally known, the definition of the initial crack size as a random quantity

is not a clear affair. At present, only little knowledge exists of the probability

distribution function. According to one among few experimental results of 718

welded elements [20], it is possible to substitute the histogram of initiation crack

by the lognormal distribution function with mean valuema0 = 0.526 mm and

standard deviationSa0 = 0.504 mm. This distribution is the most frequently used

one applied to modelling the initial crack as a random variable. In addition to this,

also the exponential [21] and Weibull [22] distribution functions are applied. Jiao

[22] has found that there is only a small difference between initial crack modelling

by the logarithmic distribution and the Weibull one The lognormal distribution is

sometimes termed as the aggressive one because due to it, the probability of the

occurrence of larger cracks is more frequent.

The opinions of specialists differ very much from each other, as far as the

distribution function application and its statistical characteristics are concerned.

Albrecht a Yazdani [23] recommend the lognormal distribution with mean value

0.5 mm. In [16], the lognormal distribution with mean value0.508 mm and stan-

dard deviation0.254 mm was applied. In [24], there was used the lognormal

distribution for two alternatives of fatigue crack propagation – in the flangeof

a welded beam, and in that of a hot-rolled beam. In the first case, the initial crack

was introduced with mean value0.468 mm, and the standard deviation0.021 mm;

in the second case, with mean value0.03 mm, and standard deviation0.00072 mm.
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For initial crack size, the paper [25] gives the lognormal distribution with mean

value0.6 mm and standard deviation0.03 mm, further on, in [26] the lognormal

distribution is applied with mean value0.1 mm and standard deviation0.02 mm.

It is evident from the papers mentioned that the intervals of mean value (0.03 mm

to 0.5 mm) and of variation coefficient (0.02 to 0.5) are quite large. This disunity

of applied statistical characteristics can have a fatal effect on the disunityof the

results of statistical and probabilistic analyses.

It can be recommended without any doubt that initial cracks have to be con-

trolled and measured with increased accuracy. In this connection, there lack pub-

lications containing the results of statistical analysis, e.g., in form of histograms.

The sensitivity coefficient value of the crack initiation sizea0 decreases with

increasing stress amplitude∆σ.

The second dominant quantity is the parametern. The finding of satisfacto-

rily accurate statistical characteristics of the parametern is of major importance

for further application in probability analyses; see, e.g., [9]. The sensitivity coef-

ficient of the parametern increases with increasing value∆σ. The variability of

parametern is initiated, e.g., by the surrounding temperature variability, which,

for bridge structures, can undergo relatively important changes during a year. The

material fracture toughness decreases with decreasing temperature as well, and

due to this fact, the exponentn of the Paris-Erdogan’s equation (1) increases.

The critical crack sizeacr and the element thicknessb are these quantities

the variability of which influences the fatigue resistance variability only to a

negligible extent. The determination of the critical crack size is irrelevant, be-

cause in real applications the longest part of crack propagation life is spent in the

case of small cracks [1]. The value of these sensitivity coefficients hasnowhere

exceeded the value0.06, therefore they are not presented in Fig. 3 and in Fig. 4,

either, for the clearness’ sake. For the quantities the sensitivity of which was

relatively low, it is not necessary to identify their statistical characteristics too

exactly but professional assessments are sufficient. Provided that they are applied

in probabilistic calculation, the mean value can be considered deterministically.

It follows from the relation (8) that, for the constant value, the sum of sensi-

tivity coefficients of all the input quantities must be 100 %. Practically, it means

that the incrementation gradient of the sensitivity coefficient n is the same as the
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decrementation gradienta0, see Fig. 4. For values∆σ = 10, 50, 100 MPa, the

sensitivity coefficients according to (8) are presented also in form of piegraphs,

see Fig. 5.

Fig. 5. Results of sensitivity analysis according to (8).

According to our results obtained, the initial crack sizea0 is one among

the important factors influencing the structure service life. As it was shown, the

comprehensive information on statistical characteristics and distribution typemust

be identified by experimental research carried out on larger number of specimens.

In future, the definition of statistical dates by a non-commercially oriented expe-

rimental research could then contribute to the solution of the problem of generally

valid, and therefore also codifiable statistical data in an important manner.

References

1. A. F. Hobbacher, Comparison of Methods of Fatigue Analysis at an Example of
Cruciform Fillet Welded Joints, in:Proc. of Int. Conference on Metal Structures,
Miskolc (Hungary), K. Jarmai, J. Farkas (Eds.), Millpress Science Publishers,
Rotterdam, pp. 11–18, 2003.

2. V. A. Kuzmenko, I. M. Vasinjuk, B. Z. Kruk,Mnogocyklovaja ustalost’ pri peremen-
nych amplitudach nagruženija,Naukova Dumka AN, Kiev, 1986.

3. P. Juhás, E. Juhásová, O. Roth, Experimental Research of Fatigue Resistance of Steel
S380, in: Proc. of Czech and Slovak Int. Conf. Steel structures and Bridges 2000,
Vysoké Tatry, Štrbské Pleso (SR),pp. 233–238, 2000.

4. M. Škaloud, M. Zörnerová, The Fatigue Limit State of Thin-Walled Steel Girders
Subjected to Repeated Loading, in:Proc. of Fourth Int. Conf. on Thin-Walled
Structures, Loughborough (England, UK),pp. 515–522, 2004.

43



Z. Kala

5. prEN 1993-1-1: 2003, EUROCODE 3: Design of Steel Structures, Part 1-1: General
Rules and Rules for Buildings, June, 2004.

6. J. Culik, Crack Growth Computer Simulation, in:Proc. of IV. Int. Scientific
Conference in Košice, Košice (SR),pp. 101–108, 1997.

7. JCSS Probabilistic Model Code, Part 3, Resistance Models, Static
Properties of Structural Steel (Rolled Sections), JCSS Zurich, 2001,
http://www.jcss.ethz.ch/.

8. O. Ditlevsen, H. O. Madsen,Structural Reliability Methods,Wiley, 1999.

9. P. Marek, J. M. Brozzetti, M. Guštar, P. Tikalsky et al. (Eds.), Probabilistic
Assessment of Structures Using Monte Carlo Simulation: Basics, Exercises,
Software,2nd extended edition, ITAM, Academy of Sciences of the CzechRepublic,
2003.

10. D. Novák, W. Lawanwisut, C. Bucher, Simulation of RandomFields Based on
Orthogonal Transformation of Covariance Matrix and Latin Hypercube Sampling,
in: Proc. of Int. Conference on Monte Carlo Simulation, Monte Carlo, pp. 129–136,
2000.

11. D. Novák, B. Teplý, N. Shiraishi, Sensitivity Analysis of Structures, in:Proc. of the
Fifth Int. Conference on Civil and Structural Engineering Computing, Edinburgh,
Scotland,pp. 201–207, 1993.

12. Z. Kala, Sensitivity Analysis of the Stability Problemsof Thin-Walled Structures,
Journal of Constructional Steel Research,61(3), pp. 415–422, 2005, ISSN 0143-
974X.

13. J. Gocál,Application of Probability Approach to the Study of FatigueCracks
Propagation using the Linear Elastic Fracture Mechanics,Detailed Summary of PhD
Thesis, Žilina, 2000.

14. J. Kunz,The Fundaments of Fracture Mechanics,1991, ISBN 80-01-02248-X (in
Czech).

15. C. Cremona, Probability-Based Optimisation of Inspection Intervals for Steel
Bridges, in:Proc. of. Evaluation of Existing Steel and Composite Bridges, Lausanne,
1997.

16. Z. Zhao, A. Haldar, F. L. Breen, Fatigue-Reliability Evaluation of Steel Bridges,
Journal of Structural Engineering,120(5), pp. 1608–1623, 1994.

17. V. Tomica, J. Gocál, Influence of Fatigue Damages on Service Life of Steel Bridges,
in: Proc. of the 19th Czech and Slovak Int. Conference Steel Structures and Bridges
2000, Štrbské Pleso (Slovak Republic),pp. 327–332, 2000, ISBN 80-232-0189-1.

44



Sensitivity Analysis of Fatigue Behaviour of Steel Structure

18. S. J. Hudak et al.,Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing
Strategies,Report No. 4318, Washington, D.C., NASA, 1999.

19. V. Tomica, Key Dimensions of Fatigue Cracks in Steel Structures, in:Proc. of the
20th Czech and Slovak National Conference Steel Structuresand Bridges 2003,
Prague,pp. 163–168, 2003, ISBN 80-01-02747-3, (in Czech).

20. S. J. Hudak, R. C. Jr.-McClung, M. L. Bartlett, J. H. Fitzgerald, D. A. Russel,
A Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing Strategies,
Contractor Report No. 4318, Washington, D.C., NASA, 1990.

21. W. Marshall,An Assessment of the Integrity of PWR Vessels,Report of a Study Group
chaired by W. Marshall, H. M. Stationery Office, London, 1976.

22. G. T. Jiao,Reliability Analysis of Crack Growth under Random Loading Considering
Model Updating, PhD thesis, Norwegian Institute of Technology, Trondheim,
Norway, 1989.

23. P. Albrecht, N. Yazdani, Risk Analysis of Extending the Service Life of Steel Bridges.
FHWA/MD No. 84/01, University of Maryland, 1986.

24. A. G. Tallin, M. Ceare, Inspection Based Reliability Updating for Fatigue of Steel
Bridges, in:Proc. of Bridge Management, London,1990.

25. C. Cremona, Probability-Based Optimisation of Inspection Intervals for Steel
Bridges, in:Evaluation of Existing Steel and Composite Bridges, Lausanne,1997.

26. V. Tomica, J. Slavák, Fatigue Reliability of Existing Steel Structures, in:Studies of
University of Transport and Communications in Žilina’96,Civil Engineering Series,
Vol. 20, pp. 19–28, 1996.

45


