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Abstract. The Sturm-Liouville problem with various types of two-point
boundary conditions is considered in this paper. In the firstpart of the paper,
we investigate the Sturm-Liouville problem in three cases of nonlocal two-point
boundary conditions. We prove general properties of the eigenfunctions and
eigenvalues for such a problem in the complex case. In the second part, we
investigate the case of real eigenvalues. It is analyzed howthe spectrum of these
problems depends on the boundary condition parameters. Qualitative behavior
of all eigenvalues subject to the nonlocal boundary condition parameters is
described.
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1 Introduction

Boundary problems with nonlocal conditions are an area of the fast developing

differential equations theory. Problems of this type arise in various fields of

physics, biology, biotechnology, etc. Nonlocal conditions appear whenthe value

of the function on the boundary is connected with the values inside the domain.

Theoretical investigation of problems with various types of nonlocal boundary

conditions is a topical problem and recently has been paid much attention to them

in the scientific literature.
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A. A. Samarskii and A.V. Bitsadze were originators of such problems. They

formulated and investigated the nonlocal boundary problem for an elliptic equa-

tion [1]. J. Canon was one of the pioneers who investigated parabolic problems

with integral boundary conditions [2]. Also parabolic problems with nonlocal

integral boundary conditions were analyzed in [3–9].

A multipoint nonlocal boundary problem for second-order ordinary differen-

tial equations was initiated by V. Ilyin and E. Moiseev [10]. This problem was

also investigated in [11–13]. During the last decades the number of differential

problems with nonlocal boundary conditions increased significantly.

Quite new an area, related with the problems of this type, is investigation

of a spectrum of differential equations with nonlocal conditions. Eigenvalue

problems with nonlocal conditions are closely linked with boundary problems

for differential equations with nonlocal conditions [14–16]. In [17–19], similar

problems are investigated for the operators with a nonlocal condition of Bitsadze-

Samarskii or integral type. Eigenvalue problems for differential operators with

nonlocal conditions are considerably less investigated than the classical boundary

condition cases.

The purpose of this paper is to analyze a real eigenvalue problem for a statio-

nary differential problem with one classical and one nonlocal two-pointboundary

condition. In this paper, we analyze a stationary problem in three cases ofsuch

nonlocal boundary conditions. We investigate how the spectrum of these problems

depends on the parameters of some nonlocal boundary conditions.

Some results on the spectrum of the problem with nonlocal Samarskii-Bi-

tsadze type boundary condition are published in [20]. In [21], a similar Sturm-

Liouville problem with two types of nonlocal integral boundary conditions was

considered. The spectrum of those problems is very complicated for various cases

of parameters – negative and complex eigenvalues may exist.

In Section 2, we analyze the Sturm-Liouville problem with a nonlocal two-

point boundary condition and find general properties of eigenvalues and eigen-

functions in the complex plane. In Section 3, we investigate real eigenvaluesin

the case real parameters and we show that for some parameters one or twonega-

tive eigenvalues can exist. We investigate the cases when complex and multiple

eigenvalues exist.

48



Sturm-Liouville Problem with a Nonlocal Two-Point Boundary Conditions

2 The Sturm-Liouville problem with a nonlocal two-point boundary
condition

Let us analyze the Sturm-Liouville problem with one classical boundary condition

−u′′ = λu, x ∈ (0, 1), (1)

u(0) = 0, (2)

and another nonlocal two-point boundary condition of Samarskii-Bitsadze type:

Case 1) u′(1) = γu(ξ), (31)

Case 2) u′(1) = γu′(ξ), (32)

Case 3) u(1) = γu′(ξ), (33)

Case 4) u(1) = γu(ξ), (34)

with the parametersγ ∈ C := C ∪∞ andξ ∈ [0, 1]. The last case was analyzed

in [20]. So, we investigate only the first cases (31),(32),(33). Note that the index

in references denotes the case.

Remark 1. For γ = ∞, we investigate boundary conditions withξ > 0:

u(ξ) = 0 ( Cases1,4 ), u′(ξ) = 0 (Cases2,3 )

instead of boundary conditions(3).

In this section, we will find all eigenvalues, which do not depend on the

parameterγ, and we will show how they depend on the parameterξ. We will

formulate the basic properties for eigenvalues, which are depending on the pa-

rameterγ.

Let us defineN := {1, 2, . . .}. Denote byNk := {j ∈ N|j/k ∈ N}, k ∈ N,

a subset of integer positive numbers, byNe = N2 ∪ {0} a set of even nonnegative

integer numbers, andNo = N r N2 a set of odd positive integer numbers. Let

r = m
n ∈ Q[0, 1] be a rational number in[0, 1]. Forr ∈ (0, 1), we suppose thatm

andn (n > m > 0) are positive coprime integer numbers. Ifr = 0, we suppose

m = 0, n = 1 and, ifr = 1, we supposem = 1, n = 1.
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Whenγ = 0 in the problem (1)–(3), we get a problem with classical boundary

conditions. Then eigenvalues and eigenfunctions don’t depend on the parameterξ:

λk = π2
(

k − 1
2

)2
, uk(x) = sin

(

π(k − 1
2)x

)

, k ∈ N, (41,2)

λk = (πk)2, uk(x) = sin(πkx), k ∈ N. (43,4)

Remark 2. We have the classical eigenfunctions and eigenvalues(4) if ξ = 0

in Cases1,4. For ξ = 1 in Cases2,4 we have the classical eigenfunctions and

eigenvalues(4) only for γ 6= 1 and the second boundary condition is trivial for

γ = 1. For ξ = 1 in Cases1,3we have third type (classical) boundary condition.

If λ = 0, then all the functionsu(x) = cx satisfy the problem (1)–(2).

Substituting this solution into the second boundary condition (3), we get the

equalities:c = cγξ (Case1, 4), c = cγ (Case2, 3).

Lemma 1. The eigenvalueλ = 0 exists if and only if:γ = 1
ξ in Cases1,4; γ = 1

in Cases2,3.

In the general case, forλ 6= 0, eigenfunctions areu = c sin(qx) and eigen-

valuesλ = q2, whereq ∈ Cq r {0},

Cq := {q ∈ C| Re q > 0 or Re q = 0, Im q > 0 or q = 0}.

These eigenfunctions satisfy equation (1), boundary condition (2) andnonlocal

boundary condition (3). Asλ 6= 0 the nonlocal boundary condition is satisfied if

cq cos q = cγ sin(ξq), (51)

cq cos q = cγq cos(ξq), (52)

c sin q = cγq cos(ξq) (53)

and there exists a nontrivial solution ifz = q is the root of the equation

f1(z) := γ
sin(ξz)

z
− cos z = 0, (61)

f2(z) := γ cos(ξz) − cos z = 0, (62)

f3(z) := γ cos(ξz) − sin z

z
= 0. (63)
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If sin(ξq) = 0 andcos q = 0 in Case 1,cos(ξq) = 0 andcos q = 0 in Case 2

or cos(ξq) = 0 andsin q = 0 in Case 3, then equation (6) is valid for allγ ∈ C.

In this case, we getconstant eigenvaluesλ = q2, which don’t depend on the

parameterγ, andq is the root of the system:

cos q = 0, sin(ξq) = 0, (71)

cos q = 0, cos(ξq) = 0, (72)

sin q = 0, sin(ξq) = 0. (73)

If λ = q2 is a constant eigenvalue, then we will nameq ∈ Cq constant eigenvalue

point.

Proposition 1. If the parameterξ is an irrational number, then constant eigen-

values do not exist.

Proof. The roots of the first equation areqk = π(k − 1
2) (Cases 1, 2) orqk = πk

(Case 3),k ∈ N, the roots of the second equation areql = π(l − 1
2)/ξ (Case 2) or

ql = πl/ξ (Cases 1, 3),l ∈ N. The numbersqk/π ∈ Q, butql/π 6∈ Q. So, system

(7) has no solutions.

Remark 3. In Case4 (see,[20]) constant eigenvalues exist only for rational

ξ = r = m
n ∈ [0, 1) and they are equal toλk = (πnk)2, k ∈ N.

Proposition 2. Letn andm (0 < m < n) be coprime numbers andz ∈ Cq r{0}.

Then
{

cos(nz) = 0,

sin(mz) = 0
∼

cos z = 0, for m ∈ Ne, n ∈ No,

∅ otherwise;
(81)

{

cos(nz) = 0,

cos(mz) = 0
∼

cos z = 0, for m ∈ No, n ∈ No,

∅ otherwise;
(82)

{

sin(nz) = 0,

cos(mz) = 0
∼

cos z = 0, for m ∈ No, n ∈ Ne,

∅ otherwise;
(83)

{

sin(nz) = 0,

sin(mz) = 0
∼ sin z = 0. (84)
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Proof. Case 1. Positive roots of equationscos(nz) = 0 and sin(mz) = 0 are
π
2

2k−1
n , k ∈ N, and π

2
2l
m , l ∈ N, accordingly. We have the common root if

(2k − 1)m = 2ln. So, such roots exist only ifm is even. Ifn andm are coprime

numbers, thenn must be odd and2k− 1 = n · (2k̃− 1), k̃ ∈ N, 2l = m · l̃, l̃ ∈ N.

If l̃ = 2k̃ − 1 then we get the common root, i.e.,zk = π(k̃ − 1
2), k̃ ∈ N. Those

roots (and only they) are the roots of the equationcos z = 0.

Case 2. Positive roots of equationscos(nz) = 0 and cos(mz) = 0 are
π
2

2k−1
n , k ∈ N, and π

2
2l−1
m , l ∈ N, respectively. We have the common root if

(2k − 1)m = (2l − 1)n. Thus, such roots exist ifm andn both are the odd

numbers. Then2k − 1 = n · (2k̃ − 1), k̃ ∈ N, 2l − 1 = m · (2l̃ − 1), l̃ ∈ N.

If l̃ = k̃, then we get the common rootzk = π(k̃ − 1
2), k̃ ∈ N, i.e., root of the

equationcos z = 0.

Case 3. Positive roots of equationssin(nz) = 0 andcos(mz) = 0 are π
2

2k
n ,

k ∈ N, and π
2

2l−1
m , l ∈ N, respectively. We have the common root if2km =

(2l−1)n. Thus, such roots exist ifn is even. Thenm must be odd and2k = n · k̃,

k̃ ∈ N, 2l − 1 = m · (2l̃ − 1), l̃ ∈ N. If k̃ = 2l̃ − 1, then we get the common root

zk = π(k̃ − 1
2), k̃ ∈ N, i.e., the root of the equationcos z = 0.

Case 4. Positive roots of equationssin(nz) = 0 andsin(mz) = 0 areπk/n,

k ∈ N, andπl/m, l ∈ N, respectively. We have the common root ifkm = ln.

Consequently, there exist such roots ifk = n · k̃, k̃ ∈ N, l = m · l̃, l̃ ∈ N. If

l̃ = k̃, then we get the common rootzk = πk̃, k̃ ∈ N, i.e., the root of the equation

sin z = 0.

Lemma 2. Constant eigenvalues do not exist for irrationalξ, while for rational

ξ = r = m
n ∈ [0, 1] they exist in the following cases:

m ∈ Ne, n ∈ No in Case1;

m ∈ No, n ∈ No m ≤ n in Case2;

m ∈ No, n ∈ Ne in Case3;

and constant eigenvalues are equal toλk = c2
k, ck = π(k − 1

2)n, k ∈ N.

Proof. If ξ is the irrational number then, this Lemma follows from Proposition 1.

If z = q/n, q ∈ Cq in Proposition 2, prove all the statements of Lemma 2 in the

case of rationalξ = r ∈ (0, 1).
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If ξ = 0, then from equation (6) it follows that we have only constant

eigenvalues in Case 1 (classical case), and there are no constant eigenvalues in

Cases 2, 3. Ifξ = 1 there are no constant eigenvalues in Cases 1, 3 (the third

type boundary condition), because the functionssin q andcos q have no common

zeroes, and we get only constant eigenvalues in Case 2 (classical caseγ 6= 1).

Let us define the functionsSj(z) := sin(jz)
cos z , j ∈ Ne, Cj(z) := cos(jz)

cos z ,

j ∈ No. We can express them by the Moivre formula:

S2k(z) = 2k cos2k−2 z sin z −
(

2k
3

)

cos2k−4 z sin3 z + . . .

+ (−1)k−12k sin2k−1 z,

C2k+1(z) = cos2k z −
(

2k+1
2

)

cos2k−2 z sin2 z + . . .

+ (−1)k sin2k z, k ∈ N ∪ {0}.

We can see thatS0(z) ≡ 0, C1(z) ≡ 1 and, fork ≥ 1, the functionsS2k(z) and

C2k+1(z) are entire transcendental with the first order of growth. The functions

cos z andSj(z), j > 1, andCj(z) don’t have common zeroes (see, Proposition 2).

Remark 4. The functionsS2k(z) = sin zP2k(cos z), C2k+1(z) = P2k+1(cos z),

wherePj , j ∈ N ∪ {0} are polynomials (with real integer coefficients):

P2k(z) = 2kz2k−2−
(

2k
3

)

z2k−4(1−z2) + · · · + (−1)k−12k(1−z2)k−1,

P2k+1(z) = z2k−
(

2k+1
2

)

z2k−2(1−z2) + · · · + (−1)k(1−z2)k,

andP0 ≡ 0, P1 ≡ 1, P2 ≡ 1, andPk are nonconstant fork > 2.

Let us denote the sets:

Ξ :=
{

ξ ∈ [0, 1]| for ξ constant eigenvalues don’t exist
}

;

R :=
{

ξ ∈ [0, 1]| for ξ there exist constant and nonconstant eigenvalues
}

;

C :=
{

ξ ∈ [0, 1]| for ξ there exist only constant eigenvalues
}

.

>From Lemma 2 we have:

R =
{

ξ =
m

n

∣

∣ m ∈ Ne, n ∈ No, 0 < m < n
}

in Case 1;

R =
{

ξ =
m

n

∣

∣ m ∈ No, n ∈ No, m < n
}

in Case 2;

R =
{

ξ =
m

n

∣

∣ m ∈ No, n ∈ Ne, m < n
}

in Case 3;
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and

Ξ =
(

(0, 1) r R
)

∪ {1}, C = {0} in Case 1;

Ξ =
(

(0, 1) r R
)

∪ {0}, C = {1} in Case 2;

Ξ =
(

(0, 1) r R
)

∪ {0, 1}, C = ∅ in Case 3.

Remark 5. In Case2 andξ = 1, for γ 6= 1 we have constant eigenvalues, but for

γ = 1 we don’t have the second boundary condition (it is trivial). In this special

case, we defineξ = 1 ∈ C. ThenR ∪ Ξ ∪ C = [0, 1] in the all cases.

For ξ ∈ R from equation (6) we get:

cos
q

n
·
[γ

q
Sm

( q

n

)

− Cn

( q

n

)]

= 0, (91)

cos
q

n
·
[

γCm

( q

n

)

− Cn

( q

n

)]

= 0, (92)

cos
q

n
·
[

γCm

( q

n

)

− 1

q
Sn

( q

n

)]

= 0. (93)

Let us analyze nonconstant eigenvalues. Forξ ∈ R, let us define the func-

tions:

f1r(z) := γ
sin z

n

z
Pm

(

cos
z

n

)

− Pn

(

cos
z

n

)

, (101)

f2r(z) := γPm

(

cos
z

n

)

− Pn

(

cos
z

n

)

, (102)

f3r(z) := γPm

(

cos
z

n

)

− sin z
n

z
Pn

(

cos
z

n

)

. (103)

Remark 6. In the caseγ = ∞, we define:

f1(z) :=
sin(ξz)

z
, f2(z) := cos(ξz), f3(z) := cos(ξz);

f1r(z) :=
sin z

n

z
Pm

(

cos
z

n

)

, f2r(z) := Pm

(

cos
z

n

)

,

f3r(z) := Pm

(

cos
z

n

)

.

Note thatf2r ≡ 1 for ξ = 1
3 andf3r ≡ 1 for ξ = 1

2 .

Lemma 3. There is a countable number of nonconstant eigenvalues for every

γ ∈ C and everyξ ∈ Ξ ∪ R. The pointλ = ∞ is an accumulation point of those

eigenvalues.
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Proof. The functionsfk(
√

λ), k = 1, 2, 3 for ξ ∈ Ξ and functionsfkr(
√

λ),

k = 1, 2, 3 for ξ ∈ R are entire transcendental functions with the order of growth

equal to1
2 . Such functions acquire everyγ-value for infinite (countable) times,

andλ = ∞ is the accumulation point ofγ-values (see, [22]).

We can get all nonconstant eigenvalues (which depend on the parameterγ)

asγ-values of meromorphic functions defined on the setCq:

γ1(z) :=
z cos z

sin(ξz)
, (111)

γ2(z) :=
cos z

cos(ξz)
, (112)

γ3(z) :=
sin z

z cos(ξz)
(113)

whenξ ∈ Ξ and

γ1r(z) := n
z
n

sin z
n

Pn

(

cos z
n

)

Pm

(

cos z
n

) , (121)

γ2r(z) :=
Pn

(

cos z
n

)

Pm

(

cos z
n

) , (122)

γ3r(z) :=
1

n

sin z
n

z
n

Pn

(

cos z
n

)

Pm

(

cos z
n

) (123)

whenξ = m
n ∈ R.

Remark 7. The poles of the functionγk(q), γkr(q), k = 1, 2, 3 are eigenvalues of

the problem(1)–(3) in the caseγ = ∞.

The graphs of functions|γkr(z/π)|, k = 1, 2, 3 for various rationalξ are

presented in Fig. 1. Ascos z = cos z̄, sin z = sin z̄, and polynomialsPn have real

coefficients, we get a similar property for the functionsγk andγkr: γ(z) = γ(z̄),

γr(z) = γr(z̄). So, graphs are drawn only forIm z ≥ 0 andRe z ≥ 0. In the

graphs the functionγkr(z/π) is drawn instead the functionγkr(z). In this case,

the zeroes of the first function are the pointsk, k ∈ N. A module of the complex

functions display zeroes and poles of this function. In all showed graphics, the

zeroes and the poles of the function are in the real axis, and function increases

itself, whenIm z grows up. Now we formulate main properties of these functions

as a proposition and remarks.
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Case 1,ξ = 1

3
Case 1,ξ = 1

2
Case 1,ξ = 2

3

Case 2,ξ = 1

3
Case 2,ξ = 1

2
Case 2,ξ = 2

3

Case 3,ξ = 1

3
Case 3,ξ = 1

2
Case 3,ξ = 2

3

Fig. 1. Functions|γkr(z/π)| for variousξ.

Proposition 3. All zeroes and poles of the meromorphic functionsγk, γkr, lie on

the positive part of the real axis.

Proof. The proof follows directly from (11) and (12) and the properties of sinus

and cosinus functions (all zeroes of these functions are real numbers). So, onCq

we have only positive zeroes and poles.

We note that forξ = 1
3 in Case 2 and forξ = 1

2 in Case 3 there are no poles.
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Remark 8. If ξ ∈ Ξ, thenzj = π(k − 1
2), k ∈ N are zeroes (the first order) of

the functionsγ1(z), γ2(z), andzk = πk, k ∈ N are zeroes (the first order) of the

functionγ3(z) (see, formula(11)). The pointspk = πk/ξ, k ∈ N are poles (the

first order) of the functionγ1(z), and pointspk = π(k − 1
2)/ξ, k ∈ N are poles

(the first order) of the functionsγ2(z), γ3(z).

Remark 9. If ξ ∈ R, at the points of constant eigenvaluesck = π(k− 1
2)n, k ∈ N

(see Lemma2 and Remark8) zeroes correspond to the poles. Thus, the functions

γkr are analytic at those points:

lim
q→ck

γ1 = γ1r(ck; ξ) = (−1)(n−m−1)/2(−1)k(k − 1
2)

n2

m
π

= (−1)(n−m−1)/2(−1)k ck

ξ
, (131)

lim
q→ck

γ2 = γ2r(ck; ξ) = (−1)(n−m)/2 n

m
= (−1)(n−m)/2 1

ξ
, (132)

lim
q→ck

γ3 = γ3r(ck; ξ) = (−1)(n−m−1)/2(−1)k 1

m(k − 1
2)π

= (−1)(n−m−1)/2(−1)k 1

ckξ
(133)

andγl(ck) 6= 0, l = 1, 2, 3. We use the notationf(x; ξ) or f(x) when investiga-

ting the functionf(x, ξ) as a one-dimensional one with the fixed parameterξ or

parametersξ = (ξ1, ξ2).

Let c ∈ (a, b) and f , g be real functions inC2(a, b) with the properties

f ′′ = αf , g′′ = βg, f(c) = g(c) = 0, g 6= 0 for q 6= c, g′(c) 6= 0 and

γ̃(q) = f(q)
g(q) , limq→c γ̃(q) = limq→c

f(g)
g(q) = γ̃c. Then

lim
q→c

γ̃′g′

g
= g′(c) lim

q→c

f ′g − fg′

g3
= g′(c) lim

q→c

f ′′g − fg′′

3g2g′

= lim
q→c

αfg − βfg

3g2
=

α − β

3
lim
q→c

f

g
=

α − β

3
γ̃c,

lim
q→c

γ̃′′ = lim
q→c

(f ′g − fg′

g2

)′

= lim
q→c

f ′′g − fg′′

g2
− lim

q→c
(f ′g − fg′)

2g′

g3

= lim
q→c

(α − β)fg

g2
− 2 lim

q→c
γ̃′

g′

g

= (α − β)γ̃c −
2

3
(α − β)γ̃c =

α − β

3
γ̃c.
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If |γ̃c| < ∞, thenlimq→c γ̃′ = limq→c
γ̃′g′

g
limq→c

g

g′
=

α − β

3
γ̃c ·

0

g′(c)
= 0. In

particular, we have

lim
q→ck

( cos q

sin(ξq)

)′

= 0, lim
q→ck

( cos q

sin(ξq)

)′′

= −1 − ξ2

3

cos ck

sin(ξck)
, (141)

lim
q→ck

( cos q

cos(ξq)

)′

= 0, lim
q→ck

( cos q

cos(ξq)

)′′

= −1 − ξ2

3

cos ck

cos(ξck)
, (142)

lim
q→ck

( sin q

cos(ξq)

)′

= 0, lim
q→ck

( sin q

cos(ξq)

)′′

= −1 − ξ2

3

sin ck

cos(ξck)
, (143)

and

γ′

1(ck; ξ) = lim
q→ck

( q cos q

sin(ξq)

)′

=
γ1+(ck; ξ)

ck
, (151)

γ′

2(ck; ξ) = lim
q→ck

( cos q

cos(ξq)

)′

= 0, (152)

γ′

3(ck; ξ) = lim
q→ck

( sin q

q cos(ξq)

)′

= −γ3+(ck; ξ)

ck
, (153)

γ′′

1 (ck; ξ) = lim
q→ck

( q cos q

sin(ξq)

)′′

= 2 lim
q→ck

( cos q

sin(ξq)

)′

+ lim
q→ck

q
( cos(q)

sin(ξq)

)′′

= 0 − ck
1 − ξ2

3

sin ck

cos(ξck)
= −1 − ξ2

3
γ1(ck; ξ), (161)

γ′′

2 (ck; ξ) = lim
q→ck

( cos q

cos(ξq)

)′′

= −1 − ξ2

3
γ2(ck; ξ), (162)

γ′′

3 (ck; ξ) = lim
q→ck

( sin q

q cos(ξq)

)′′

= −1 − ξ2

3
γ3(ck; ξ). (163)

Remark 10. We can enumerate all the polespk, k ∈ N, in the increasing order

p1 < p2 < · · · < pk < . . . . Formally we denotep0 = 0, p∞ = +∞. In the case

ξ ∈ R, there can be only one termp0 in the sequence{pk}∞k=0.

Remark 11. For ξ ∈ Q, the functionsγl andγlr are periodical or quasi-periodical

in the real direction, i.e., if

γ̃1(z) :=
γ1(z)

z
, γ̃1r(z) :=

γ1r(z)

z
, (171)

γ̃2(z) := γ2(z), γ̃2r(z) := γ2r(z), (172)

γ̃3(z) := γ3(z)z, γ̃3r(z) := γ3r(z)z, (173)
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then

γ̃1(z + 2πn) = γ̃1(z), γ̃1r(z + 2πn) = γ̃1r(z), (181)

γ̃2(z + 2πn) = γ̃2(z), γ̃2r(z + 2πn) = γ̃2r(z), (182)

γ̃3(z + 2πn) = γ̃3(z), γ̃3r(z + 2πn) = γ̃3r(z). (183)

>From the inequalitiessinh |Im q| ≤ | sin q|, | cos q| ≤ cosh(Im q) we get

the estimates

|z| sinh |Im z|
cosh(ξIm z)

≤ |γ1(z)|, |γ1r(z)| ≤ |z| cosh(Im z)

sinh |ξIm z| , (191)

sinh |Im z|
cosh(ξIm z)

≤ |γ2(z)|, |γ2r(z)| ≤ cosh(Im z)

sinh |ξIm z| , (192)

sinh |Im z|
|z| cosh(ξIm z)

≤ |γ3(z)|, |γ3r(z)|≤ cosh(Im z)

|z| sinh |ξIm z| . (193)

Corollary 1. The next limits are valid: lim
Im q→±∞

γk = ∞, lim
Im q→±∞

γkr = ∞,

k = 1, 2, 3, except Cases2, 3 for ξ = 1.

For the meromorphic functionF (z), we can definea sign of a poleat the

pointz = p:

σs(F, p) = sign
(

lim
z→p

(z − p)sF (z)
)

, s = 0, 1, . . . . (20)

Remark 12. If σs(F, p) = 0, then the pointz = p is a pole and its order is lower

thans or z = p is analytical point; ifσs(F, p) = ∞, then the pointz = p is a

pole and its order is greater thans; otherwise we have ans-order pole.

Remark 13. If F (z) = f(z)
g(z) , wheref, g are entire functions andg(p) = 0,

g′(p) 6= 0, then

σ1(F, p) = sign
(

lim
z→p

(z − p)F (z)
)

= signRes
z=p

F (z) = sign
f(p)

g′(p)
. (21)

3 Real eigenvalues case for the problem with two points nonlocal
boundary condition

Let us consider the case where the parameterγ ∈ R. Next we investigate the

Sturm-Liouville problem (1)–(3) with real eigenfunctions and real eigenvalues

λ ∈ R.
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Now, instead ofq ∈ Cq, we takeq only in the raysq = x ≥ 0 andq = −ix,

x ≤ 0. We get positive eigenvalues in case the rayq = x > 0, and we have

negative eigenvalues in the rayq = −ix, x < 0. The pointq = x = 0 corresponds

to λ = 0. For the functionf : Cq → C, we have its two restrictions on those rays:

f+(x) = f(x + i0) for x ≥ 0 andf−(x) = f(0− ix) for x ≤ 0. The functionf+

corresponds to the case of positive eigenvalues, while the functionf− corresponds

to that of negative eigenvalues. All real eigenvalues

λk =

{

x2
k, for xk ≥ 0,

−x2
k, for xk ≤ 0,

k ∈ N,

are investigate of using the functionf : R → C:

f(x) =

{

f+(x), for x ≥ 0,

f−(x), for x ≤ 0.

For the complex functions (11), there such functions are real and can be

written as:

γ1(x; ξ) :=











γ1−(x; ξ) =
x cosh x

sinh(ξx)
, for x ≤ 0,

γ1+(x; ξ) =
x cos x

sin(ξx)
, for x ≥ 0;

(221)

γ2(x; ξ) :=











γ2−(x; ξ) =
cosh x

cosh(ξx)
, for x ≤ 0,

γ2+(x; ξ) =
cos x

cos(ξx)
, for x ≥ 0;

(222)

γ3(x; ξ) :=















γ3−(x; ξ) =
sinhx

x cosh(ξx)
, for x ≤ 0,

γ3+(x; ξ) =
sin x

x cos(ξx)
, for x ≥ 0.

(223)

Graphs of the functionsγl(x; ξ), l = 1, 2, 3 for variousξ are shown in Fig. 2. Let

us enumerate all the polespk, k ∈ N in the increasing order (see, Remark 10 in

Section 2). The functionsγ1+(x), γ2+(x) andγ3+(x) are defined in the intervals

(pk−1, pk), k ∈ N, wherepk−1 < pk andp0 = 0. All the functionsγl−(x) > 0.

In the real case forF = γl+, l = 1, 2, 3, the sign of the polesσ1(F, p) = ±1.

If σ1(F, p) = 1 (see Fig. 3(a)), then, forγ>>1 the real eigenvalue pointq(γ) > p
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exists andlimγ→+∞ q(γ) = p, for γ << −1 the real eigenvalue pointq(γ) < p

exists andlimγ→−∞ q(γ) = p, but there are no such points on the other side of the

point p. If σ1(F, p) = −1 (see Fig. 3(b)), then, forγ >> 1, the real eigenvalue

point q(γ) < p exists andlimγ→+∞ q(γ) = p, as well as forγ << −1 the real

eigenvalue pointq(γ) > p exists andlimγ→−∞ q(γ) = p, but there are no such

points on the other side of the pointp. If σ1(F, p) = 0 (see Fig. 3(c)), then for all

γ there exists constant eigenvalue pointc = p.

Case 1,ξ = 1

5
Case 1,ξ = 2

7
Case 1,ξ = 1

Case 2,ξ = 1

3
Case 2,ξ = 1

2
Case 2,ξ = 2

3

Case 3,ξ = 1

3
Case 3,ξ = 1

2
Case 3,ξ = 2

3

Fig. 2. Functionsγl(x/π), l = 1, 2, 3.
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(a)σ1(F, p) = 1 (b) σ1(F, p) = −1 (c) σ1(F, c) = 0

(d) σ2(F, p) = 1 (e)σ2(F, p) = −1

Fig. 3. The poles and constant eigenvalue points.

Remark 14. Let the functionF have the second order polep. If σ2(F, p)=1

(see Fig.3(d)), then, forγ >> 1, two real eigenvalue pointsq1(γ) < p <

q2(γ) exist andlimγ→+∞ q1(γ) = limγ→+∞ q2(γ) = p, but there are no such

points forγ << −1. If σ2(F, p) = −1 (see Fig.3(e)), then, forγ << −1,

two real eigenvalue pointsq1(γ) < p < q2(γ) exist, whilelimγ→+∞ q1(γ) =

limγ→+∞ q2(γ) = p and there are no such pointsγ >> 1.

Let us consider the equations:

cos z − γ sin(ξz) = 0, (231)

cos z − γ cos(ξz) = 0, (232)

sin z − γ cos(ξz) = 0, (233)

sin z − γ sin(ξz) = 0. (234)

We can prove (see, [20]) the next lemma, which is very useful for investiga-

ting real eigenvalues.
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Lemma 4. For real γ ∈ [−1, 1] andξ ∈ (0, 1) all the roots of equations(23) are

real numbers.

3.1 Real eigenvalues in Case 1

Proposition 4. The functionγ1−(x; ξ) is a monotone decreasing function for

x < 0 and all ξ ∈ (0, 1]. The functionγ1+(x; 1) is a monotone decreasing

function in each interval(pk−1, pk).

Proof. The function γ1−(x) is even, whenx ∈ R, and γ1−(0) = 1
ξ and

γ1−(+∞) = +∞. Therefore, we have to show that this function is increasing

in interval(0, +∞).

Let us consider the functiony1(x) := x coth x, x > 0. It is evident that

sinhx > x. So,

y′1(x) =
sinh(2x) − 2x

2 sinh2 x
> 0,

andy1(x) is an increasing positive function forx > 0. Then1/y1(x) = 1
x tanhx

is a decreasing positive function and its derivative is negative.

Let us consider the functiony(ξ, x) := 1
ξ tanh(ξx) − tanhx, x > 0 and

ξ ∈ (0, 1). For this function

lim
ξ→0+

y(ξ; x) = x − tanhx > 0, lim
ξ→1−

y(ξ; x) = 0 (24)

for all x > 0. Its derivative with respect toξ

y′(ξ; x) =
(1

ξ
tanh(ξx)

)′

= x
( 1

ξx
tanh(ξx)

)′

< 0.

So,y(ξ; x) is a monotone decreasing function whenξ ∈ (0, 1), and from (24) we

have thaty(ξ; x) > 0 for all ξ ∈ (0, 1) and allx > 0.

Let us consider the function

y2(x, ξ) :=
sinhx

sinh(ξx)
, x > 0. (25)

Its derivative with respect tox

y′2(x; ξ) =
cosh x sinh(ξx) − ξ cosh(ξx) sinh x

sinh2(ξx)

=
ξy(ξ, x) cosh x cosh(ξx)

sinh2(ξx)
> 0.
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Thus,y2(x; ξ) is an increasing positive function for allx > 0 andξ ∈ (0, 1).

The function

γ1−(x; ξ) =
x cosh x

sinhx

sinhx

sinh(ξx)
= y1(x) · y2(x; ξ)

is a monotone increasing function forx > 0 as a product of monotone increasing

positive functions. Forξ = 1, the functiony2 ≡ 1, and the proposition is valid in

this case too.

Let us consider the functionγ1+(x; 1) = x cot x, x > 0, x 6= kπ, k ∈ N. It

is evident thatsinx < x. So,

γ′

1+(x; 1) =
sin(2x) − 2x

2 sin2 x
< 0,

andγ1+(x; 1) is a monotone decreasing function in the intervals(π(k − 1), πk),

k ∈ N.

In Section 2 we show thatλ = 0 exists if and only ifγ = γ0 = 1
ξ (see,

Lemma 1). Now from Proposition 2 we derive a few results for eigenvalues.

Lemma 5. For γ > γ0, there exists one negative eigenvalue, and forγ ≤ γ0,

there are no negative eigenvalues.

Proof. The functionγ1−(x) is a monotone decreasing function whenx < 0,

γ1−(−∞) = +∞ andγ1−(0) = 1
ξ . Therefore, the equationγ = γ1−(x) has

a negative root only forγ > 1
ξ .

Lemma 6. For ξ = 1 all the eigenvalues of problem(1)–(3) in Case1 with realγ

are real. Each positive eigenvalueλk(γ) = x2
k(γ), wherexk ∈ (pk−1, pk).

Proof. The proof follows from Proposition 4 for the functionγ1+.

Remark 15. We enumerate the eigenvalues in such a way:xk(0) = π(k − 1
2),

i.e., using the classical case.

In this case, we get asymptotical properties of eigenvalues.
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Corollary 2. For problem(1)–(3) in Case1 andξ = 1 the properties

lim
γ→−∞

xk(γ) = pk, lim
γ→+∞

xk(γ) = pk−1, k ∈ Nr{1}, lim
γ→+∞

x1(γ) = −∞

are valid.

In other cases (ξ ∈ (0, 1)), the spectrum is not so simple. For realγ multiple

and complex eigenvalues can exist. In many cases it is necessary to know when all

eigenvalues are positive and non multiple, it means, when the analyzed problem

spectrum is such as the classical problem. When the qualitative root distribution

depends on the parametersγ andξ, it is necessary to find such an interval forγ in

which the spectrum of the problem satisfies this property.

The graphs of the functionsh1(x) := cos x−x sinx, h2(x) := sinx−x cos x

for x ≥ 0 are given in Fig. 4. Suppose thatx0, x1, x2 are the first three positive

zeroes of the functionh1 andz1 is the first positive zero of the functionh2. We

defineξk := π
2xk

, γk := xk cos xk and γ̃ := z1

sin z1
. Thenx0 ≈ 0.8603, x1 ≈

3.4256, x2 ≈ 6.4373, ξ1 ≈ 0.4585, ξ2 ≈ 0.2440, γ1 ≈ −3.2884, γ2 ≈ 6.361,

z1 ≈ 4.4934, γ̃1 ≈ −4.6033.

Fig. 4. Functionsh1 (graph. 1)
andh2 (graph. 2).

(a) (b)

Fig. 5. Functionγ1+(x, ξ).

Lemma 7. If γ1 ≤ γ ≤ γ2, then all the eigenvalues of problem(1)–(3) are real

for all ξ ∈ (0, 1), and limitary cases are realizable whenξ = ξ2 andξ = ξ3. If

γ1 < γ ≤ 1, then all the eigenvalues are positive and simple for allξ ∈ (0, 1).

Proof. We can consider only nonconstant eigenvalues, because the constanteigen-

values (if any) are positive. The functionγ1+ defines the distribution of positive
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S. Pěciulytė, A. Štikonas

eigenvalues. We resolveγ1+ into multiplicands:

γ1+(x; ξ) =
x cos x

sin(ξx)
= g(x; ξ) cos(x), whereg(x; ξ) :=

x

sin(ξx)
.

The graphs of the functionsγ1+(x; ξ), ±g(x; ξ) and±x for various parameterξ

values are given in Fig. 6. As we can see, the graphs of the functionγ1+(x; ξ)

oscillate between the functionsg(x; ξ) and−g(x; ξ). Since

g′(x) =
sin(ξx) − ξx cos(ξx)

sin2(ξx)
=

h2(ξx)

sin2(ξx)
, (26)

the minimum points of the function|g(x)| arexk,min = zk

ξ , k ∈ N, wherezk is

the positive root of the equationsin z − z cos z = 0 andg(xk,min) = γ̃k

ξ.

We can find extremum points of the functionγ1+(x, ξ) from a system

∂γ1+

∂x
=

(cos x − x sinx) sin(ξx) − ξx cos x cos(ξx)

sin2(ξx)
= 0,

∂γ1+

∂ξ
= −ξx cos x cos(ξx)

sin2(ξx)
= 0

This system is equivalent to

cos x − x sinx = 0, cos(ξx) = 0. (27)

So, the extremum points arexk, k ∈ N and don’t depend onξ
(

x0 ≈ 0.8603 does

not satisfy the equationcos(ξx) = 0 for ξ ∈ (0, 1)
)

. Forx1 we haveξ1 = π
2x1

;

for x2 we haveξ2 = π
2x2

andξ′2 = 3π
2x2

≈ 0.732; for x3 ≈ 9.5293 there are three

suchξ3 = π
2x3

, ξ′3 = 3π
2x3

, ξ′′3 = 5π
2x3

, and so on.

Sinceγ′
1+(ck; ξ) = γ1+(ck;ξ)

ck
6= 0 (see Remark 9) has the same sign as the

function, the constant eigenvalue points are not extremum points of the func-

tion γ1+(x, ξ) and they are not extremum points of the one-dimensional function

γ1+(x; ξ) as well.

It follows from Lemma 4 that, for|γ| ≤ 1, there are no complexγ-values

of the functionγ = cos x
sin(ξx) . Consequently, there are no complexγ-values of the

functionγ1+(x; ξ) at the angle|γ| ≤ x for all ξ ∈ (0, 1), and we must prove this

lemma only for0 < x < γ2 whenγ > 0, and0 < x < |γ1| whenγ < 0. Since

|γ1| < γ2 < 3π ≤ 3π
ξ , we investigate the functionγ1+ for x ∈ (0, 3π

ξ ). The points

x̃1 = π
ξ andx̃2 = 2π

ξ , x̃3 = 3π
ξ can be poles or points of constant eigenvalues.
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ξ = 1

4
∈ Ξ ξ = 1

3
∈ Ξ ξ = 2

5
∈ R

ξ = 4

9
∈ R ξ = 1

2
∈ Ξ ξ = 4

7
∈ R

ξ = 3

5
∈ Ξ ξ = 2

3
∈ R ξ = 3

4
∈ Ξ

ξ = 4

5
∈ R ξ = 6

7
∈ R ξ = 7

8
∈ Ξ

Fig. 6. Functionsγ1+(x/π; ξ).
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If ξ > 6
7 , thenx̃1, x̃2, x̃3 are poles and the functionγ1+(x; ξ) is decreasing in

each interval(0, x̃1), (x̃1, x̃2), (x̃2, x̃3). So, in this case all theγ-values are real.

If ξ ≤ 6
7 , then2π

ξ ≥ 7π
3 > γ2 and we investigate the functionγ1+ for x ∈ (0, 2π

ξ ).

If 4
5 < ξ ≤ 6

7 , thenx̃1, x̃2 are poles and the functionγ1+(x; ξ) is decreasing

in each interval(0, x̃1), (x̃1, x̃2). So, in this case, all theγ-values are real.

If ξ = 4
5 , thenx̃1 is a pole and̃x2 = c1 is a constant eigenvalue point. The

functionγ1+(x; ξ) is decreasing in each interval(0, x̃1), (x̃1, c1) andγ1+(c1) =

−25π
8 < γ1. Thus, in this case, all theγ-values are real forγ1 ≤ γ ≤ γ2.

If 2
3 < ξ < 4

5 (see Fig. 6,ξ = 3
4 ), then x̃1, x̃2 are poles. The function

γ1+(x; ξ) is a decreasing function whenx ∈ (0, x̃1) and has one (negative) local

minimum pointxmin whenx ∈ (x̃1, x̃2) andγ1+(xmin; ξ) 6 g(z1; ξ) = − γ̃1

ξ 6

−5γ̃1

4 < γ1. So, in this case, the lemma is valid.

If ξ = 2
3 (see Fig. 6,ξ = 2

3 ) thenx̃1 = q1 is a constant eigenvalue point andx̃2

is a pole. The functionγ1+(x; ξ) is decreasing whenx ∈ (0, c1] andγ1+

(

c1,
2
3

)

=

−9π
4 < γ1 and has one local minimum pointxmin whenx ∈ (c1, x̃2). So, in this

case, the lemma is valid.

If ξ < 2
3 , then |γ1| < 3π

2 < π
ξ and forγ < 0 we have to prove that in

the interval(0, 3π/2) there are only realγ-values. In this interval, the function

γ1+(x; ξ) has only one local minimum pointxmin, and it is monotone in the

intervals (0, xmin) and (xmin, 3π/2) and γ1+(π/2; ξ) = γ1+(3π/2; ξ) = 0.

For x ∈ (π/2, 3π/2), we have only one extremum point(x1, ξ1) of the function

γ1+(x, ξ) (see Fig. 5(a)) andγ1+(x1, ξ1) = γ1. This point is saddle point. Thus,

we prove the lemma for negativeγ. Note that the functionγ1+(x; ξ) is a positive

and monotone function forx ∈ (0, π/2) and we consider this function forx > 3π
2

andγ > 0.

If 4
7 < ξ < 2

3 , then x̃1 and x̃2 are poles. Ifξ = 4
7 , then x̃2 = c1 is a

constant eigenvalue point. The functionγ1+(x; ξ) increases forx ∈ (3π/2, π/ξ)

andx ∈ (5π/2, 2π/ξ). If ξ = 4
7 , thenγ1+(c1, 4/7) = 49

8 π > γ2.

If 4
9 < ξ < 4

7 , thenx̃1 andx̃2 are poles. The functionγ1+(x; ξ) increases for

x ∈ (3π/2, π/ξ) and has one local maximum pointxmax for x ∈ (5π/2, 7π/2)

andγ1+(xmax, ξ) ≥ γ̃1

ξ > 9γ̃1

4 > γ2. If ξ ≤ 4
9 , then π

ξ > 9π
4 > γ2 and we can

consider onlyx ∈ (5π/2, π/ξ).

If 2
5 < ξ < 4

9 , then x̃1 is a pole. Ifξ = 4
7 , then x̃2 = c1 is a constant
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eigenvalue point. The functionγ1+(x; ξ) increases forx ∈ (3π/2, π/ξ) andx ∈
(5π/2, 2π/ξ). If ξ = 4

7 , thenγ1+(c1, 2/5) = 25
4 π > γ2.

If ξ < 2
5 , thenγ2 < 5π

2 < π
ξ and forγ > 0 we have to prove that, in the

interval (3π/2, 5π/2) there are only realγ-values. In this interval the function

γ1+(x; ξ) has only one local maximum pointxmax and it is monotone in the

intervals(3π/2, xmin) and(xmin, 5π/2) andγ1+(3π/2; ξ) = γ1+(5π/2; ξ) = 0.

Forx ∈ (3π/2, 5π/2), we have two functionγ1+(x, ξ) extremum points(x2, ξ2)

and (x2, ξ
′
2), but ξ′2 > 2

5 . We have a saddle point (see Fig. 5(a)) and

γ1+(x2, ξ2) = γ2. Thus, we have proved the lemma for positiveγ.

For γ1 ≤ γ ≤ γ2 the horizontal lineγ intersects the graphs of the function

γ1+. If γ = 0, then we get the classical case with all positive and simple

eigenvalues. Whenγ1 < γ < γ2, all eigenvalues remain real and simple. We

can enumerate them just like in the classical case.

Whenγ > 1
ξ we have one negative eigenvalue. So, all eigenvalues will be

positive for allξ ∈ (0, 1) if γ ≤ 1.

Remark 16. If ξ = ξ1 and γ = γ1 or ξ = ξ2 and γ = γ2, then we have one

multiple eigenvalue.

Remark 17. In Fig. 7, we see how the functionγ1 transforms near the constant

eigenvalue point for variousξk (ξk−1 < ξk), k = 1, 2, 3, 4, 5, 6. In the casek = 4,

we have a constant eigenvalue.

Fig. 7. Functionsγ1+(x/π; ξ) near the constant eigenvalue point for various
ξk, k = 1, 2, 3, 4, 5, 6.

Let p̃k = π
ξ k, k ∈ N, i.e., p̃k are poles or constant eigenvalue points. Then

σ1(γ1+, p̃k) = (−1)ksign cos
(

1
ξ πk

)

= (−1)ksign cos p̃k. (28)
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3.2 Real eigenvalues in Case 2

Proposition 5. The functionγ2−(x; ξ) is a monotone decreasing function for

x < 0 and all ξ ∈ [0, 1).

Proof. For ξ = 0, the functionγ2− = cosh x is a monotone decreasing function.

The functionγ2−(x) is even, whenx ∈ R, andγ2−(0) = 1 andγ2−(+∞) =

+∞. Therefore, we have to show that, in the interval(0, +∞), this function is

increasing.

The functiony1(x) := x tanhx, x > 0 is a monotone increasing function as

a product of two such functions.

Let’s consider the functiony(ξ; x) := ξ tanh(ξx) − tanhx, x > 0 and

ξ ∈ (0, 1). For this function,

lim
ξ→0+

y(ξ; x) = − tanh x < 0, lim
ξ→1−

y(ξ; x) = 0 (29)

for all x > 0. Its derivative with respect toξ is equal to

y′(ξ; x) =
(

ξ tanh(ξx)
)′

=
1

x

(

(ξx) tanh(ξx)
)′

> 0.

Consequently,y(ξ; x) is a monotone increasing function whenξ ∈ (0, 1), and

from (29) we obtain thaty(ξ, x) < 0 for all ξ ∈ (0, 1) and allx > 0.

The derivative of the functionγ2−(x) is equal to

sinhx cosh(ξx) − ξ cosh x sinh(ξx)

cosh2(ξx)
= − cosh x

cosh(ξx)

(

ξ tanh(ξx)−tanh x
)

> 0.

We see that, the functionγ2−(x; ξ) is a monotone increasing function asx > 0,

and a monotone decreasing function whenx < 0.

>From Proposition 5 we derive now the main result for a negative eigenvalue.

Lemma 8. For γ > γ0 = 1, there exists one negative eigenvalue, and forγ ≤ γ0

there are no negative eigenvalues.

Proof. The functionγ2−(x) is a monotone decreasing function whenx < 0,

γ2−(−∞) = +∞ andγ2−(0) = 1. Therefore, the equationγ = γ2−(x) has one

negative root only forγ > γ0 = 1 and there are no negative roots forγ ≤ γ0.
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Another main result, in this case, is about real eigenvalues.

Lemma 9. For |γ| ≤ 1, all eigenvalues are real.

Proof. The proof follows from Lemma 4 (Case 2).

If |γ| ≥ 1, then there exist eigenvalues that can be multiple and complex. We

can see some cases for variousξ in Fig. 8. In Fig. 9, we see how the functionγ2

transforms near the constant eigenvalue point.

ξ = 0 ∈ Ξ ξ = 1

8
∈ Ξ ξ = 1

5
∈ R

ξ = 2

5
∈ Ξ ξ = 3

5
∈ R ξ = 4

5
∈ Ξ

Fig. 8. Functionsγ2(x/π; ξ).

Fig. 9. Functionsγ2+(x/π; ξ) near the constant eigenvalue point for various
ξk, k = 1, 2, 3, 4, 5, 6.
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Let p̃k = π
ξ (k − 1

2), k ∈ N, i.e., p̃k are poles or constant eigenvalue points,

then

σ1(γ2+, p̃k) = (−1)k−1sign cos
(

1
ξ π(k − 1

2)
)

= (−1)k−1sign cos p̃k. (30)

3.3 Real eigenvalues in Case 3

The real spectrum in Case 3 is more complicated (see, Fig. 10). In this case

γ0 = 1. Whenγ is real, multiple and complex eigenvalues can exist for allγ 6= 0.

For example, ifξ = 1
2 , thenγ3+(x) = 2

x sin(x/2) and|γ3+| ≤ 2
x .

Proposition 6. The functionγ3+(x; 1) is a monotone increasing function in each

interval (pk−1, pk); the functionγ3−(x; 1) is a monotone increasing function for

x < 0. The functionγ3−(x; ξ) is a monotone decreasing function forx < 0

only for ξ ∈ [0,
√

3/3] and has one local minimum pointxmin ∈ (−∞, 0) for

ξ ∈ (
√

3/3, 1).

Proof. The functionsγ3−(x; 1) = 1/γ1−(x; 1), γ3+(x; 1) = 1/γ1+(x; 1). Thus,

we get the proof forξ = 1 from Proposition 4.

In Proposition 4 we show (see, (25)) thatsinh x
sinh(ξx) is an increasing positive

function for allx > 0 andξ ∈ (0, 1). So, the function

y1(x; ξ1, ξ2) :=
sinh(ξ1x)

sinh(ξ2x)
, x > 0, 0 < ξ2 < ξ1,

is increasing and positive too. Sincelimx→0 y1(x; ξ1, ξ2) = ξ1/ξ2 > 0, we have

ξ2 sinh(ξ1x) − ξ1 sinh(ξ2x) > 0, for x > 0, 0 < ξ2 < ξ1. (31)

Let us consider the positive function

y2(x; ξ1, ξ2) :=
tanh(ξ2x)

tanh(ξ1x)
, x > 0, 0 < ξ2 < ξ1.

Its derivative with respect tox is

y′2(x; ξ1, ξ2) =
ξ2 sinh(2ξ1x) − ξ1 sinh(2ξ2x)

2 sinh2(ξ1x) cosh2(ξ2x)
> 0, for x > 0, 0 < ξ2 < ξ1.
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ξ = 0 ∈ Ξ ξ = 1

8
∈ R ξ = 1

7
∈ Ξ

ξ = 0.49 ∈ R ξ = 1

2
∈ R ξ = 0.51 ∈ R

ξ =
√

3

3
∈ Ξ ξ = 3

4
∈ R ξ = 1 ∈ Ξ

Fig. 10. Functionsγ3(x/π; ξ).

Hence, we get that

y3(x; ξ) :=
tanh(1

2x)

ξ tanh(ξx)
, x > 0,

is an increasing positive function for allξ ∈ (1
2 , 1).

For the function

y4(x) := 2 sinhx cosh x + sinhx − 3x cosh x,

73
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we havey4(0) = 0, y′4(0) = 0 and forx > 0

y′′4(x) = 8 sinhx cosh x − 5 sinhx − 3x cosh x

= 3 cosh x(sinhx − x) + 5 sinhx(cosh x − 1) > 0.

As a result, the functiony4(x), x > 0 is positive . For the function

y5(x) := sinhx cosh x − sinhx − x2 sinhx + x cosh x − x,

we havey5(0) = 0, y′5(0) = 0 and forx > 0

y′′5(x) = 4 sinhx cosh x − sinhx − 3x cosh x − x2 sinhx

= 2 sinh(coshx − 1 − 1
2x2) + 2 sinhx cosh x + sinhx − 3x cosh x

= 2 sinh(coshx − 1 − 1
2x2) + y4(x) > 0.

Consequently, the functiony5(x), x > 0 is positive, too.

Note that the functionx cothx− 1 = (x cosh x− sinhx)/ sinhx > 0. Then

the derivative of the positive function

y6(x) :=
x cothx − 1

x tanh(1
2x)

=
x cosh x − sinhx

x(cosh x − 1)
, x > 0,

is equal to

y′6(x) =
sinhx(cosh x − 1 − x2) + x(cosh x − 1)

x2(cosh x − 1)2
=

y5(x)

x2(cosh x − 1)2
> 0.

So, the function

y(x; ξ) :=
x cothx − 1

xξ tanh(ξx)
= y6(x) · y3(x; ξ)

is a positive increasing function for allx ≥ 0, ξ ∈ (1
2 , 1) and

y0 := lim
x→0

y(x; ξ) =
1

3ξ2
; y∞ := lim

x→+∞
y(x; ξ) =

1

ξ
> 1.

If ξ ∈ (1
2 ,
√

3/3], theny0 > 1 andy(x; ξ) > 1 for all x > 0; if ξ ∈ (
√

3/3, 1),

theny0 < 1 and there existsxmin = xmin(ξ) > 0 such thaty(xmin; ξ) = 1 and

y(x; ξ) < 1 for all 0 < x < xmin, y(x; ξ) > 1 for all x > xmin.
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We reformulate these properties for the function

f(x; ξ) := x cothx − 1 − xξ tanh(ξx),

i.e., if ξ ∈ (1
2 ,
√

3/3], thenf(x; ξ) > 0 for all x > 0; if ξ ∈ (
√

3/3, 1), then

there existsxmin = xmin(ξ) > 0 such thatf(xmin; ξ) = 0 andf(x; ξ) < 0 for all

0 < x < xmin, f(x; ξ) > 0 for all x > xmin.

Since

∂

∂ξ

(

xξ tanh(ξx)
)

= x tanh(ξx) +
xξ2

cosh2(ξx)
> 0, for x > 0,

we obtainξx tanh(ξx) < 1
2x tanh(1

2x), and, forξ ∈ [0, 1
2 ], we estimate

f(x; ξ) > x coth x − 1 − 1
2x tanh(1

2x) = 1
2x coth(1

2x) − 1 > 0.

Finally, we have

γ′

3−(x; ξ) =
x coth x − 1 − xξ tanh(ξx)

x2 cosh2(ξx)
= f(x; ξ)

sinhx

x2 cosh(ξx)
.

The functionγ3−(x; ξ), x ∈ R is an even function. Therefore, monotonicity

properties of the functionγ3−(x; ξ), x < 0, follow from the properties of the

functionf(x; ξ): if ξ ∈ [0,
√

3/3], thenγ3−(x; ξ) is a decreasing function forx 6

0; if ξ ∈ (
√

3/3, 1), then there existsxmin = xmin(ξ) < 0 such thatγ3−(x; ξ) is a

decreasing function for andx 6 xmin, andγ3−(x; ξ) is an increasing function for

xmin 6 x 6 0; if ξ = 1, thenγ3−(x; ξ) is an increasing function forx 6 0.

Lemma 10. If ξ ∈ [0,
√

3/3], then there exists one negative eigenvalue only for

γ > γ0. If ξ ∈ (
√

3/3, 1), then there existsxmin < 0 andγ∗ = γ3−(xmin; ξ) ∈
(0, γ0) such that there exists one double negative eigenvalue forγ = γ∗ and only

one simple eigenvalue forγ > γ0, two negative eigenvalues exist forγ ∈ (γ∗, γ0),

and forγ < γ∗, there are no negative eigenvalues. Ifξ = 1, then there exists one

negative eigenvalue only for positiveγ < γ0, but there are no negative eigenvalues

for γ > γ0.

Proof. The functionγ3−(x; ξ) is positive. From Proposition 6 and the conditions

γ3−(−∞) =

{

+∞, for ξ < 1,

0, for ξ = 1;
γ3−(0) = 1,

we get the proof of this lemma.
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Remark 18. In Fig. 11, we see how the functionγ3 transforms near the constant

eigenvalue point for variousξk, k = 1, 2, 3, 4, 5, 6. In the casek = 4, we have a

constant eigenvalue.

Fig. 11. Functionsγ3+(x/π; ξ) near the constant eigenvalue point for various
ξk, k = 1, 2, 3, 4, 5, 6.

Let p̃k = π
ξ (k − 1

2), k ∈ N, i.e., p̃k be poles or constant eigenvalue points.

Then

σ1(γ1+, p̃k) =

{

(−1)ksign sin p̃k, for ξ > 0,

0, for ξ = 0.
(32)

4 Conclusions

• Sturm-Liouville problems (1)–(3) (Cases 1–3) have similar spectrum proper-

ties in the complex plane. Spectrums of these problems have no constant

eigenvalues for irrationalξ and for some rationalξ ∈ Ξ and have a countable

number of nonconstant and constant eigenvalues for rationalξ ∈ R. All

constant eigenvalues are real positive numbers.

• In Cases 1 and 2, the problems have only one negative eigenvalue forγ > γ0.

In Case 3, there exists one negative eigenvalue only forξ ≤
√

3/3 andγ > 1,

and forξ = 1 and0 < γ < 1. In Case 3, we have two negative eigenvalues

for ξ ∈ (
√

3/3, 1) and0 < γ∗ < γ < γ0 = 1.

• Positive parts of the spectrums are different for the realγ case. For the

problems in Cases 1 and 2, all real eigenvalues exist only forγm(ξ) ≤ γ ≤
γM (ξ), but the interval[γ̄m, γ̄M ] ⊂ [γm, γM ] is the same for allξ. In Case 3,
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for everyγ 6= 0 andξ < 1, multiple and complex eigenvalues can exist and,

only for ξ = 1, all eigenvalues are real.
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