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Abstract. The Sturm-Liouville problem with various types of two-pbin
boundary conditions is considered in this paper. In the fiest of the paper,
we investigate the Sturm-Liouville problem in three cadasomlocal two-point

boundary conditions. We prove general properties of therdighctions and

eigenvalues for such a problem in the complex case. In thensepart, we

investigate the case of real eigenvalues. It is analyzedthewpectrum of these
problems depends on the boundary condition parameterdit&iva behavior

of all eigenvalues subject to the nonlocal boundary comdifparameters is
described.

Keywords: Sturm-Liouville problem, nonlocal two-point conditions.

1 Introduction

Boundary problems with nonlocal conditions are an area of the fastapeng
differential equations theory. Problems of this type arise in various figids o
physics, biology, biotechnology, etc. Nonlocal conditions appear \ilenalue

of the function on the boundary is connected with the values inside the domain.
Theoretical investigation of problems with various types of nonlocal baynd
conditions is a topical problem and recently has been paid much attention to them
in the scientific literature.
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A.A. Samarskii and A.V. Bitsadze were originators of such problemsy The
formulated and investigated the nonlocal boundary problem for an elliptia-eq
tion [1]. J. Canon was one of the pioneers who investigated parabolieong
with integral boundary conditions [2]. Also parabolic problems with noriloca
integral boundary conditions were analyzed in [3-9].

A multipoint nonlocal boundary problem for second-order ordinarfediin-
tial equations was initiated by V. llyin and E. Moiseev [10]. This problem was
also investigated in [11-13]. During the last decades the number ofetitial
problems with nonlocal boundary conditions increased significantly.

Quite new an area, related with the problems of this type, is investigation
of a spectrum of differential equations with nonlocal conditions. Eigemva
problems with nonlocal conditions are closely linked with boundary problems
for differential equations with nonlocal conditions [14-16]. In [17}38milar
problems are investigated for the operators with a nonlocal condition oftB#sa
Samarskii or integral type. Eigenvalue problems for differential opesatdth
nonlocal conditions are considerably less investigated than the classicaddry
condition cases.

The purpose of this paper is to analyze a real eigenvalue problem timtia s
nary differential problem with one classical and one nonlocal two-gmondary
condition. In this paper, we analyze a stationary problem in three caseslf
nonlocal boundary conditions. We investigate how the spectrum of theskems
depends on the parameters of some nonlocal boundary conditions.

Some results on the spectrum of the problem with nonlocal Samarskii-Bi-
tsadze type boundary condition are published in [20]. In [21], a similam&tu
Liouville problem with two types of nonlocal integral boundary conditions wa
considered. The spectrum of those problems is very complicated fousaréses
of parameters — negative and complex eigenvalues may exist.

In Section 2, we analyze the Sturm-Liouville problem with a nonlocal two-
point boundary condition and find general properties of eigenvalndsayen-
functions in the complex plane. In Section 3, we investigate real eigenvimlues
the case real parameters and we show that for some parameters onenegtwo
tive eigenvalues can exist. We investigate the cases when complex and multiple
eigenvalues exist.
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2 The Sturm-Liouville problem with a nonlocal two-point boundary
condition

Let us analyze the Sturm-Liouville problem with one classical boundargition

—u" =X, z€(0,1), (1)
u(0) = 0, (2)

and another nonlocal two-point boundary condition of Samarskii-Biesagze:

Casel) /(1) =~yu(§), (31)
Case2) /(1) =~u'(§), (32)
Case3) u(l) =~u'(§), (33)
Cased)  u(l) =yu(f), (34)

with the parameters € C := C U oo and¢ € [0, 1]. The last case was analyzed
in [20]. So, we investigate only the first cases)(3-),(3;). Note that the index
in references denotes the case.

Remark 1. For v = oo, we investigate boundary conditions with> 0:
u(¢) =0 (Casesl,4), u/'(¢) =0 (Case,3)
instead of boundary conditior(8).

In this section, we will find all eigenvalues, which do not depend on the
parametery, and we will show how they depend on the paraméteiVe will
formulate the basic properties for eigenvalues, which are dependingeqgmath
rametery.

Let us defineN := {1,2,...}. Denote byN; := {j € N|j/k € N}, k € N,

a subset of integer positive numbers,My= Ns U {0} a set of even nonnegative
integer numbers, and, = N ~ Ny a set of odd positive integer numbers. Let
r =T € Q0,1] be a rational number if, 1]. Forr € (0, 1), we suppose that
andn (n > m > 0) are positive coprime integer numbersr I 0, we suppose
m =0,n=1and, ifr =1, we supposen = 1,n = 1.
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Wheny = 0in the problem (1)—(3), we get a problem with classical boundary
conditions. Then eigenvalues and eigenfunctions don’t depend oathmptet:

Me =72 (k= 3)° w(w) =sin (x(k - }z), kEN, (41.2)
e = (mk)?, ug(z) = sin(wkx), k e N. (43,4)

Remark 2. We have the classical eigenfunctions and eigenvaldes ¢ = 0

in Casesl,4 For ¢ = 1in Cases2,4we have the classical eigenfunctions and
eigenvalueg4) only for v # 1 and the second boundary condition is trivial for
~v = 1. For ¢ = 1 in Casesl,3we have third type (classical) boundary condition.

If A = 0, then all the functions.(x) = cx satisfy the problem (1)-(2).
Substituting this solution into the second boundary condition (3), we get the
equalities:c = ¢y¢ (Casel, 4), ¢ = ¢y (Case2, 3).

Lemma 1. The eigenvalue = 0 exists if and only ifry = % inCasesl, 4 v =1
in Case=,3

In the general case, for # 0, eigenfunctions are = c¢sin(gz) and eigen-
values\ = ¢2, whereq € C, \ {0},

Cy:={q€C|Reqg>00rReq=0,Img > 0or ¢g=0}.

These eigenfunctions satisfy equation (1), boundary condition (2nantbcal
boundary condition (3). A& # 0 the nonlocal boundary condition is satisfied if

cq cos q = cysin(£q), (51)
cqcosq = cyqcos(éq), (52)
csing = e¢yqcos(£q) (53)

and there exists a nontrivial solutionzif= ¢ is the root of the equation

filz) = ’ySian)

fa(z) :=~ycos(€z) — cosz =0, (62)

(
fa(z) :=~ycos({z) — e 0. (63)

—cosz =0, (61)

z

50



Sturm-Liouville Problem with a Nonlocal Two-Point Boundary Conditions

If sin({q) = 0 andcosq = 0 in Case 1cos({q) = 0 andcosq = 0 in Case 2
or cos(£q) = 0 andsing = 0 in Case 3, then equation (6) is valid for alle C.
In this case, we getonstant eigenvalues = ¢, which don’t depend on the
parametery, andgq is the root of the system:

cosq=0, sin(&q) =0, (71)
cosq=0, cos(&q) =0, (72)
sing = 0, sin(q) = 0. (75)

If A = ¢? is a constant eigenvalue, then we will nagne C, constant eigenvalue
point

Proposition 1. If the parametek is an irrational number, then constant eigen-
values do not exist.

Proof. The roots of the first equation agg = 7(k — %) (Cases 1, 2) oy, = 7k
(Case 3)k € N, the roots of the second equation are= (I — %)/5 (Case 2) or
q = wl/§ (Cases 1, 3), € N. The numbergy /7 € Q, butg;/m ¢ Q. So, system
(7) has no solutions. O

Remark 3. In Case4 (see,[20]) constant eigenvalues exist only for rational
¢=r="¢€10,1) and they are equal td;, = (7nk)? k € N.

Proposition 2. Letn andm (0 < m < n) be coprime numbers ande C,~ {0}.
Then

cos(nz) =0, cosz =0, form e Ng,neN,, ®)
sin(mz) =0 @ otherwise !
cos(nz) =0, cosz =0, formeN,,neN,, )
cos(mz) =0 @ otherwise 2
sin(nz) = 0, cosz =0, form € N,,n € N, )
cos(mz) =0 @ otherwise °
i =0
S?D(TLZ) © ~ sinz=0. (84)
sin(mz) =0
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Proof. Case 1. Positive roots of equatioass(nz) = 0 andsin(mz) = 0 are
T2l k e N, andZ2, | € N, accordingly. We have the common root if
(2k — 1) = 2In. So, such roots exist only if: is even. Ifn andm are coprime
numbers, them must be odd andlk —1 =n-(2k—1),k € N, 2l = m-1,1 € N.

If I = 2k — 1 then we get the common root, i.e, = n(k — 1), k € N. Those
roots (and only they) are the roots of the equationz = 0.

Case 2. Positive roots of equationss(nz) = 0 andcos(mz) = 0 are
2=l | € N, andZ2L, | € N, respectively. We have the common root if
(2k — 1)m = (21 — 1)n. Thus, such roots exist if» andn both are the odd
numbers. Therk —1 =n-(2k—1), ke N,2l —1=m- (20 —1),] € N.

If | = k, then we get the common roet = n(k — ), k € N, i.e., root of the
equationcos z = 0.

Case 3. Positive roots of equatiosis(nz) = 0 andcos(mz) = 0 are Z 2%,

k € N, and”zl , I € N, respectively. We have the common rooRiém =
(2l —1)n. Thus, such roots existif is even. Themn must be odd angk = n -,
keN,2l—1=m-(20—1),] € N. If k= 2] — 1, then we get the common root
2, = m(k — 3, k € N, i.e., the root of the equatiars z = 0.

Case 4. Positive roots of equatiatia(nz) = 0 andsin(mz) = 0 arewk/n,

k € N, andnl/m, | € N, respectively. We have the common rookif, = In.
Consequently, there exist such root&it=n -k, k € N,l = m-I,1 € N. If
[ = /}, then we get the common rogt = wl?:, k € N, i.e., the root of the equation
sinz = 0. O

Lemma 2. Constant eigenvalues do not exist for irratiorfalwhile for rational
§=r="¢€|0,1] they exist in the following cases:

m € N¢,n € N, in Casel,;
m € Ny, n € N, m < nin Case2;
m € Ny, n € N, in Case3;
and constant eigenvalues are equalo= c,ﬁ, e, =7k — %)n, k e N.

Proof. If ¢ is the irrational number then, this Lemma follows from Proposition 1.
If z = q/n, ¢ € C, in Proposition 2, prove all the statements of Lemma 2 in the
case of rationa§ = r € (0,1).
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If ¢ = 0, then from equation (6) it follows that we have only constant
eigenvalues in Case 1 (classical case), and there are no constaivakigs in
Cases 2, 3. IE = 1 there are no constant eigenvalues in Cases 1, 3 (the third
type boundary condition), because the functigins; andcos ¢ have no common
zeroes, and we get only constant eigenvalues in Case 2 (classeal£ak). [

Let us define the functions;(z) := S2U2) ;¢ N,, Cj(z) = U2

cosz cosz !

j € N,. We can express them by the Moivre formula:

Sop(2) = 2k cos? 2 zsin z — (23k) cos 4 zsind 2 4 ...
+ (=1)* 12k sin?F 1 2,
Copi1(z) = cos™ 2 — (2]“2“) cos?* 2 zsin? 2 4 ...
+ (=D*sin* 2, ke Nu{o0}.
We can see thaty(z) = 0, C1(z) = 1 and, fork > 1, the functionsSy;(z) and

Csyr+1(2) are entire transcendental with the first order of growth. The functions
cos z andS;(z), j > 1, andC}(z) don’t have common zeroes (see, Proposition 2).

Remark 4. The functionsSyx(z) = sin 2z Py (cos z), Cogt1(2) = Pogy1(cos 2),
whereP;, j € NU {0} are polynomials (with real integer coefficients):

Poi(z) = p) (23{€)z2k_4(1—z2) 4+t <—1)k_12k(1—z2)k_17
Poa(2) = 22— ()22 (12 + -+ (D122,
andPy =0, P, =1, P, = 1, and P, are nonconstant fok > 2.

Let us denote the sets:

(1]

:= {¢ € [0,1]| for £ constant eigenvalues don’t exjist
R := {¢ € [0, 1]| for £ there exist constant and nonconstant eigenvatues
C .= {5 € [0, 1]| for £ there exist only constant eigenvalt}es

>From Lemma 2 we have:
R = {ﬁzg‘meNe,nENo,O<m<n} in Case 1
R:{gzﬁ\meNo,neNo,m<n} in Case 2
n

R:{fz%\meNo,neNe,m<n} in Case 3
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and

(11
I

((0,1)~R)uU{1}, C={0} inCasel
((0,1)~R)u{0}, C={1} inCase2
=((0,1)~R)uU{0,1}, C=2 inCase3

[1]
I

[1]

Remark 5. In Case2 and¢ = 1, for v # 1 we have constant eigenvalues, but for
~ = 1 we don't have the second boundary condition (it is trivial). In this special
case, we defing=1 € C. ThenRU=ZU C = [0, 1] in the all cases.

For¢ € R from equation (6) we get:

et s (8) )] o o
et () -] -0 o
cos% . [’yCm (%) - $5n<%)} =0. (93)

Let us analyze nonconstant eigenvalues. §ar R, let us define the func-
tions:

sin £

fir(z) =~ Z"Pm<cosg) - Pn<cos %), (10,)
for(z) == 7Pm<cos %) - Pn<cos %), (162)
far(z) := fme(cos %) — SiI;%Pn(cos %) (109)

Remark 6. In the casey = oo, we define:

fi) = T2 ) i coste), fo(2) = cos(é)

sin £

fir(2) i= P (005 2 ), for(2) i= Pro((c0s ),
far(2) := Pm(cos E).

n

Note thatfo, = 1 for ¢ = £ and f3, = 1for £ = 3.

Lemma 3. There is a countable number of nonconstant eigenvalues for every

~v € C and every € U R. The pointA = ~o is an accumulation point of those
eigenvalues.
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Proof. The functionsf,(v/A), k = 1,2,3 for ¢ € = and functionsfy, (V)
k=1,2,3for ¢ € R are entire transcendental functions with the order of growth
equal to%. Such functions acquire everyvalue for infinite (countable) times,
and\ = oo is the accumulation point of-values (see, [22]). O

We can get all nonconstant eigenvalues (which depend on the parayheter
asy-values of meromorphic functions defined on theGgt

ZCOS 2
71(Z) = sin(fz)’ (111)
Cos 2
= 11
72(2) COS(SZ) ) ( 2)
sin z
= 11
73(2) 2 cos(2) (11)
when¢ € = and
z p, cosi)
. =n—= n.., 12
Yir(2) nsm% Pm(cos %) (12,
Pn(cos 5)
r(2) i = ——2C, 12
72r(2) P, (cos %) (12)
1sin £ Pn(cos £)
., = = n n 1
Yar(2) n = Pm(cos %) (123)

when¢ = = € R.

Remark 7. The poles of the function. (q), V& (q), kK = 1,2, 3 are eigenvalues of
the problem(1)«3) in the casey = cc.

The graphs of function$y,(z/7)|, & = 1,2, 3 for various rationak are
presented in Fig. 1. A®sz = cos Z, sin z = sin z, and polynomials?, have real
coefficients, we get a similar property for the functionsand-,.: v(z) = (%),
(2) = 7(Z). So, graphs are drawn only fém z > 0 andRez > 0. In the
graphs the functiony,.(z/7) is drawn instead the functiof,.(z). In this case,
the zeroes of the first function are the poihis: € N. A module of the complex
functions display zeroes and poles of this function. In all showed grapthe
zeroes and the poles of the function are in the real axis, and functiorases
itself, whenlm z grows up. Now we formulate main properties of these functions

as a proposition and remarks.

55



S. P&iulyte, A. Stikonas

1.0
075
2 3 4 5 goxo
Re(z) I(z)

Case2( =2

Re(z)

Imiz)

20
15
4 ggos 0
Relz) Ir(z)

Case 3¢ =

Proposition 3. All zeroes and poles of the meromorphic functiopsyx.., lie on

1

3

Case 3¢ =

the positive part of the real axis.

Proof. The proof follows directly from (11) and (12) and the properties of sinu
and cosinus functions (all zeroes of these functions are real numiSersonC,

we have only positive zeroes and poles.

We note that fog = % in Case 2 and fof = % in Case 3 there are no poles.
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Remark 8. If ¢ € E, thenz; = w(k — 1), k € N are zeroes (the first order) of
the functionsy, (z), v2(z), andz;, = 7k, k € N are zeroes (the first order) of the
function~s(z) (see, formulg11)). The pointyp, = 7k/¢, k € N are poles (the
first order) of the functiony; (), and pointsp, = 7(k — 3)/¢, k € N are poles
(the first order) of the functiong,(z), v3(z).

Remark 9. If ¢ € R, at the points of constant eigenvalugs= 7 (k — %)n, keN
(see Lemm@ and RemarlB) zeroes correspond to the poles. Thus, the functions
~i- are analytic at those points:

2
qlLHClk m= Vlr(Ck;é-) - (_1)(n_m_1)/2(_]‘)k k - %)%ﬂ-
= (IR (13)
Tim 72 = ar(c; ) = (-1)M 2 = <_1><nm>/2%, (13,)
; _ ey (_\(mme)2 kL
Jim s Yar(ck; §) = (—1) (-1) T
_ (_1\(n—m—=1)/2/ ki
=(=1) (=D % (13)

and~;(cx) # 0,1 = 1,2,3. We use the notatiofi(x; &) or f(x) when investiga-
ting the functionf(z, £) as a one-dimensional one with the fixed paraméter
parameterg = (£1,&2).

Letc € (a,b) and f, g be real functions inC?(a,b) with the properties

"= af, 9" = By, f(c) = glc) = 0,9 # 0forq # ¢ g'(c) # 0 and

(q) = %, limg—..5(q) = limg—.. % = 4.. Then
~! ! ! _ / 1 _ 1
L 19 :g,(c)hmfg 3fg _ g c)hmf g 2fg
qg—c g q—c g q—c 3g g/
_.afg=Bfg a—=03 . f a—-f_
= lim = lim = = ——7,,
g—c  3g? 3 g—cg 3
S SV noo oo /
lim 7" lim(fg 2fg> —hmfg Qfg lim(f'g — f ,)_93
q—c q—c g q—cC g C
N /
—1im OO g iy 59
q—c g g—c ' g
- a—0.
= (a—0)7 — s (a—B)Y. = 3 Ye
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- . o s Yy .. g _a—p_ 0
If |3¢| < oo, thenlimy—,. 4" = lim,_. e limg_.. g =5 T 70 =0.In
particular, we have
) cosq \’ ) cosq \" 1—¢€% coscy
1 —) = 1 = 14
i (sin(gq)> 0. jm <sin(§q)> 3 sm(eey) )
. cosq \’ ) cosq \" 1—&%2 coscy
lim =0, 1 =— , 1
q—>ck< s(¢ q)) = (cos(fq)) 3 cos(&cy) (14)
ng \/ ) sing \” 1—¢€% sing,
qg?k <cos(§q)) ' oo (cos(ﬁq)) 3 cos(éex)’ (14)
and
71 (cg; €) = lim (qcos,q)lzw (15))
& g—cx \sin(&q) L
cosq \'/
=0 1
hlas) = lim () =0 (15,
. sing ' Y3+ (ck; €
V3(cr; &) = qlgrclk (m) = _%7 (1%)
: " : T 0s(q) \"
Mgy — 1 qeosq\" _ o cos q | ¢
(63 ) s (sin(fq)) v <sin(§q)> * v q(sin(fq))
1—¢&2 sine 1-¢2
=0—cx 35 COS@CZ) — 7 (er; §), (161)
7 1— 52
Pl €)= 1i cos q _ , 1
Y2 (er;€) = lim (cos(gq)) 52l €); (165)
i " 1— 52
Mo €)= 1 sin q _ ). 1
73 (cr;§) = lim (7(1008(&1)) —5 - iler€) (165)
Remark 10. We can enumerate all the polgg, & € N, in the increasing order
p1 < py <---<pp<....Formally we denotey = 0, poo = +00. In the case

¢ € R, there can be only one terp in the sequencép;, }7° .

Remark 11. For ¢ € Q, the functionsy; and~y;, are periodical or quasi-periodical
in the real direction, i.e., if

7(2) Y1r(2)

Y1(2) = o Fr(2) = o (17)
Y2(2) = 72(2), For(2) = Y2r(2), (17)
Y3(2) = 3(2)z,  Fsr(2) = y3r(2)2, (173)
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then
A (z + 2mn) = 31(2), F1r(z + 270) = F1,(2), (18)
Yoz + 2mn) = F2(2),  For(z + 27n) = For(2), (18)
Y3(z +2mn) =93(2),  Yar(z 4 2mn) = 3, (2). (18;)

>From the inequalitiesinh [Im ¢| < |sing|,|cosq| < cosh(Imgq) we get
the estimates

|z| sinh |Im z| |z| cosh(Im z)

< ()] < : 19
cosh({Imz) — MGl e < sinh |£Im z| (19)
sinh [Im z| cosh(Im z)
— 0 = r R T— 1
cosh(¢Imz) — ()l bl < sinh [£Im z| (19:)
sinh [Im z| cosh(Im z)
A < ar(2)|< —— B E) 1
|z| cosh(¢Im z) — ()l brar(2)ls |z| sinh [£Im z| (1%)

Corollary 1. The next limits are valid: lim . = oo, lim g = oo,
Im g—+4oc0 Im g—+4oc0
k=1,2,3, except Case®, 3for ¢ = 1.

For the meromorphic functio’(z), we can defina sign of a poleat the
pointz = p:
os(F,p) = sign(lim(z — p)°F(2)),s =0,1,.... (20)

z2—p
Remark 12. If o4(F, p) = 0, then the point = p is a pole and its order is lower
thans or z = p is analytical point; ifos(F,p) = oo, then the point = pis a
pole and its order is greater thas1 otherwise we have astorder pole.

Remark 13. If F(z) = chg; where f, g are entire functions andg(p) = 0,
g'(p) # 0, then

f(p) 21)

o1(F,p) = sign(lim(z —p)F(2)) = signRes F(2) = sign ;7

-p

3 Real eigenvalues case for the problem with two points nontal
boundary condition

Let us consider the case where the parameter R. Next we investigate the
Sturm-Liouville problem (1)—(3) with real eigenfunctions and real eigres
AeR.
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Now, instead ofy € C,, we takeq only in the raysy = « > 0 andq = —ix,
x < 0. We get positive eigenvalues in case the gay = > 0, and we have
negative eigenvalues in the ray= —iz, © < 0. The pointy = z = 0 corresponds
to A = 0. For the functionf : C, — C, we have its two restrictions on those rays:
fr(z) = f(x+1i0) forx > 0andf_(x) = f(0 —ix) for z < 0. The functionf
corresponds to the case of positive eigenvalues, while the funtticorresponds
to that of negative eigenvalues. All real eigenvalues

A, — l‘%, for x;, > 0, ke N
F —xi, for z; <0, ’

are investigate of using the functigh R — C:

) fy(z), forz >0,
f(@) = {f_(:v), for z < 0.

For the complex functions (11), there such functions are real and €an b
written as:

hx
o (23€) = =228 for < 0,
n(w;€) = { sinh(éx) (221)
Y (2;6) = Sn(en) for x > 0;
hx
’)’2_($;§):&, fOf.’ESO,
o (w;€) = cosh(&r) (22,)
Yot (75 €) = cos(éx)’ for z > 0;
( inh x
i (236) = ——2__ forz <0,
o=y T o (22)
73+(xa§) - $COS(§(L’)7 orzx =~ 0.

Graphs of the functions;(z; €), I = 1, 2, 3 for various¢ are shown in Fig. 2. Let
us enumerate all the poleg, £ € N in the increasing order (see, Remark 10 in
Section 2). The functions;  (z), v2+(z) andvys (z) are defined in the intervals
(pk—1,pk), k € N, wherep;_1 < pr andpg = 0. All the functionsy;_(x) > 0.

In the real case foF' = v, [ = 1, 2, 3, the sign of the poles; (F,p) = +1.
If o1(F,p) =1 (see Fig. 3(a)), then, for>>1 the real eigenvalue poing{y) > p
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exists andim, .~ ¢(y) = p, for v << —1 the real eigenvalue poiniy) < p
exists andim,_._, ¢(y) = p, but there are no such points on the other side of the
pointp. If o1(F,p) = —1 (see Fig. 3(b)), then, for >> 1, the real eigenvalue
pointg(y) < p exists andim, . ¢(y) = p, as well as fory << —1 the real
eigenvalue poing(y) > p exists andim,_._, ¢(v) = p, but there are no such
points on the other side of the poimtIf o1 (F, p) = 0 (see Fig. 3(c)), then for all

~ there exists constant eigenvalue paint p.

g
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Fig. 2. Functionsy(z/7),1 =1,2,3.
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Fig. 3. The poles and constant eigenvalue points.

Remark 14. Let the functionF' have the second order poje If oo(F,p)=1
(see Fig.3(d)), then, fory >> 1, two real eigenvalue pointg;(y) < p <
q2(7) exist andlim,—, 1o ¢1(y) = limy— 4 g2(y) = p, but there are no such
points fory << —1. If oo(F,p) = —1 (see Fig.3(e), then, fory << —1,
two real eigenvalue pointg; (v) < p < go(7) exist, whilelim, . o ¢1(7) =
limy— 40 g2(y) = p and there are no such poings>> 1.

Let us consider the equations:

cos z — ysin(§z) = 0, (23))
cosz —ycos(§z) =0, (23,)
sin z — ycos(§z) =0, (23)
sin z — ysin(€z) = 0. (23y)

We can prove (see, [20]) the next lemma, which is very useful for tiyaes
ting real eigenvalues.
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Lemma 4. Forreal v € [—1,1] and¢ € (0, 1) all the roots of equation&23) are
real numbers.

3.1 Real eigenvalues in Case 1

Proposition 4. The functiony,_(z; &) is a monotone decreasing function for
x < 0and all¢ € (0,1]. The functiomy;4(z;1) is a monotone decreasing
function in each intervalpy 1, px)-

Proof. The function~,_(z) is even, whenz € R, and~,_(0) = % and

v1-(4+00) = 400. Therefore, we have to show that this function is increasing
in interval (0, +00).

Let us consider the functiogy (z) := zcothz, z > 0. It is evident that
sinhz > z. So,

, sinh(2x) — 2z

h(@) = 2sinh? x
andy; (z) is an increasing positive function for> 0. Then1/y;(z) = 1 tanhz
is a decreasing positive function and its derivative is negative.

Let us consider the functiop(¢, z) = %tanh(ﬁm) — tanhz, x > 0 and

¢ € (0,1). For this function

>0,

li ;x) =x —tanhx >0, i ;) =0 24
Jim (&) = — tanh Jim y(&;) (24)
for all x > 0. Its derivative with respect to

s _ 1 / _ i /

y'(&x) = (f tanh(fz)) = x(ﬁx tanh(faz)) < 0.
So,y(&; ) is a monotone decreasing function wigea (0, 1), and from (24) we

have thaty(¢; x) > 0 forall £ € (0,1) and allz > 0.

Let us consider the function
sinh z

yo(z,§) == sinh(éz)’ x > 0. (25)

Its derivative with respect to
cosh z sinh(&x) — € cosh(&x) sinh
Ya(x;€) = (&2) 25 (&)
sinh®(&x)
Ey(&, x) cosh x cosh(&x)

B sinh?(¢x) =0
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Thus,ys(z; €) is an increasing positive function for all> 0 and¢ € (0, 1).
The function

zcoshz sinhz

M- (7;€) = i y1(w) - y2(z; §)

sinhz sinh(éx
is @ monotone increasing function for> 0 as a product of monotone increasing
positive functions. Fof = 1, the functiony, = 1, and the proposition is valid in
this case too.

Let us consider the functiof 4 (z;1) = = cotz, x > 0,2 # km, k € N. It
is evident thatin x < z. So,

sin(2z) — 2z

(1) = ——4 "2 <0,
’YH( ) 2sin? x

and~yi4 (z;1) is a monotone decreasing function in the interal§: — 1), 7k),
k e N. O

In Section 2 we show that = 0 exists if and only ify = ¢ = % (see,
Lemma 1). Now from Proposition 2 we derive a few results for eigenvalues

Lemma 5. For v > ~q, there exists one negative eigenvalue, and+fog ~,
there are no negative eigenvalues.

Proof. The functiony;_(z) is a monotone decreasing function when< 0,
Y1-(—00) = +oo andy1-(0) = z. Therefore, the equation = v, () has

a negative root only foty > % O

Lemma 6. For ¢ = 1 all the eigenvalues of proble(i)<3) in Casel with real v
are real. Each positive eigenvalug (y) = z%(v), wherezy, € (pr—1, pr).

Proof. The proof follows from Proposition 4 for the function.,. O

Remark 15. We enumerate the eigenvalues in such a way0) = n(k — 3),
i.e., using the classical case.

In this case, we get asymptotical properties of eigenvalues.

64



Sturm-Liouville Problem with a Nonlocal Two-Point Boundary Conditions

Corollary 2. For problem(1)«3) in Casel and¢ = 1 the properties

lim ap(y) =pr,  lim ax(y) = preot,k € NN{1},  lim a1(y) = —o0
y—+00 =

y——00 +oo
are valid.

In other cases¢(€ (0, 1)), the spectrum is not so simple. For reahultiple
and complex eigenvalues can exist. In many cases it is necessary to kemval
eigenvalues are positive and non multiple, it means, when the analyzddmrob
spectrum is such as the classical problem. When the qualitative root distnibu
depends on the parameterand(, it is necessary to find such an interval foin
which the spectrum of the problem satisfies this property.

The graphs of the functiorig (x) := cosx—z sinx, ho(z) := sinz—x cos x
for x > 0 are given in Fig. 4. Suppose thai, z1, x5 are the first three positive
zeroes of the function; andz; is the first positive zero of the function,. We
define, = 27:;—k, Vg = Tpcoszp andy = SierlZ1. Thenzy ~ 0.8603, x1 =~
3.4256, 1o = 6.4373, & ~ 0.4585, & ~ 0.2440, v1 =~ —3.2884, 72 ~ 6.361,
21 = 4.4934, 41 = —4.6033.

Fig. 4. Functions:; (graph. 1) Fig. 5. Functiony; . (z, ).
andhs (graph. 2).

Lemma 7. If 41 < v < =9, then all the eigenvalues of problgih)—(3) are real
for all £ € (0,1), and limitary cases are realizable whén= & and{ = &s. If
v < v < 1, then all the eigenvalues are positive and simple fogad (0,1).

Proof. We can consider only nonconstant eigenvalues, because the cangémt
values (if any) are positive. The function_. defines the distribution of positive
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eigenvalues. We resolvg ;. into multiplicands:

X COSXT X

Sln(&éﬂ) - g(l‘, 5) COS(':U)? WhQI’Eg(x, é) T Sll’l(€$) °

The graphs of the functionsg ;- (z; £), +g(x;£) and+z for various parametef
values are given in Fig. 6. As we can see, the graphs of the fungtiofx; &)
oscillate between the functiogséx; £) and—g(z;&). Since

Y14 (25 6) =

sin?(&x) - sin®(éx)’
the minimum points of the functiofy(z)| arezy ;min = %k k € N, wherezy, is
the positive root of the equaticiin z — z cos z = 0 andg(zx min) = e

3
We can find extremum points of the function, (z, ) from a system

J(x) = sin(§x) — Excos(§x)  ho(éw) o6

Oyiy  (cosx — xsinz)sin({x) — £x cosz cos(x)

= =0
ox sin?(&x) ’
oy _ &z coszcos({x) 0
o sin?(¢x) B
This system is equivalent to
cosx —xsinz =0, cos(éx)=0. (27)

So, the extremum points aig, k£ € N and don’t depend o0& (xo ~ 0.8603 does
not satisfy the equatioeos(¢z) = 0 for ¢ € (0,1)). Fora; we haveg; = Za7
for x5 we havets = 2”72 andg), = 237”2 =~ 0.732; for z3 =~ 9.5293 there are three
suchéz = 5, & = $T, & = 2T, and so on.

Sincev|, (cx; &) = %ﬁ’“@ # 0 (see Remark 9) has the same sign as the
function, the constant eigenvalue points are not extremum points of tlee fun
tion 14+ (x, £) and they are not extremum points of the one-dimensional function
T+ (z;€) as well.

It follows from Lemma 4 that, fofy| < 1, there are no complex-values
of the functiony = Sﬁf&‘fj). Consequently, there are no comptexalues of the
functionv; (x; §) at the anglev| < x for all ¢ € (0,1), and we must prove this
lemma only for0 < = < ~» wheny > 0, and0 < x < |y;| wheny < 0. Since
Iy1] < 72 < 37 < 3T, we investigate the function, | for z € (0, 3?”). The points
I = % andzs = 2?” Ty = 3?” can be poles or points of constant eigenvalues.
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If & > % thenz, Zo, 3 are poles and the function ;- (z; £) is decreasing in
each interval0, 1), (Z1,Z2), (Z2,Z3). So, in this case all the-values are real.
If¢ <8, then%7r > % > 4, and we investigate the function.,. for z € (0, %”).

If % <¢< g thenz,, Z, are poles and the function  (z; £) is decreasing

in each interval0, z1), (Z1,Z2). So, in this case, all the-values are real.

If £ = % thenz; is a pole andis = ¢; is a constant eigenvalue point. The

function~, 4 (z; €) is decreasing in each intervl, z1), (Z1, c1) andyi4(c1) =

— 25T < ~,. Thus, in this case, all the-values are real foy; <y < 7.

If 2 < ¢ < 1 (seeFig. 6£ = 2), theniy, &, are poles. The function
7+ (z;€) is a decreasing function whene (0, z;) and has one (negative) local
minimum pointz,,i, whenz € (Z1, #2) andyi4 (€min; &) < g(21;€) = —% <
— 51 < 4. So, in this case, the lemma is valid.

If ¢ = 2 (see Fig. 6¢ = 2) thenz; = ¢, is a constant eigenvalue point aigl
is a pole. The function, 4 (z; ) is decreasing when € (0, ¢1] andy4 (1, 2) =
—%T” < =1 and has one local minimum point,;, whenz € (c1, Z2). So, in this

case, the lemma is valid.

If ¢ < 3 theny| < & < £ and fory < 0 we have to prove that in
the interval(0, 37 /2) there are only reaj-values. In this interval, the function
v+ (x;€) has only one local minimum point,,;,, and it is monotone in the
intervals (0, yin) and (zin, 37/2) and v14(w/2;€) = v14+(37/2;€) = 0.
Forz € (7/2,37/2), we have only one extremum poifit;, ;) of the function
m+(x, &) (see Fig. 5(a)) andi(x1,&1) = 1. This point is saddle point. Thus,
we prove the lemma for negative Note that the function;  (z; ) is a positive
and monotone function far € (0, 7/2) and we consider this function far> 3%
and~y > 0.

If 2 < ¢ < 2, then; andZ, are poles. If¢ = 2, thenz, = ¢; is a
constant eigenvalue point. The functign. (z; £) increases for: € (37/2,7/¢€)
andz € (57/2,2n/€). If £ = %, thenyii(c1,4/7) = Lm > 7.

If g <E< %, thenz; andz, are poles. The functiof, 4 (z; £) increases for
x € (3w/2,7/§) and has one local maximum point,,, for z € (57/2,77/2)
andyi ¢ (Tmaz, §) > 2 > 2L > yo. If £ < g, thenf > % > 4, and we can
consider onlyr € (57/2,7/§).

If 2 < ¢ < 3, theni, is a pole. If¢ = 1, thenz, = ¢, is a constant
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eigenvalue point. The function, (x; ) increases for: € (37/2,7/¢) andx €
(5m/2,2m/€). If € = 2, thenyiy(c1,2/5) = 27 > 7.

If ¢ < 2, theny, < 5 < £ and fory > 0 we have to prove that, in the
interval (37/2, 57 /2) there are only real-values. In this interval the function
v+ (x;€) has only one local maximum point,,,, and it is monotone in the
intervals(37/2, min) and(zmin, 57/2) andy14(37/2;€) = 14+ (57/2;€) = 0.
Forxz € (37/2,5m/2), we have two functiony; (x, §) extremum pointgzs, £2)
and (z2,&,), but & > % We have a saddle point (see Fig. 5(a)) and
Y1+ (x2,&2) = ¥2. Thus, we have proved the lemma for positive

For~; < ~ < =, the horizontal liney intersects the graphs of the function
vi+. If v = 0, then we get the classical case with all positive and simple
eigenvalues. When; < v < 79, all eigenvalues remain real and simple. We
can enumerate them just like in the classical case.

When~y > % we have one negative eigenvalue. So, all eigenvalues will be

positive for all§ € (0,1) if v < 1. O

Remark 16. If £ = & andy = v or € = & andy = ~, then we have one
multiple eigenvalue.

Remark 17. In Fig. 7, we see how the function transforms near the constant
eigenvalue point for variou§; (§x-1 < &), k= 1,2,3,4,5,6. Inthe cas& = 4,
we have a constant eigenvalue.

24+ 24+ 249

2{ 3 22
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9201 \ 320 X

] 6 5
c
— 2o 7 \

g 20

@
I

[T T T T T T T T T TTTT]
— T

A2 23 24 25 26 27 28 29 30 225 25 275 30
q o

Fig. 7. Functionsy; + (z/7; £) near the constant eigenvalue point for various
€k1 k= 17213747576'

Letpy = %k k € N, i.e.,py, are poles or constant eigenvalue points. Then

o1(yi4, Pr) = (—1)*sign cos (%ﬂ'kﬁ) = (—1)¥sign cos py. (28)
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3.2 Real eigenvalues in Case 2

Proposition 5. The functionvy,_(z; &) is a monotone decreasing function for
z<0Oandall§ €[0,1).

Proof. For¢ = 0, the functiory;_ = cosh x is @ monotone decreasing function.
The functionvy,_(z) is even, whenr € R, andv;_(0) = 1 and~z_(+o00) =
+oo. Therefore, we have to show that, in the inter(@l+oo), this function is
increasing.

The functiony; (z) := x tanh z, x > 0 is a monotone increasing function as
a product of two such functions.

Let's consider the functiony(§; z) := £tanh({z) — tanhz, z > 0 and
¢ € (0,1). For this function,

li ;) = —tanhz <0, i ;) =0 29
Jim y(6:) =~ tanhz <0, lim y(&;2) 29)

for all x > 0. Its derivative with respect t9 is equal to

(€)= (gtanh(er)) = 2 ((€) tanb(en)) > 0.

Consequentlyy(§; x) is a monotone increasing function whéne (0, 1), and
from (29) we obtain thag(¢,z) < 0 forall £ € (0,1) and allz > 0.
The derivative of the function._ (z) is equal to

sinhz cosh({z) — {coshasinh({z) ~ coshz (
cosh?(éx) ~ cosh(&x)

¢ tanh(§z) —tanh z) > 0.
We see that, the functiom,— (x; £) is a monotone increasing function as> 0,
and a monotone decreasing function whesg 0. O

>From Proposition 5 we derive now the main result for a negative eifjgmva

Lemma 8. For v > 79 = 1, there exists one negative eigenvalue, andyfer ~,
there are no negative eigenvalues.

Proof. The functionvy,_(z) is a monotone decreasing function when< 0,
Y2—(—00) = +oo andvy2_(0) = 1. Therefore, the equation= ~»_(x) has one
negative root only fory > 9 = 1 and there are no negative roots foK ~y. [
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Another main result, in this case, is about real eigenvalues.

Lemma 9. For |y| < 1, all eigenvalues are real.
Proof. The proof follows from Lemma 4 (Case 2). O

If |7| > 1, then there exist eigenvalues that can be multiple and complex. We
can see some cases for varigus Fig. 8. In Fig. 9, we see how the function
transforms near the constant eigenvalue point.
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Letp, = %(k — %), k € N, i.e.,pi are poles or constant eigenvalue points,
then

o1 (2 ) = (~1)sign cos (Lr(k — 1)) = (~1)sign cospr. (30)

3.3 Real eigenvalues in Case 3

The real spectrum in Case 3 is more complicated (see, Fig. 10). In this case
~vo = 1. Wheny is real, multiple and complex eigenvalues can exist fofyah 0.

For example, i = 3, thenys(z) = Zsin(z/2) and|ys4 | < 2.

Proposition 6. The functionys (z; 1) is a monotone increasing function in each
interval (pr—1, px); the functionys_(z; 1) is @ monotone increasing function for

x < 0. The functioms_(z;¢) is a monotone decreasing function for< 0

only for ¢ € [0,+/3/3] and has one local minimum point,;,, € (—oc,0) for

€€ (V3/3,1).

Proof. The functionsys_(z;1) = 1/y1—(z;1), y34+(x;1) = 1/y14(2;1). Thus,
we get the proof fo€ = 1 from Proposition 4.

In Proposition 4 we show (see, (25)) th% is an increasing positive
function for allz > 0 and¢ € (0, 1). So, the function

y1(x;&1,62) = %7 >0, 0<& <&y,

is increasing and positive too. Sinkien, . y1(x; &1, &2) = &1/&2 > 0, we have
& sinh(&x) — & sinh(&r) >0, for >0, 0< & <&. (31)

Let us consider the positive function

tanh (&)

y2(z;€1,62) = tanh(¢,2)’ >0, 0<& <&.

Its derivative with respect to is

inh(2 — &1 sinh(2
valw:61,62) = e S;I;irfhgzgx) cgols:;l(f(zj)ﬂ) 0 fore=0. < <hy
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Fig. 10. Functionsys(x/7; &).

Hence, we get that

tanh(3x)

I

ys3(z;§) :

is an increasing positive function for glle (%, 1).
For the function

ya(x) := 2sinhz cosh z + sinhz — 3z cosh z,
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we havey,(0) = 0, ,(0) = 0 and forz > 0

Y4 (z) = 8sinh z cosh z — 5sinh x — 3z cosh x

= 3coshz(sinhz — z) + 5sinh z(coshz — 1) > 0.
As a result, the functiogy(z), = > 0 is positive . For the function
ys(z) := sinh z coshz — sinhz — 2% sinh  + 2 cosh z — ,
we haveys(0) = 0, y£(0) = 0 and forz > 0

y¥(x) = 4sinh x coshx — sinhz — 3z coshz — 22 sinh x
= 2sinh(coshz — 1 — %:):2) + 2sinh z coshz 4 sinhz — 3x coshx

= 2sinh(coshz — 1 — 22%) + ya(x) > 0.

Consequently, the functiog(z), 2 > 0 is positive, too.
Note that the function: cothx — 1 = (z cosh z — sinh )/ sinh z > 0. Then
the derivative of the positive function

zcothr —1 B x coshz — sinh x

= — ) > 07
yo () xtanh(%m) x(coshz — 1) .
is equal to
, sinhz(coshz — 1 — 22) + 2(coshz — 1) Ys ()
= = > 0.
Y () x2(coshx — 1)2 x2(coshx — 1)2

So, the function

zcothz —1

y(x;8) = o€ tanh(€z) yo(r) - y3(z;§)

is a positive increasing function for all> 0, ¢ € (%, 1)and

m y(z;§) = LI

=i &) = li
yo = lim y(z;€) i ¢

1 . .
3—52, Yoo =

If € € (3,v/3/3], thenyy > 1 andy(z;€) > 1forallz > 0;if € € (v/3/3,1),

thenyy < 1 and there exist$,in = xmin(§) > 0 such thaty(xnyin; &) = 1 and
y(z;€) < 1forall 0 < z < xmin, y(z;€) > 1forall x > zpy,.
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We reformulate these properties for the function
f(z;€) := x cothe — 1 — z€ tanh(éx),

e, if & € (1,v3/3], thenf(z;¢) > 0forallz > 0; if £ € (v3/3,1), then
there existStmin = Tmin(§) > 0 such thatf (zmin; §) = 0 and f(z; &) < 0 for all
0 < < Tmin, f(z;€) > 0forall z > 2.

Since
9 (z€tanh(§z)) = x tanh(§z) + x7§2 >0, forxz>0
/3 cosh?(&x) ’ ’

we obtain¢z tanh(£z) < Sz tanh(3z), and, foré € [0, 5], we estimate

1
2
f(z;€) > zeotha — 1 — Lz tanh(32) = Jxcoth(3z) — 1> 0.

Finally, we have
xcothz — 1 — x€ tanh(&x) sinh

22 cosh? ({x) - f(x’ f) x? COSh(fJI) '
The functionvs_(z;£), = € R is an even function. Therefore, monotonicity
properties of the functions_(z;¢), < 0, follow from the properties of the
function f (z; €): if £ € [0,v/3/3], thenys_(x; ¢) is a decreasing function far <
0;if £ € (v/3/3,1), then there exist8 iy = Tmin(€) < 0 such thats_(z;¢) isa
decreasing function for and < z,iy, andys_(z; €) is an increasing function for
Tmin < x < 0; if £ = 1, thenvys_(x; ) is an increasing function far < 0. O

73—(33;§> =

Lemma 10. If £ € [0,+/3/3], then there exists one negative eigenvalue only for
v > 0. If € € (v/3/3,1), then there exists,i, < 0 and~y, = Y3_ (Tmin; &) €
(0,70) such that there exists one double negative eigenvalug fory, and only
one simple eigenvalue far > vy, two negative eigenvalues exist foE (7., 7o),

and forvy < ~,, there are no negative eigenvalues K= 1, then there exists one
negative eigenvalue only for positive< -, but there are no negative eigenvalues
for v > 0.

Proof. The functiomys_ (z; &) is positive. From Proposition 6 and the conditions

400, foré <1,
_(—o0) = 0)=1,
13-(=00) {0, foré& =1, 3-(0)
we get the proof of this lemma. O
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Remark 18. In Fig. 11, we see how the functiop transforms near the constant
eigenvalue point for varioug,, k = 1,2, 3,4,5,6. In the case: = 4, we have a
constant eigenvalue.

0.7 7] 4 | “
4 X c i
1 ] I u
| 65 .65 EIBE_
J | i
] I ]
0.6 U.E*_ : 06—
J | ]
4 I 7
.55 LI L N B B B | aall El DJJ_|\||||\||||||||r
28 30 32 28 23 d 31 eX-] x| a0

Fig. 11. Functionsys, (z/7; &) near the constant eigenvalue point for various
gkv k= 1a273>47576'

Letp, = %(k — %), k € N, i.e., px be poles or constant eigenvalue points.
Then
(—1)*sign sinpg, foré >0,

0, for¢ = 0. (32)

o1(V14, Pr) = {

4 Conclusions

e Sturm-Liouville problems (1)—(3) (Cases 1-3) have similar spectrum prope

ties in the complex plane. Spectrums of these problems have no constant

eigenvalues for irrational and for some rationdl € = and have a countable
number of nonconstant and constant eigenvalues for ratioral R. All
constant eigenvalues are real positive numbers.

e In Cases 1 and 2, the problems have only one negative eigenvaliesfay.
In Case 3, there exists one negative eigenvalue only f_c)r\/§/3 andy > 1,
and for§ = 1 and0 < v < 1. In Case 3, we have two negative eigenvalues
foré € (v/3/3,1)and0 < v, < v <o = 1.

e Positive parts of the spectrums are different for the realase. For the
problems in Cases 1 and 2, all real eigenvalues exist only,fd¢) < v <
v (€), but the interval¥,,,, ¥ar] C [ym,var] is the same for af. In Case 3,
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for everyy # 0 and{ < 1, multiple and complex eigenvalues can exist and,
only for ¢ = 1, all eigenvalues are real.
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