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Abstract. The model analyzed in this paper is based on the unstructooeie!

set forth by Gyllenberg and Webb (1989) without delay, whilgscribes an
interaction between the proliferating and quiescent dehsor. In the present
paper we consider the model with one delay and a unique ypagtjuilibrium

E* and the other is trivial. Their dynamics are studied in teohshe local
stability of the two equilibrium points and of the descripti of the Hopf
bifurcation atE*, that is proven to exists as the delay (taken as a parameter)
crosses some critical value. We suggest to examine in lalygraxperiments
how to employ these results for containing tumor growth.

Keywords: tumor growth with quiescence, delayed differential edura]
stability, Hopf bifurcation, periodic solutions.

1 Introduction and mathematical model

In this paper, we are interested by a non linear unstructured model withoguniee
proposed by Gyllenberg and Webb (see [1]) which employs quies@naeme-
chanism to explain characteristic sigmoid growth curves. The authorsdeons
two situations: the unstructured quiescent model and the structured ore. |
series of papers (see [1-4]) the authors develop and analyze thé mode

The asymptotic behavior of the structured model has been treated also by
A. Grabosh in [5] by functional analytic methods and the semi group theory
In [6], the author proposes a generalization of the model and presantssm-
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plifications of A. Grabosh approach, using a perturbation argumeptihasthe
theory of semi group.

The mathematical model proposed in this paper describes the tumor growth
system interaction and is given by a system of two differential equationsowéh
delay :

PO _ yp(t— ) — rp(NB)P(1) + ro(N(1H)Q(1),
i
— =re(N@®)P() = (1 +ro(N(1) Q).

In biological terms,P(t) (resp. Q(t) ) is the number of proliferating (resp.
quiescent) cells at timé. N(¢t) = P(t) + Q(t) is the total number of cells
in the tumor (or the size of the tumor) at timeb = 8 — up > 0 is the
intrinsic rate of the proliferating cells (whegg > 0 is the division rate of the
proliferating cells ang.p > 0 is the death rate of cells of the proliferating cells),
png > 0 is the mortality rate of the quiescent cellsp (V) is the (nonlinear)
transition rate from the proliferating class to the quiescent class-g) is
the (nonlinear) transition rate from the quiescent class to the proliferatisg.c
For this tumor population, one suppose thatV) is nondecreasing ang) (V)
is nonincreasingrp (V) andrg (V) are Lipschitz continuous on bounded sets
of N in R (see Gyllenberg and Webb [1]) and the constarig the time delay
which the proliferating cells needs to divide. Time delays in connection with the
tumor growth also appear in Bodnar and Fofy] and [8], Byrne [9], For§ and
Kolev [10] and Forg and Maciniak-Czochra [11] and Galach [12] and Maokey
al. [13-20] and Agueet al.[21].

For 7 = 0 system (1) becomes a system of ordinary differential equations
given by:

62_1;’ — bP — rp(N)P +1o(N)Q, )
% = rp(N)P — (1g + 1o(N))Q.

In [1], the authors study the existence, uniqueness and nonnegafigty o
lutions and they show that, under an appropriate hypotheses and uséngiakhy
the Poincare-Bendixon theorem, the nontrivial steady gfatis globally asymp-
totically stable for the system (2).
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In the absence of the quiescent cells, the proliferating cells in (2) follogvs th
logistic equationP(t) = bP(t) and the tumor becomes a malignant tumor for
b > 0 and becomes benign fér < 0. In the absence of proliferating cells the
quiescent cells are automatically absent.

The reader interested in a more complete bibliography about the evolution
of a cell, and the pertinent role that have cellular phenomena to direct the bo
towards the recovery or towards the iliness, is addressed to [22, 2@8ktaled
description of virus, antivirus, body dynamics can be found in the follgwin
references [24-27].

Our goal in this paper is to consider the case when system (1) has theuniqu
trivial steady state and the other case when system (1) has trivial anglivial
steady states, therefore also the steady states of system (2). Takingldge d
7 > 0 as a parameter, our purpose is to relate the dynamics of the two systems
(without and with delay) in the neighborhood of the non trivial steady stdte
and determine the role of the delay term. To accomplish this, the local stability
of £* which is the most biologically meaningful one is established, both as an
equilibrium of (1) and system (2). For (1), we prove that the Hopf bition
occurs atF* as the delay crosses some critical vatgiand the periodic orbit may
appear, which is not the case for system (2), whgris globally asymptotically
stable forr = 0.

This paper is organized as follows. In Section 2, the local stability of theilples
steady states of the delayed system (1) is addressed, using the deteyamater.
Using the Hopf bifurcation theorem for delay differential equations, thdysof

the existence of limit cycle at the positive steady state is showed in Section 3. In
Section 4, we give a short discussions.

2 Steady states and stability for positive delays
Consider the system (1), and define the functibn®~ — R by

f(x) = pore(x) — b(pg + ro(x))

andg: RT — R by
9(z) =b—pg —rp(@) —ro(x).
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Let the hypotheses:
(A1) f(0)<
NAq) f(0) >
Az) f (+c>0)
Az)  g(x)<0 foral z>0,
(z)

NAj3) g(x)>0 forall x>0.

Proposition 1. (i) Under the hypothesi@N A+ ), (0,0) is the unique equilibrium
point of systen(l).

(i) Under the hypothesesA 1) and (Az), system(1) has a positive non
trivial equilibrium point E* = (P*, Q*) and the trivial equilibrium poin{0, 0);
whereP* is the unique solution of equatiof{(1 + %)x) =0andQ* = %P*.
Proof. From the system (1) and the monotonicity of the functiopsandrg, we
deduce the results. O

In the next, we study the stability of the possible steady states with respect to
the delay parameter.

The following theorem gives the stability result for the trivial steady state
(0,0), when its the unique equilibrium point of (1).

Theorem 1. Assume the hypothes@¥ A;) and(Ags). Then, the trivial equilib-
rium point(0, 0) of systen{1) is asymptotically stable for at > 0.

For the proof of Theorem 1, we need the following lemma.
Lemma 1. [28] Consider the equation

M 4tal+e+ (eA+d)e ™ =0, (3)
wherea, b, c andd are real numbers. Let the hypotheses:

(H1) a+c¢>0,

(Hg) e+d>0,

(Hs) ¢ —a*+2<0 and e¢*—d*>0
or (¢®—a*+2e)% < 4(e? — d?),
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(Hy) e2—d®><0 or *—a’>+2e>0
and (c? —a® +2¢)? = 4(e* — d?).

(i) If (H1)—(Hs) hold, then all roots of equatio(8) have negative real parts
forall = > 0.

(i) If (Hy), (H2) and (Hy4) hold, then there exists, > 0 such that, when
T € [0,79) all roots of equation(3) have negative real parts, when = 7y
equation(3) has a pair of purely imaginary rootsi(, , and when- > 7y equation
(3) has at least one root with positive real part, whegeand (. are given by

1 {d(C?F —e) —ac? }’

Tp = — arccos
22+ d?

+
1 1 1
gf_ — 5(02 —a? + 2e) £ 5[(02 —a? +26)2 —4(62 — d2)]2.

Proof. of Theorem 1.
The linearized system of (1) at the trivial steady state) is
dP(t)

— " =bP(t—7) —rp(0)P(t) +ro(0)Q(t),

(4)
%f) = rp(0)P(t) — (ug + rq(0))Q(t).

The associated characteristic equation of (4) has the following form:
Ao\ T) = X2 +ar+ e+ (A +d)e ™ =0, (5)

wherea = pug+rp(0)+79(0), c = —b, e = pgrp(0) andd = —b(ug+rg(0)).
From the hypothese®N A1) and(Ags), we deduce the hypothes@dd ) and
(Hz) of Lemma 1.

Lemma 2. Under the hypothesé®N A ;) and(Ags), then, the hypothes{#3) of
Lemmal is satisfied.

From Lemma 2 and Lemma 1 (i), we conclude that all roots of equation (5)
have negative real parts for al> 0. Then the trivial equilibrium point0, 0) is
asymptotically stable for alt > 0 (see [29]). O
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Proof. of Lemma 2.
From the expressions af b, andc, we have:

P —a?+2e =0 — (g +rg(0))” = 2rp(0)rg(0) — r(0).
From the hypothesi@N A1), we have:

0
b < pQre(0)

as pug < pg +ro(0),
pq +1q(0) @< nq trql0)
we deduce that < rp(0). Then

& —a’+2e < —(pg + rQ(O))2 —2rp(0)rg(0) < 0.

From the expressions efandd, we have

e? — d* = (ugrp(0))” — b (ng +rq(0))?

and from the hypothesi®N A ), we deduce that? — d? > 0, and the hypothesis
(Hs) of Lemma 1 is satisfied. O

The following theorem gives a result of instability of the trivial steady state
when the non trivial steady stafg* exists.

Theorem 2. Assume the hypotheseA;) and (NAg). Then, the trivial steady
state of systerfl) is unstable for alk- > 0.

Proof. Under the hypothesicA 1) and(NAg3), the hypothesiéH; ) and(H) of
Lemma 1 are not satisfied . From the characteristic equation (5), the ttivéalys
state is unstable far = 0.

Then its unstable for alt > 0 (see [29]). O

In the next, we study the change of stability of the non trivial steady #tate
By the translationz(t) = (u(t),v(t)) = (P(t),Q(t)) — E* € R?, (1) is
written as an FDE i := C([—7,0],R?) as

%@:Lm%+h@ﬁx (©)
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whereL(7): C — R?, fo: C x RT — R? are given by

b1 (=) + (—p(N*) = rp(N*)P* + rp(N)Q" )1 (0)
Hrg(N*) = rp(N*)P* + 1 (N*)Q*)2(0)
L()(g) = , | ,
(rp(N*) + (V") P* = g (N*)Q")1(0)
~ (g + 1Q(N*) = i (N*)P* + 1 (N*)Q")2(0)

bP* —rp(p1(0) + ©2(0) + N*)(1(0) 4+ P*)

+1Q(p1(0) + ¢2(0) + N*)(p2(0) + Q%)

—(=rp(N7) — TP(N*)P* + TQ(N*)Q*)cm(O)

—(rQ(N*) = rp(N*)P* + 75 (N*)Q*)p2(0)
fO((pv T) = )
rp($1(0) + #2(0) + N*)(1(0) + P)
—(1q +70(1(0) + ¥2(0) + N*))(2(0) + Q%)
—(rp(N*) +7p(N*)P* — TQ(N*)Q*)sol( )
+(pg +rQ(N*) = rp(N*)P* + 1o (N*)Q*)p2(0)
whereN* = P* + Q* andp = (¢1, ¢2) € C.

The characteristic equation of the linear equation

2(t) = L(1)z @)
is given by
A\ T) = 22 +pA+7r+ (sA+ q)ef)‘T =0, (8)

wherep, s, r, andq have the following expressions:

p:MQ+TP(N*)+TQ(N*)7 8:*(),

r = g (rp(N*) + rp(N*)P* —r, (N*)Q*)

q = =b(uq +rQ(N*) = rp(N*)P* +ro(N*)Q").
Let the hypothesis:

(Ag) 0 < B2 < G(w,y) for all z,y > 0, where the functiorG: RT? —
[0, 1] is defined by:

rp(z +y)z — r’Q(x +y)y

G(Cﬂ,y) = 2TP( +y)+TP(CC+y)x_T (9:+y)
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The following theorem gives the result of change of stability of the nomatriv
steady state.

Theorem 3. Assume the hypothesgs;)—(A4) and the functionsp (increasing
function) andrg (decreasing function) are of clagd'. Then, there exists a
critical value ry of the time delay, such that the non trivial steady stateis
asymptotically stable for € [0, 79[ and unstable for > 7y, where

1 (¢t —r) —ps(3
- 9
™ = - arecos { 15 T 3 ©)
and
1 1 1
2 = 5(52 —p?+2r) + 3 [(s* —p* +2r)? —4(r* — ¢%)] : (10)

Proof. The hypothese$A;) and (Az) imply the existence of the non trivial
steady stater*.
From the expressions of s, » andq we have that:

p+s=—-b+pg+rp(N*)+ro(N*)
and
g+7= (1o +b)(rp(N*)P* = ro(N*)Q")

(becauseV* = P* 4+ Q* is the solution of the equatiofyz) = 0).

From the hypothesi§A3) and the monotonicity property afp andrq,
we deduce the inequalities of the hypothe8ds) and (Hz) of Lemma 1 (with
p=a,r=e, s =candg = d).

By Rouche’s theorem, it follows that the roots of equation (8) have negati
real parts for the delay small than some critical value of the delay.

We want to determine if the real part of some root increase to reach zdro a
eventually becomes positive avaries. IfiC is a root of equation (8), then

—C+ipC —i—isC( cos(1¢) +1 sin(TC)) +r4 q( cos(1¢) +1 sin(TC)) =0. (11)
Separating the real and imaginary parts, we have

{_CQ + 7 = —qcos(7¢) + s¢sin(7¢), (12)

p¢ = —sC cos(7¢) — gsin(7().
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It follows that( satisfies
¢t (2= p?+ 27+ (1P~ ¢%) = 0. (13)

The two roots of the above equation can be expressed as follows

N

¢ = %(82 —pPt2r) £ %Ks"’ —p*+2r)? —4(r* = ¢*)] 2. (14)

We are now in a position to calculaté — ¢2.
From the expressions efandg, we have:

r? — ¢ = (nq +b) (rp(N*)P* — rg(N*)Q")
% (2ugrp(N°) + (1o = B)(rp(N*)P* —rg(N)Q").

From the monotonicity property of the functions andrg, we have:
(1o +b) (rp(N")P* = r(N)Q") > 0.

From the hypothesigA4), we have:
2pqrp(N*) + (11 — b) (rp(N*) P* = r(N*)Q") < 0

and the hypothesid,) of Lemma 1 is satisfied.
From Lemma 1, the unique solution of equation (8) has the following form

[ SIS

1 1
(G =5(s" =p"+20) + S5 = p* +2r)" = 40" = 7))

and there exists a unique critical value of the time delay

dﬁ—ﬂ—mﬁ}

-1
T0 = <+ arccos { 32(-2|- Ny

such that, the steady state= 0 of system (6) (i.e.£* of system (1)) is asymp-
totically stable forr € [0, 79[ and unstable for > 75, and we deduce (ii) of

Theorem 5. O
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3 Hopf bifurcation occurrence

In this section, we will study the occurrence of Hopf bifurcation by usirmgtitme
delay as a parameter of bifurcation.

In what follows, we recall the formulation of the Hopf bifurcation Theorem
for retarded differential equations.

Theorem 4. [29] Let the equation

dx(t)
dt

= F(a,xy) (15)

with F: R x C' — R", F of classC¥, k > 2 and F(a,0) = 0 Ya € R and
C = C([-r,0],R™) the space of continuous functions frgmr, 0] to R"”. As
usual,z; is the function defined froffa-r, 0] into R™ by z,(6) = z(t +6),r > 0
andn € N*.

We will make the following assumptions:

(Mo) F of classC¥, k > 2 and F(a, 0) = 0 Va € R, and the maga, ¢) —
D@F(a, v) sends bounded sets into bounded sets.

(M;) The characteristic equation

det A(a,\) = Md — DyF(a,0) exp (A(.)Id) (16)

of the linearized equation (fL5) around the equilibriumy = 0:

du(t)
dt

= D,F(a,0)v; (a7)

has ina = «g a simple imaginary roo; = A(ap) = i, all others roots\ satisfy
A £ mA form € Z.

((M7) implies notably that the rooX lies on a branch of roota = A(«) of
equation(16), of classC*~1).

(M2) A(«) being the branch of roots passing througf we have

I ReA@)aa # 0 (18)

Under the assumptionS\y), (M) and (M;), there exist constants) > 0 and
dp and functionsx(e), T'(¢) and aT'(¢)-periodic functionz*(¢), such that:
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(i) All of these functions are of clag¥~!'with respect tos, for ¢ € [0, <],
a(0) = ap, T(0) = 27, *(0) = 0;

(i) z*(e) is a T'(¢)-periodic solution of(15), for the parameter value equal

a(e);

(i) For| a—ap |< dpand| T — 27 |< dp, anyT-periodic solutionp, with
| p < do, of (15) for the parameter value, there existg € [0,eg[ such
thata = a(e), T'=T'(¢) andp is, up to a phase shift, equal 1 (¢).

The next theorem gives a result on the existence of limit cycle of systgm (1
at the non trivial steady stafg*.

Theorem 5. Assume the hypothesgs)—(A4) and the functionsp andrg are
of classC!.

Then, there existsy, > 0 such that, for eacld < ¢ < ¢, equation(1) has
a family of periodic solutiong;(¢) with period7; = T;(¢), for the parameter
valuesr = 7(¢) such thatp;(0) = E*, T;(0) = 2* and7(0) = 7, wherer, and

G+
¢y are given respectively in equatio(®) and (10).

Proof. We apply the Hopf bifurcation Theorem 4. From the expressioftdh
(6), we have,

fo(0,7)=0 and

W:o forall = > 0.

¥
From (8), (9), (10) and Theorem 5, we have:
Aq(i¢,7) =0 <= (=(yandr =m.
Thus, the characteristic equation (8) has a pair of simple imaginary Xgetsi(
and)\y = —i(, atT = 7.

Lastly, we need to verify the transversality condition.
From (8),

Al()\o,T()) =0 and %Al()\o,ﬁ)) 7& 0.
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According to the implicit function theorem, there exists a complex funciiea
A(7) defined in a neighborhood ef, such that\(y) = Ao andA;(A(7),7) =0
and

N(r) = —%, for 7 in a neighborhood of;. (19)
Let \(7) = pu(7) + iv(7). From (19) we have:

' (pA+ (R —7)B
w (T)|T:TO = C+ A2 + B2 ;

where

A= —7'0C_2|r +p+ 17 + scos(1o(4+)
and

B = (1 (2+ mop) — ssin(m0ly).
From equation (8), we have:

a(¢3 —r) —psCE
$2C% + ¢

cos(T0(4) =
sin(7o(4) = —2 cos(ToC+) — gQ-

Then

’

W () ey

j (20)
= AQ%-FB? (35%CL + (2¢° — 4rs® + 2spq) (3 — 2rq® — 2spqr + s*r?) .

From the characteristic equation (8), is a solution of the following equation
(2= 2+ - g =0 (21)
From equations (20) and (21), we conclude that

,UJ/ (T)|T:To # 0.
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4 Discussions

In [1], the following conditions of global stability of the non trivial steadyteta
E* for 7 = 0 were proposed

b—pug—rp(N)—rg(N) <0, VN >0,

pqre(0) < b(ug +1(0)),
b(l + m) < rp(400).
HQ
Therefore, for any non trivial solution (P(t),Q(t)) with nonnegative ihitiandi-
tions of system (2) goes tB* whent — +o0, which means that the tumor is
always a benign tumor, but in the reality this is not the case it may be a malignant
tumor or take an oscillatory form (see [30-32]).

In this paper we introduce a parameter families time delay ODE systems (1)
in order to achieve a better compatibility with reality. We give an analytical study
of stability (with respect to the time delay of the possible steady statéand £*
for the positive values of the parameter detegnd we study each case separately.

In the end, we prove that, system (1) has a family of periodic solutions
bifurcating from the non-trivial steady state, using the time delay as a pteaaie
bifurcation. We prove that the stationary pofit is stable focus, when < 7.
Whent > 7, it turns into unstable focus. Physiologically it means, that the
system (1) has a stable positive positioh, whenr < 7. In this case the growth
of the tumor is stopped by the medical cure (chemotherapy or irradiatiotgr Af
extension of influence of the medical cure (the parametahe stable positive
equilibrium is lost and the tumor starts oscillate. Because of those oscillations the
tumor can disappear or the patient can dye.

The results proposed in this paper should hopefully improve the understan
ding of the qualitative properties of the description delivered by model $b)
far we have now a description of stability properties and Hopf bifurcatiih av
detailed analysis of the influence of delays terms.

For the studies of direction of Hopf bifurcation and stability of the periodic
orbits and the same analysis for structural population dynamics [1] arairmsr
in the next paper.
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