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Abstract. In this paper, we introduce a new set Fb
s of nonlinear functions. We obtain unique

common fixed point theorems for (β, F )-weak contractions under the effect of functions from Fb
s .

Moreover, we deduce new common fixed point results in ordered and graphic b-metric spaces. Our
work generalizes several recent results existing in the literature. We set up an example to elucidate
main result. We apply the main theorem to show the existence of common solution of the system
of elliptic boundary value problems.

Keywords: common fixed point, (β, F )-weak contraction, β-complete b-metric space.

1 Introduction

The well-known Banach’s contraction principle has many fruitful generalizations in vari-
ous directions. One of these generalizations is for F -contraction presented by Wardowski
[29]: every F -contraction defined on a complete metric space has a unique fixed point. So
the concept of an F -contraction proved to be a milestone in fixed point theory. Numerous
research papers on F -contractions have been published (see, for instant, [2, 10, 24]).
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In 2012, Samet et al. [26] introduced the idea of (α,ψ)-contractive and α-admissible
mappings and evinced some significant fixed point results for such kind of mappings
defined on complete metric spaces. Subsequently, Salimi et al. [25], Ćirić et al. [6] and
Hussain et al. [13, 14] improved the concept of α-admissible mapping and proved some
important (common) fixed point theorems.

In recent times, b-metric spaces were studied by many authors, especially fixed point
theory on b-metric spaces [5, 11, 16, 23], [19, Chap. 12], [20]. Some authors have also
studied topological properties of b-metric spaces. In [28], An et al. showed that every
b-metric space with the topology induced by its convergence is a semi-metrizable space
and thus many properties of b-metric spaces used in the literature are obvious. Then the
authors proved the Stone-type theorem on b-metric spaces and get a sufficient condition
for a b-metric space to be metrizable. Notice that a b-metric space is always understood
to be a topological space with respect to the topology induced by its convergence, and
a b-metric need not be continuous [28, Exs. 3.9 and 3.10].

Our objective, in this article, is to study fixed point theorems for (β, F )-weak con-
tractions and their consequences. In order to achieve this, we consider Wardowski’s pa-
per [29]. In the said article, Wardowski imposed three conditions on function F along
with contractive condition involving a self-mapping. In our work, we reduce the condi-
tions imposed on F by omitting (WF 2) and establish common fixed point theorems in
β-complete b-metric spaces. We give examples, which establish the significance of our
work. We apply our main result to show the existence of solution of the system of elliptic
boundary value problems.

2 The b-metric space and auxiliary lemmas

Throughout this paper, we denote the intervals (0,∞), [0,∞), (−∞,+∞), by R+, R+
0

and R, respectively.
Following concepts and results will be required for the proof of main result.
Czerwik [9] generalized metric function as follows.

Definition 1. (See [9].) Let = be a nonempty set and s > 1 be a real number. The
mapping d∗ : =× = → R+

0 is said to be a b-metric if for all ς, υ, ξ ∈ =, we have:

(d∗1) ς = υ if and only if d∗(ς, υ) = 0.

(d∗2) d∗(ς, υ) = d∗(υ, ς).
(d∗3) d∗(ς, ξ) 6 s[d∗(ς, υ) + d∗(υ, ξ)].

The triplet (=, d∗, s) is called a b-metric space (with coefficient s > 1).

Definition 1 allows us to remark that a b-metric space is more general than a metric
space. One can see that for s = 1, d∗ defines a metric and b-metric is discontinuous
function, and it has different topological structure as compared to metric (see, for exam-
ple, [21]).

Following lemma (Lemma 1), proved by Aghajani et al. [1], will be helpful in our
work to establish the fixed point theorems for (β, F )-weak contractions.
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Lemma 1. Let (=, d∗, s) be a b-metric space. If r∗, t∗ ∈ = and {rn}n∈N is a convergent
sequence in = with limn→∞ rn = r∗, then

1

s
d∗(r∗, t∗) 6 lim

n→∞
inf d∗(rn, t

∗) 6 lim
n→∞

sup d∗(rn, t
∗) 6 sd∗(r∗, t∗).

For the notions like convergence, completeness, Cauchy sequence in the setting of
b-metric spaces, the reader is referred to [1, 4, 9, 12, 15, 18].

Our investigations are based on following class of functions denoted by Fs and de-
fined as follows.

Definition 2. A function F : R+ → R belongs to Fs if it satisfies following axioms:

(WF 1) F is strictly increasing;
(WF 3) There exists κ ∈ (0, 1) such that limr→0+(r)

κF (r) = 0.

Note that we have dropped the Wardowski’s (WF 2) condition in Definition 2.

(WF 2) For each sequence {rn} of positive real numbers,

lim
n→∞

rn = 0 if and only if lim
n→∞

F (rn) = −∞.

Example 1. Let F : R+ → R be defined by

(a) F (r) = ln r; (d) F (r) = −r−1/2;
(b) F (r) = r + ln r; (e) F (r) = ra, a > 0;

(c) F (r) = ln
(
r2 + r

)
; (f) F (r) = ln(r + 1).

It is easy to check that the functions given in (a), (b), (c) and (d) satisfy (WF 1), (WF 2)
and (WF 3). The functions given in (e) and (f) belong to the family Fs, which do not
satisfyWF 2.

The reason to omit (WF 2), is following lemma.

Lemma 2. If the function F satisfies (WF 1) and {rn}n∈N ⊂ R+ is a decreasing se-
quence such that limn→∞ F (rn) = −∞, then limn→∞ rn = 0.

Proof. We note that {rn}n∈N is bounded below and decreasing sequence, so it is con-
vergent. Let limn→∞ rn = ζ > 0. Suppose on contrary ζ > 0. Since, rn > ζ,
therefore, F (rn) > F (ζ). Thus, F (ζ) 6 limn→∞ F (rn) = −∞, a contradiction. Hence,
limn→∞ rn = 0.

In [7], authors introduce following compatibility condition to work in b-metric spaces.

(CF 4) For each n ∈ N, there exists τ > 0 such that

τ + F (srn) 6 F (rn−1) =⇒ τ + F
(
snrn

)
6 F

(
sn−1rn−1

)
.

We denote class of functions satisfying (WF 1), (WF 3) and (CF 4) by Fbs .
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Remark 1. The class Fbs is nonempty.

Indeed, if we define F : R+ → R by F (r) = ln(r + 1) for all r ∈ R+, then (WF 1)
and (WF 3) are obvious. We establish (CF 4): let τ + F (srn) 6 F (rn−1), then, for
τ = ln(sn−1), we have

ln(sn−1) + ln(srn + 1) 6 ln(rn−1 + 1)

=⇒ ln
(
snrn + sn−1

)
6 ln(rn−1 + 1) =⇒ snrn 6 rn−1 + 1− sn−1.

Now consider

τ + F
(
snrn

)
= ln

(
sn−1

)
+ ln

(
snrn + 1

)
6 ln

(
sn−1

)
+ ln

(
rn−1 − sn−1 + 1

)
= ln

(
sn−1rn−1 − s2n−2 + sn−1

)
6 ln

(
sn−1rn−1 + sn−1

(
1− sn−1

))
6 ln

(
sn−1rn−1

)
= F

(
sn−1rn−1

)
.

Hence, F ∈ Fbs .

Definition 3. Let (=, d∗, s) be a b-metric space. We say the mapping T : = → = is an
Fd∗ -contraction if there exist F ∈ Fbs and τ > 0 such that

d∗
(
T (γ), T (η)

)
> 0

=⇒ τ + F
(
sd∗
(
T (γ), T (η)

))
6 F

(
d∗(γ, η)

)
∀γ, η ∈ =.

Remark 2. It can be seen from following example that there exists at least one self-
mapping which satisfies Fd∗ -contraction whereas it does not satisfy Banach contraction
in b-metric spaces.

Example 2. Let = = {γn = 2n/2n, n ∈ N}. Define d∗ : = × = → R+
0 by d∗(γ, η) =

|γ − η|2, then (=, d∗, s = 2) is a b-metric space. Define the mapping f : = → = by

f(γ) =

{
2(n−1)/2(n− 1) if γ = γn;

γ0 if γ = γ0.

It is easy to show that there exists τ > 0 such that f is an Fd∗ -contraction for F :R+→R,
F (r) = r, while f is not a Banach contraction in the b-metric sense. Following arguments
justify our remark:

lim
n→∞

2d∗(f(γn), f(γ0))

d∗(γn, γ0)
= lim
n→∞

2(γn−1 − γ0)2

(γn − γ0)2
= lim
n→∞

(2n/2(n− 1))2

(2n/2n)2
= 1.

This shows that Banach contraction principle cannot be applied for self-mapping f . Next
arguments will show that f is an Fd∗ -contraction. Indeed, by definition of function F , for
every γ, η ∈ = such that f(γ) 6= f(η), we have

2d∗
(
f(γ), f(η)

)
− d∗(γ, η) 6 −τ.

Nonlinear Anal. Model. Control, 24(6):898–918
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For γ = γn+k and η = γn, consider

2d∗
(
f(γn+k), f(γn)

)
− d∗(γn+k, γn)

=
(
2(n+k)/2(n+ k − 1)− 2n/2(n− 1)

)2 − (2(n+k)/2(n+ k)− 2n/2(n)
)2

= 2n
(
1− 2k/2

)(
2k/2(2n+ 2k − 1)− (2n− 1)

)
6 −1.

Also we see that F ∈ Fbs . Indeed, for F (r) = r, (WF 1) and (WF 3) can be easily worked
out. For property (CF 4), we have following arguments: let τ + F (srn) 6 F (rn−1), that
is, τ + srn 6 rn−1. Consider

τ + F
(
snrn

)
= τ + snrn = τ + sn−1(srn) 6 τ + sn−1(rn−1 − τ)
= τ + sn−1rn−1 − τsn−1 = τ

(
1− sn−1

)
+ sn−1rn−1

6 sn−1rn−1 = F
(
sn−1rn−1

)
.

This shows that for τ = 1, f is an Fd∗ -contraction.

Definition 4. Let {rn} be a sequence in R+
0 , and let {an} be a sequence in R+. We say

that {rn} ∈ O(an) if there exists C > 0 such that rn 6 Can for all n ∈ N.

We use following Lemma (appeared in [27]) as formula to prove a sequence to be
a Cauchy sequence.

Lemma 3. Let (=, d∗, s) be a b-metric space. Let {rn} be a sequence in =. Assume that{
d∗(rn, rn+1)

}
∈ ∪

{
O
(
n−t
)
: t > 1 + log2 s

}
.

Then {rn} is Cauchy.

For proof, see [27]. We apply Lemma 3, in our case, as follows:

Lemma 4. Let {bn} be a decreasing sequence in R+. Assume that there exist a mapping
F : R+ → R, τ ∈ R+ and κ ∈ (0, 1) satisfying (WF 3) and the following:

nτ + F
(
snbn

)
6 F (b0). (1)

Then {bn} ∈ O(n1/k).

Proof. We note that the condition (1) implies limn→∞ F (snbn) = −∞ and hence,
Lemma 2 allows us to have limn→∞ snbn = 0. By (WF 3), we infer that

lim
n→∞

(
snbn

)κ
F
(
snbn

)
= 0.

Again, by condition (1) we have(
snbn

)κ
F
(
snbn

)
−
(
snbn

)κ
F (b0) 6 −

(
snbn

)κ
nτ 6 0. (2)

http://www.journals.vu.lt/nonlinear-analysis
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On taking limit n→∞ in (2), we have

lim
n→∞

n
(
snbn

)κ
= 0.

Then there exists n1 ∈ N such that n(snbn)κ 6 1 for n > n1. It then follows that for
n > n1,

snbn 6
1

n1/κ
=⇒ bn 6

1

sn
n−1/κ 6

1

s
n−1/κ =⇒ bn 6 Cn−1/κ,

where C = s−1. Hence {bn} ∈ O(n−1/κ).

3 Fixed point theorems

Recently, Mínak et al. [22] and Cosentino et al. [8] have employed Ćirić-type and Hardy–
Rogers-type contractive conditions, respectively, on T in their definition of an F -contrac-
tion and found a unique fixed point of T in the context of a metric space. We introduce
the notion of (β, F )-weak contraction by imposing a Ćirić-type contractive condition in
terms of two mappings defined on a b-metric space and find their unique common fixed
point.

In [3], authors introduced following terms.

Definition 5. (See [3].) Let (=, d∗, s) be a b-metric space and f : = → = and αs :
=×= → R+

0 be two functions. The mapping f is said to be an αs-admissible mapping if

αs(γ, η) > s2 =⇒ αs
(
f(γ), f(η)

)
> s2 ∀γ, η ∈ =.

Definition 6. (See [3].) Let (=, d∗, s) be a b-metric space and f : = → = and αs :
= × = → R+

0 be two functions. The mapping f is said to be a triangular αs-admissible
mapping if

(i) αs(γ, η) > s2 implies αs(f(γ), f(η)) > s2, γ, η ∈ =;
(ii) αs(γ, χ) > s2, αs(χ, η) > s2 imply αs(γ, η) > s2 for all γ, η, χ ∈ =.

Remark 3. We observe that for the given function αs, there exists a function β : =×= →
R+

0 defined by β(γ, η) = αs(γ, η)/s
2 having following properties:

(i) For function f defined above, f is αs-admissible if and only if f is β-admissible,
that is,

β(γ, η) > 1 =⇒ β
(
f(γ), f(η)

)
> 1 ∀γ, η ∈ =;

(ii) The b-metric space (=, d∗, s) is αs-complete if and only if it is β-complete.

Considering Remark 3, we proceed as follows:

Definition 7. Let (=, d∗, s) be a b-metric space and f, g : = → = and β : = × = → R+
0

be three mappings. The pair (f, g) is said to be weakly β-admissible pair of mappings if

β(γ, η) > 1 =⇒ β
(
f(γ), gf(γ)

)
> 1, β

(
g(η), fg(η)

)
> 1 ∀γ, η ∈ =.

Nonlinear Anal. Model. Control, 24(6):898–918
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Definition 8. Let (=, d∗, s) be a b-metric space and f, g : = → = and β : =×= → R+
0 be

three mappings. The pair of mappings (f, g) is said to be a triangular weakly β-admissible
pair of mappings if

(i) β(γ, η) > 1 implies β(f(γ), gf(γ)) > 1 and β(g(η), fg(η)) > 1 for all γ, η ∈=;
(ii) β(γ, χ) > 1, β(χ, η) > 1 imply β(γ, η) > 1 for all γ, η, χ ∈ =.

Example 3. Let = = [0,∞) and

f(r) =

{
r if r ∈ [0, 1);

1 if r ∈ [1,∞),
g(r) =

{
r1/3 if r ∈ [0, 1);

1 if r ∈ [1,∞).

Define β : =× = → R+
0 by

β(γ, η) =

{
1 + η − γ if γ, η ∈ [0, 1);

0 if γ, η ∈ [1,∞).

Then the pair (f, g) is triangular weakly β-admissible pair of mappings. Indeed, if
β(γ, η) > 1 and β(η, χ) > 1, then γ − η 6 0 and η − χ 6 0, which implies that
γ − χ 6 0. Hence, for all γ, η ∈ [0, 1), β(γ, χ) = 1 + χ− γ > 1,

β
(
f(γ), gf(γ)

)
= β

(
γ, γ1/3

)
> 1, β

(
g(η), fg(η)

)
= β

(
η1/3, η1/3

)
> 1.

Definition 9. Let (=, d∗, s) be a b-metric space, and let β : =×= → R+
0 and f : = → =

be two mappings. We say the mapping f is an β-continuous mapping if for given r ∈ =
and sequence {rn},

lim
n→∞

d∗(rn, r) = 0 and β(rn, rn+1) > 1

=⇒ lim
n→∞

d∗
(
f(rn), f(r)

)
= 0 ∀n ∈ N.

Example 4. Let = = [0,∞) and d∗ : =×= → [0,∞) be defined by d∗(γ, η) = |γ − η|2
for all γ, η ∈ =. Define

f(r) =

{
sin(πr) if r ∈ [0, 1];

cos(πr) + 2 if r ∈ (1,∞),
β(γ, η) =

{
γ3 + η3 + 1 if γ, η ∈ [0, 1];

0 otherwise.

Obviously, f is not continuous on =, however, f is a β-continuous.

Definition 10. Let (=, d∗, s) be a b-metric space and β as defined in Definition 5. The
b-metric space = is said to be β-complete if and only if every Cauchy sequence {rn} in =
such that β(rn, rn+1) > 1 converges in = for all n ∈ N.

If (=, d∗) is a complete b-metric space, then (=, d) is also a β-complete b-metric
space, but the converse is not true. Following example explains this fact.

http://www.journals.vu.lt/nonlinear-analysis
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Example 5. Let = = (0,∞) and the b-metric d∗ : =×= → [0,∞) defined by d∗(γ, η) =
|γ − η|2 for all γ, η ∈ =. Define β : =× = → [0,∞):

β(γ, η) =

{
ed

∗(γ,η) if γ, η ∈ [1, 3];

0 otherwise.

It is easy to see that (=, d∗, s) is not a complete b-metric space, but (=, d∗, s) is
a β-complete b-metric space. Indeed, if {rn} is a Cauchy sequence in = such that
β(rn, rn+1) > 1 for all n ∈ N, then rn ∈ [1, 3]. Since [1, 3] is a closed subset of R,
we see that ([1, 3], d∗, 2) is a complete b-metric space, and then there exists r ∈ [1, 3]
such that rn → r as n→∞.

Definition 11. Let (=, d∗, s) be a b-metric space and let β : =×= → R+
0 be a mapping.

The space (=, d∗, s) is said to be β -regular if for any sequence {rn} ⊂ = such that
β(rn, rn+1) > 1 and rn → r as n→∞, we have β(rn, r) > 1 for all n ∈ N.

Definition 12. Let (=, d∗, s) be a b-metric space. The self-mappings f, g : = → = are
called (β, F )-weak contractions if there exist F ∈ Fbs and τ > 0 such that

τ + F
(
sβ(γ, η) d∗

(
f(γ), g(η)

))
6 F

(
M1(γ, η)

)
∀γ, η ∈ = (3)

with β(γ, η) > 1 whenever

min
{
β(γ, η) d∗

(
f(γ), g(η)

)
,M1(γ, η)

}
> 0,

where

M1(γ, η) = max

{
d∗(γ, η), d∗

(
γ, f(γ)

)
, d∗
(
η, g(η)

)
,

d∗(γ, g(η)) + d∗(η, f(γ))

2s

}
.

Following existence theorem is our main result.

Theorem 1. Let f, g : = → = be (β, F )-weak contractions defined on an β-complete
b-metric space (=, d∗, s). Assume that κ ∈ (0, 1/(1 + log2 s)) and

(i) (f, g) is a weakly β-admissible pair of mappings;
(ii) There exists r0 ∈ = such that β(r0, f(r0)) > 1;

(iii) (a) Either one of f and g is a β-continuous mapping or
(b) = is β-regular space and the mapping F is continuous.

Then we can construct a sequence {rn} in = such that rn → υ ∈ =. If β(υ, υ) > 1, then
υ is a common fixed point of the pair (f, g). In addition, if ω is also a common fixed point
of the pair (f, g) such that β(υ, ω) > 1, then υ = ω.

Proof. Firstly, we prove that the self-mappings f, g have at most one common fixed point.
Suppose that υ and ω are two different common fixed points of f and g. Then f(υ) =

Nonlinear Anal. Model. Control, 24(6):898–918
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υ 6= ω = g(ω). It follows that d∗(f(υ), g(ω)) = d∗(υ, ω) > 0. Since β(υ, ω) > 1, so
the contractive condition (3) implies

τ + F
(
sβ(υ, ω) d∗

(
f(υ), g(ω)

))
6 F

(
max

{
d∗(υ, ω), d∗

(
υ, f(υ)

)
, d∗
(
ω, g(ω)

)
,
d∗(υ, g(ω)) + d∗(ω, f(υ))

2s

})
6 F

(
max

{
d∗(υ, ω), d∗(υ, υ), d∗(ω, ω),

d∗(υ, ω) + d∗(ω, υ)

2s

})
= F

(
d∗(υ, ω)

)
6 F

(
sβ(υ, ω)d∗(υ, ω)

)
.

It shows that τ 6 0, a contradiction. Hence, the pair (f, g) has at most one common fixed
point.

(i) We note that for r1 6= r2,M1(r1, r2) > 0. Let r0 ∈ = be as in (ii). We construct
an iterative sequence {rn} of points in= such that r1 = f(r0), r2 = g(r1) and, generally,
r2n+1 = f(r2n), r2n = g(r2n−1) for all n ∈ N. By assumption (i) we have

β
(
f(r0), gf(r0)

)
= β(r1, r2) > 1 and β

(
g(r1), fg(r1)

)
= β(r2, r3) > 1,

β
(
f(r2), gf(r2)

)
= β(r3, r4) > 1 and β

(
g(r3), fg(r3)

)
= β(r4, r5) > 1.

Continuing on a same pattern, we have

β
(
f(r2n), gf(r2n)

)
= β(r2n+1, r2n+2) > 1

and
β
(
g(r2n−1), fg(r2n−1)

)
= β(r2n, r2n+1) > 1.

Hence, β(rn, rn+1) > 1 for all n ∈ W. If d∗(f(r2n), g(r2n+1)) = 0, then r2n is a com-
mon fixed point of mappings f , g. Let d∗(f(r2n), g(r2n+1)) > 0, then by contractive
condition (3) we get

F
(
sd∗(r2n+1, r2n+2)

)
6 F

(
sβ(r2n, r2n+1) d

∗(f(r2n), g(r2n+1)
))

6 F
(
M1(r2n, r2n+1)

)
− τ ∀n ∈W,

where

M1(r2n, r2n+1) = max

{
d∗(r2n, r2n+1), d

∗(r2n, f(r2n)), d∗(r2n+1, g(r2n+1)
)
,

d∗(r2n, g(r2n+1)) + d∗(r2n+1, f(r2n))

2s

}
= max

{
d∗(r2n, r2n+1), d

∗(r2n, r2n+1), d
∗(r2n+1, r2n+2),

d∗(r2n, r2n+2) + d∗(r2n+1, r2n+1)

2s

}
6 max

{
d∗(r2n, r2n+1), d

∗(r2n+1, r2n+2)
}
.

http://www.journals.vu.lt/nonlinear-analysis
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IfM1(r2n, r2n+1) = d∗(r2n+1, r2n+2), then

F
(
sd∗(r2n+1, r2n+2)

)
6 F

(
d∗(r2n+1, r2n+2)

)
− τ,

which is a contradiction to (WF 1). Therefore,

F
(
sd∗(r2n+1, r2n+2)

)
6 F

(
d∗(r2n, r2n+1)

)
− τ, n ∈W. (4)

Similarly, we can have

F
(
sd∗(r2n+2, r2n+3)

)
6 F

(
d∗(r2n+1, r2n+2)

)
− τ, n ∈W. (5)

Hence, from (4) and (5) we have

F
(
sd∗(rn, rn+1)

)
6 F

(
d∗(rn−1, rn)

)
− τ, n ∈ N. (6)

Let bn = d∗(rn, rn+1) for each n ∈W, by (6) and (CF 4) we have

τ + F
(
snbn

)
6 F

(
sn−1bn−1

)
, n ∈ N.

Repeating above process, we obtain

F
(
snbn

)
6 F (b0)− nτ, n ∈ N. (7)

By Lemma 4, {bn} ∈ O(n−1/κ). Since 1/κ ∈ (1 + log2 s,∞) holds, by Lemma 3 we
infer that {rn} is Cauchy sequence. Since = is β-complete b-metric space, there exists
(say) υ ∈ = such that r2n+1 → υ and r2n+2 → υ as n → ∞ with respect to topology
induced by its convergence. The β-continuity of g implies

υ = lim
n→∞

rn = lim
n→∞

r2n+1 = lim
n→∞

r2n+2 = lim
n→∞

g(r2n+1)

= g
(
lim
n→∞

r2n+1

)
= g(υ).

If d∗(υ, f(υ)) > 0 as β(υ, υ) > 1, so by contractive condition (3) we have

τ + F
(
sd∗
(
f(υ), υ

))
6 τ + F

(
sβ(υ, υ) d∗

(
f(υ), g(υ)

))
6 F

(
M1(υ, υ)

)
= F

(
d∗
(
f(υ), υ

))
,

a contradiction. Thus, d∗(f(υ), υ) = 0 and (d∗1) implies υ = f(υ). Thus, we have f(υ) =
g(υ) = υ. Hence (f, g) has a common fixed point υ.

(ii) We have two different cases. First, if there exists a subsequence {rni
}i∈N ⊂

{rn}n∈N such that

rni
=

{
f(υ) for all even i;
g(υ) for all odd i,

then

υ = lim
i→∞

rni
= lim
i→∞

f(υ) = f(υ) and υ = lim
i→∞

rni
= lim
i→∞

g(υ) = g(υ).
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So, we have done. Second, if there is no such subsequence of {rn}n∈N, then there exists
a natural number η0 such that for every n > η0, we have d∗(f(r2n), g(υ)) > 0 and
d∗(g(r2n+1), f(υ)) > 0. It is given that the space = is β-regular, thus, β(r2n+1, υ) > 1,
β(r2n, υ) > 1. By contractive condition (3) we have

τ + F
(
sβ(r2n, υ) d

∗(f(r2n), g(υ)))
6 F

(
max

{
d∗(r2n, υ), d

∗(r2n, f(r2n)), d∗(υ, g(υ)),
d∗(r2n, g(υ)) + d∗(υ, f(r2n))

2s

})
. (8)

We show that d∗(υ, g(υ)) = 0. Suppose on contrary that d∗(υ, g(υ)) = p > 0. Put
γn = d∗(rn, υ) for all n ∈ N. Since limn→∞ rn = υ, there exists η1 ∈ N such that for
every n > η1, both γn < p/2 and bn < p/2 hold. Consequently, by (8) we have

τ + F
(
sβ(r2n, υ)(r2n, υ) d

∗(f(r2n), g(υ)))
6 F

(
max

{
γ2n, b2n, p,

d∗(r2n, g(υ)) + γ2n+1

2s

})
6 F

(
max

{
γ2n, b2n, p,

sγ2n + sp+ γ2n+1

2s

})
6 F

(
max

{
p

2
,
p

2
, p,

sp2 + sp+ p
2

2s

})
= F (p).

Thus, for every n > max{η0, η1}, we obtain

τ + F
(
sβ(r2n, υ) d

∗(f(r2n), g(υ))) 6 F
(
d∗
(
υ, g(υ)

))
. (9)

Since F is continuous and increasing, by Lemma 1 and inequality (9) we have

τ + F
(
d∗
(
υ, g(υ)

))
6 τ + F

(
sβ(r2n, υ) lim

n→∞
inf d∗

(
f(r2n), g(υ)

))
6 τ + lim

n→∞
inf F

(
sβ(r2n, υ) d

∗(f(r2n), g(υ)))
6 F

(
d∗
(
υ, g(υ)

))
.

The above inequality shows that τ 6 0 which is a contradiction. Thus, d∗(g(υ), υ) = 0
and hence υ = g(υ). Similarly, we can prove that υ = f(υ), and consequently, υ is
a common fixed point of f and g.

Following example illustrates Theorem 1.

Example 6. Let = = [0,∞) and define d∗ : =×= → R+
0 by d∗(γ, η) = |γ−η|2. Define

β : =× = → [0,∞) by

β(γ, η) =

{
ed

∗(γ,η), γ, η ∈ =, γ > η;

5, γ, η ∈ =, η > γ.
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So, (=, d∗, s) is a β-complete b-metric space with s = 2. Define the mappings f, g :
= → = for all r ∈ = by

f(r) = ln

(
1 +

r

6

)
, g(r) = ln

(
1 +

r

7

)
.

Clearly, f , g are β-continuous self-mappings. To prove that (f, g) is weakly β-admissible
pair of mappings, let γ, η ∈ = be such that η = f(γ), thus we have η = ln(1 + γ/6). As

f(γ) = ln

(
1 +

γ

6

)
> ln

(
1 +

ln(1 + γ
6 )

7

)
= ln

(
1 +

η

7

)
= g(η) = gf(γ).

Thus, β(fγ, gf(γ)) > 1. Again, let η, χ ∈ = be such that χ = g(η), thus we have
χ = ln(1 + η/7). Since

g(η) = ln

(
1 +

η

7

)
> ln

(
1 +

ln(1 + η
7 )

6

)
= ln

(
1 +

χ

6

)
= f(χ) = fg(η),

thus, β(gη, fg(η)) > 1. Hence, (f, g) is a weakly β-admissible pair of mappings. Now
for each γ, η ∈ = with γ > η and choosing ξ such that ξ/(2e) > 1 + log2 s, we have

2β(γ, η) d∗
(
f(γ), g(η)

)
= 2e

∣∣f(γ)− g(η)∣∣2 = 2e

∣∣∣∣ ln(1 + γ

6

)
− ln

(
1 +

η

7

)∣∣∣∣2
6 2e

(
γ

6
− η

7

)2

6
2e

ξ
d∗(γ, η) 6

2e

ξ
M1(γ, η).

The above inequality can be written as

ln
ξ

2e
+ ln

(
2β(γ, η) d∗

(
f(γ), g(η)

)
+ 1
)
6 ln

(
M1(γ, η) + 1

)
.

Define the function F : R+ → R by F (r) = ln(r + 1) for all r ∈ R+, then F ∈ Fbs (as
shown above). Hence, for all γ, η ∈ = such that d∗(f(γ), g(η)) > 0, τ = ln(ξ/(2e)), we
obtain

τ + F
(
sβ(γ, η) d∗

(
f(γ), g(η)

))
6 F

(
M(γ, η)

)
.

Thus, the contractive condition (3) is satisfied for all γ, η ∈ =. Hence, all the hypotheses
of the Theorem 1 are satisfied, note that f , g have a unique common fixed point r = 0.

Corollary 1. Let (=, d∗, s) be a β-complete b-metric space and f, g : = → = be self-
mappings such that

s3d∗
(
f(γ), g(η)

)
6 k

(
max

{
d∗(γ, η), d∗

(
γ, f(γ)

)
, d∗
(
η, g(η)

)
,

d∗(γ, g(η)) + d∗(η, f(γ))

2s

})
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for all γ, η ∈ =, k ∈ (0, 1/(1 + log2 s)). If f or g is continuous, then f , g have a unique
common fixed point in =.

Proof. Set β(γ, η) = s2 for all γ, η ∈ =, and let τ > 0 be such that k = e−τ . Then,
for F (r) = ln(r), the given inequality reduces to (3). Thus, conclusion follows from
Theorem 1.

Definition 13. Let (=, d∗, s) be a b-metric space and f : = → = and β : = × = → R+
0

be two mappings. We say the mapping f is a weakly β-admissible if

β(γ, η) > 1 =⇒ β
(
f(γ), f2(γ)

)
> 1, β

(
f(η), f2(η)

)
> 1 ∀γ, η ∈ =.

Definition 14. Let (=, d∗, s) be a b-metric space. The mappings f : = → = is called an
(β, F )-weak contraction if there exist F ∈ Fbs , τ > 0 such that

τ + F
(
sβ(γ, η) d∗

(
f(γ), f(η)

))
6 F

(
M2(γ, η)

)
∀γ, η ∈ =

whenever min{β(γ, η)d∗(f(γ), f(η)),M2(γ, η)} > 0, where

M2(γ, η) = max

{
d∗(γ, η), d∗

(
γ, f(γ)

)
, d∗
(
η, f(η)

)
,

d∗(γ, f(η)) + d∗(η, f(γ))

2s

}
.

The Corollary 2, generalizes the result given by Mínak et al. [22].

Corollary 2. Let f : = → = be a (β, F )-weak contraction mapping defined on β-com-
plete b-metric space (=, d∗, s). Assume that κ ∈ (0, 1/(1 + log2 s)) and

(i) f is a weakly β-admissible mapping;
(ii) There exists r0 in = such that β(r0, f(r0)) > 1;

(iii) (a) Either f is β continuous mapping or
(b) = is β-regular space and the mapping F is continuous.

Then we can construct a sequence {rn} in = such that rn → υ ∈ =. If β(υ, υ) > 1, then
υ is a fixed point of f . In addition, if ω is also a fixed point of f such that β(υ, ω) > 1,
then υ = ω.

Proof. Setting g = f in the proof of Theorem 1, we obtain required result.

Example 7. Let f be defined as in Example 2. Then it follows that the result given by
Mínak et al. [22] is not applicable, nevertheless, f is an Fd∗ -weak contraction, and hence
Corollary 2 follows if we take β(γ, η) = 1 for all γ, η ∈ =.

Definition 15. Let (=, d∗, s) be a b-metric space. The mappings f, g : = → = are called
Hardy–Rogers-type (β, F )-contraction if there exist F ∈ Fbs , τ > 0 such that

τ + F
(
sβ(γ, η) d∗

(
f(γ), g(η)

))
6 F

(
R(γ, η)

)
∀γ, η ∈ = (10)
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with β(γ, η) > 1 whenever

min
{
β(γ, η) d∗

(
f(γ), g(η)

)
,R(γ, η)

}
> 0,

where

R(γ, η) = a1d
∗(γ, η) + a2d

∗(γ, f(γ))+ a3d
∗(η, g(η))

+ a4
[
d∗
(
γ, g(η)

)
+ d∗

(
f(γ), η

)]
,

where ai > 0, i = 1, 2, 3, 4, such that a1 + a2 + a3 + 2sa4 = 1.

Theorem 2. Let f, g : = → = be a pair of Hardy–Rogers-type (β, F )-contractions
defined on β-complete b-metric space (=, d∗, s). Assume that κ ∈ (0, 1/(1+log2 s)) and

(i) f, g are weakly β-admissible self-mappings;
(ii) There exists r0 in = such that β(r0, f(r0)) > 1;

(iii) (a) Either one of f and g is β-continuous mapping or
(b) = is β-regular space and the mapping F is continuous.

Then we can construct a sequence {rn} in = such that rn → υ ∈ = (say). If β(υ, υ) > 1,
then υ is a fixed point of f . In addition, if ω is also a fixed point of f such that β(υ, ω) > 1,
then υ = ω.

Proof. Since

R(γ, η) = a1d
∗(γ, η) + a2d

∗(γ, f(γ))+ a3d
∗(η, g(η))

+ a4
[
d∗
(
γ, g(η)

)
+ d∗

(
η, f(γ)

)]
= a1d

∗(γ, η) + a2d
∗(γ, f(γ))+ a3d

∗(η, g(η))
+ 2sa4

[
d∗(γ, g(η)) + d∗(η, f(γ))

2s

]
6 a1M1(γ, η) + a2M1(γ, η) + a3M1(γ, η)

+ 2sa4M1(γ, η)

= (a1 + a2 + a3 + 2sa4)M1(γ, η) =M1(γ, η).

Inequality (10) implies inequality (3), so the proof of Theorem 2 follows from Theo-
rem 1.

4 Consequences

Let (=, d∗, s) be a b-metric space, and let 4 be a binary relation over =. LetM1(γ, η)
andR(γ, η) are defined as in Definition 12 and Definition 15, respectively.

Definition 16. Let f and g be two self-mappings defined on = and 4 be a binary relation
over =. The mappings f , g are said to be weakly increasing with respect to 4 if for all
γ, η ∈ =, we have

γ 4 η =⇒ f(γ) 4 gf(γ) and g(η) 4 fg(η).
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Assume that the mapping β : =× = → R+
0 is defined by

β(γ, η) =

{
s2 if γ 4 η;

0 otherwise.

We see that Definition 16 is a special case of Definition 7.

Definition 17. The b-metric space (=, d∗, s) is said to be regular with respect to 4 if for
any sequence {rn} ⊂ = such that rn 4 rn+1 and rn → r as n→∞, we have rn 4 r for
all n ∈ N.

Now we are able to rewrite Theorems 1 and 2 in the framework of ordered b-metric
spaces.

Theorem 3. Let f, g : = → = be two weakly increasing mappings defined on com-
plete ordered b-metric space (=, d∗, s,4). If there exist F ∈ Fbs , τ > 0 and κ ∈
(0, 1/(1 + log2 s)) such that

τ + F
(
s3d∗

(
f(γ), g(η)

))
6 F

(
M1(γ, η)

)
∀γ, η ∈ =,

with γ 4 η whenever min{s2d∗(f(γ), g(η)),M1(γ, η)} > 0 and following conditions
hold:

(i) There exists r0 ∈ = such that r0 4 f(r0);
(ii) (a) Either one of f and g is continuous or

(b) = is 4-regular space and the mapping F is continuous.

Then we can construct a sequence {rn} in = such that rn → υ ∈ = (say), which is
a common fixed point of f and g. In addition, if ω is also a common fixed point of the pair
(f, g) such that υ 4 ω, then υ = ω.

Proof. Define

β(γ, η) =

{
s2 if γ 4 η;

0 otherwise.

The arguments follow the same lines as in proof of Theorem 1.

Theorem 4. Let f, g : = → = be two weakly increasing mappings defined on a com-
plete ordered b-metric space (=, d∗, s,4). If there exist F ∈ Fbs , τ > 0 and κ ∈
(0, 1/(1 + log2 s)) such that

τ + F
(
s3d∗

(
f(γ), g(η)

))
6 F

(
R(γ, η)

)
∀γ, η ∈ =

with γ 4 η whenever min{s2d∗(f(γ), g(η)),R(γ, η)} > 0. Assume that following
conditions hold:

(i) There exists r0 ∈ = such that r0 4 f(r0);
(ii) (a) Either one of f and g is b-continuous or

(b) = is 4-regular space and the mapping F is continuous.
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Then we can construct a sequence {rn} in = such that rn → υ ∈ = (say), which is
a common fixed point of f and g. In addition, if ω is also a common fixed point of the pair
(f, g) such that υ 4 ω, then υ = ω.

Proof. Define

β(γ, η) =

{
s2 if γ 4 η;

0 otherwise.

The arguments follow the same lines as in proof of Theorem 2.

Recently, some results have appeared in the setting of metric spaces endowed with
a graph. The first result in this direction was given by Jachymski [17].

Definition 18. Let f and g be two self-mappings on a graphic b-metric space (V (G), d∗, s).
A pair (f, g) is said to be, weaklyG-increasing if (γ, η) ∈ E(G) implies (f(γ), gf(γ)) ∈
E(G) and (g(η), fg(η)) ∈ E(G) for all γ, η ∈ V (G),

Let (V (G), d∗, s) be a graphic b-metric space, and let

β(γ, η) =

{
s2 if (γ, η) ∈ E(G);

0 otherwise.

By this assumption we see that the above definition is a special case of the definition of
weak β-admissible mappings.

Definition 19. Let (V (G), d∗, s) be a graphic b-metric space. It is said to be G-complete
if and only if every Cauchy sequence {rn} in V(G) such that (rn, rn+1) ∈ E(G),
converges in V(G).

Definition 20. Let (V (G), d∗, s) be a graphic b-metric space and T : V (G)→ V (G) be
a mapping. We say that T is aG-continuous mapping if for given r ∈ V (G) and sequence
{rn},

lim
n→∞

d∗(rn, r) = 0 and (rn, rn+1) ∈ E(G) ∀n ∈ N

=⇒ lim
n→∞

d∗
(
T (rn), T (r)

)
= 0.

Definition 21. The graphic b- metric space (V (G), d∗, s) is said to be regular if for any
sequence {rn} ⊂ V (G) such that (rn, rn+1) ∈ E(G) for all n ∈ N and rn → r as
n→∞, we have (rn, r) ∈ E(G) for all n ∈ N.

Now we are able to rewrite Theorems 1 and 2 in the framework of the graphic metric
space.

Theorem 5. Let f, g : V (G) → V (G) be self-mappings defined on G-complete graphic
b-metric space (V (G), d∗, s). If there exist F ∈ Fbs , τ > 0 and κ ∈ (0, 1/(1 + log2 s))
such that

τ + F
(
s3d∗

(
f(γ), g(η)

))
6 F

(
M1(γ, η)

)
∀γ, η ∈ V (G)

with (γ, η) ∈ E(G) whenever min{s2d∗(f(γ), g(η)),M1(γ, η)} > 0 and following
conditions hold:
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(i) f, g are weakly G-increasing self-mappings;
(ii) There exists r0 ∈ V (G) such that (r0, f(r0)) ∈ E(G);

(iii) (a) either one of f and g is a G-continuous self-mapping or
(b) V (G) is regular space and the mapping F is continuous.

Then we can construct a sequence {rn} in V (G) such that rn → υ ∈ V (G) (say), which
is a common fixed point of f and g. In addition, if ω is also a common fixed point of the
pair (f, g) such that υ 4 ω, then υ = ω.

Proof. Define

β(γ, η) =

{
s2 if (γ, η) ∈ E(G);

0 otherwise.

The arguments follow the same lines as in proof of Theorem 1.

Theorem 6. Let f, g : V (G) → V (G) be self-mappings defined on G-complete graphic
b-metric space (V (G), d∗, s). If there exist F ∈ Fbs , τ > 0 and κ ∈ (0, 1/(1 + log2 s))
such that

τ + F
(
s3d∗

(
f(γ), g(η)

))
6 F

(
R(γ, η)

)
∀γ, η ∈ V (G)

with (γ, η) ∈ E(G) whenever min{s2d∗(f(γ), g(η)),R(γ, η)} > 0 and following con-
ditions hold:

(i) f, g are weakly G-increasing self-mappings;
(ii) There exists r0 ∈ V (G) such that (r0, f(r0)) ∈ E(G);

(iii) (a) Either one of f and g is a G-continuous self-mapping or
(b) V (G) is regular space and the mapping F is continuous.

Then we can construct a sequence {rn} in V (G) such that rn → υ ∈ V (G) (say), which
is a common fixed point of f and g. In addition, if ω is also a common fixed point of the
pair (f, g) such that υ 4 ω, then υ = ω.

Proof. Define

β(γ, η) =

{
s2 if (γ, η) ∈ E(G);

0 otherwise.

The arguments follow the same lines as in proof of Theorem 2.

5 Application of Theorem 1

This section contains an existence result, which shows the application of Theorem 1 in
establishing the existence of solution to the system of elliptic boundary value problems
given below. Let C(I) be the space of all continuous real valued mappings defined on
I = [0, 1].

−d2x

dt2
= H

(
t, x(t)

)
, t ∈ [0, 1], x(0) = x(1) = 0,

(11)
−d2y

dt2
= K

(
t, y(t)

)
, t ∈ [0, 1], y(0) = y(1) = 0,

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Fixed points of weakly β-admissible pair of F -contractions 915

where H,K : [0, 1] ×X → R are continuous mappings. The Green function associated
with (11) is defined by

G(t, u) =

{
t(1− u), 0 6 t 6 u 6 1

u(1− t), 0 6 u 6 t 6 1.

Let X = (C(I),R), and define d∗ : X ×X → [0,∞) by

d∗(x, y) = sup
t∈I

∣∣x(t)− y(t)∣∣2.
It is known that (X, d∗, s) is a complete b-metric space with constant s = 2. Now,
consider the operators f, g : X → X given by

f
(
x(t)

)
=

1∫
0

G(t, u)H
(
u, x(u)

)
du,

g
(
y(t)

)
=

1∫
0

G(t, u)K
(
u, y(u)

)
du

(12)

for all t ∈ I . It is remarked that (11) has a common solution if and only if the operator f
and g have a common fixed point.

Theorem 7. Assume that

(i) There exist τ > 0 and continuous mappingsH,K : [0, 1]×X → R, β : X×X →
[1,∞) such that∣∣H(t, x(t))−K(t, y(t))∣∣2 6

64e−τ

sβ(x, y)
M1

(
x(t), y(t)

)
∀t ∈ I;

(ii) There exists x0 ∈ C(I) such that β(x0, f(x0)) > 1;
(iii) β(x, y)>1 implies β(f(x), gf(x))>1 and β(g(y), fg(y))>1 for all x, y∈X .

Then (11) has at least one solution x∗(·) ∈ C2(I).

Proof. We note that x∗(·) ∈ C2(I) is a solution of (11) if and only if x∗(·) ∈ C(I) is
a common solution of the integral equations (12).

Let x(·), y(·) ∈ C(I). By assumption (i) we get

∣∣f(x(t))− g(y(t))∣∣2 =

[∣∣∣∣∣
1∫

0

G(t, u)
[
H
(
u, x(u)

)
−K

(
u, y(u)

)]
du

∣∣∣∣∣
]2

6

[ 1∫
0

G(t, u)
∣∣H(u, x(u))−K(u, y(u))∣∣du]2
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6

[ 1∫
0

G(t, u)

√
64

e−τ

sβ(x, y)
M1

(
x(u), y(u)

)
du

]2

6

[
8

1∫
0

G(t, u)

√
e−τ

sβ(x, y)
M1

(
x(u), y(u)

)
du

]2

6
82e−τ

sβ(x, y)
sup
u∈I
M1

(
x(u), y(u)

)[ 1∫
0

G(t, u) du

]2
. (13)

LetM1(x, y) be defined as in Definition 12. Then it can easily be proved thatM1(x, y) =

supu∈IM1(x(u), y(u)). Since
∫ 1

0
G(t, u) du = −t2/2 + t/2 for all t ∈ I , we have

sup
t∈I

[ 1∫
0

G(t, u) du

]2
=

1

82
.

Taking the supremum over t in inequality (13), we get

d∗
(
f(x), g(y)

)
6

e−τ

sβ(x, y)
M1(x, y) ∀x, y ∈ C(I).

Consequently, we have

β(x, y) d∗
(
f(x), g(y)

)
6 e−τM1(x, y).

Thus, for F (r) = ln(r), all assumptions of Theorem 1 are satisfied. Hence f and g have
a common fixed point x∗(·) ∈ C(I), that is, fx∗(t) = gx∗(t) = x∗(t), which shows that
system (11) have a solution.
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