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Abstract. In this paper, we develop the existence theory for a new kind of nonlocal three-point
boundary value problems for differential equations and inclusions involving both left Caputo and
right Riemann–Liouville fractional derivatives. The Banach and Krasnoselskii fixed point theorems
and the Leray–Schauder nonlinear alternative are used to obtain the desired results for the single-
valued problem. The existence of solutions for the multivalued problem concerning the upper
semicontinuous and Lipschitz cases is proved by applying nonlinear alternative for Kakutani maps
and Covitz and Nadler fixed point theorem. Examples illustrating the main results are also presented.

Keywords: fractional differential equations, fractional differential inclusion, fractional derivative,
boundary value problem, existence, fixed point theorems.

1 Introduction

Fractional differential equations and inclusions involving different kinds of fractional
derivatives (Caputo, Riemann–Liouville, Hadamard to name a few) supplemented with
a variety of boundary conditions have been investigated by many researchers, and one
can find many interesting results on the topic in the related literature. For examples and
details, we refer the reader to a series of articles [1–5,9,13,21,22] and the references cited
therein. However, there are fewer results on boundary value problems of fractional-order
differential equations involving both right and left fractional derivatives. It is imperative to
mention that fractional differential equations containing left and right Riemann–Liouville
fractional derivatives appear as the Euler–Lagrange equations in the study of variational
principles, for details, see [6] and the references cited therein.
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In [23], the existence of an extremal solution to a nonlinear system with the right-
handed Riemann–Liouville fractional derivative was discussed. In [15], the authors stud-
ied the existence of solutions for a nonlinear higher-order fractional boundary value prob-
lem involving both the left Riemann–Liouville and the right Caputo fractional derivatives:

(−1)mCDα
1−D

β
0+ + f

(
t, u(t)

)
= 0, 0 6 t 6 1,

u(0) = u(i)(0) = 0, i = 1, . . . ,m+ n− 2, Dβ+m−1
0+ u(1) = 0,

where CDα
1− and Dβ

0+ respectively denote the left Caputo fractional derivative of order
α ∈ (m − 1,m) and the right Riemann–Liouville fractional derivative of order β ∈
(n − 1, n), m,n > 2, are integers. In [19], the authors proved the existence of solutions
for the following boundary value problem involving both left Caputo and right Riemann–
Liouville fractional derivatives:

−CDα
1−D

β
0+y(t) + f

(
t, u(t)

)
= 0, 0 6 t 6 1,

u(0) = u′(0) = u(1) = 0,

where CDα
1− and Dβ

0+ denote the left Caputo fractional derivative of order α ∈ (0, 1] and
the right Riemann–Liouville fractional derivative of order β ∈ (1, 2]. The existence of so-
lutions for a nonlinear fractional oscillator equation with both left Riemann–Liouville and
right Caputo fractional derivatives was studied in [12]. To the best of our knowledge, the
study of nonlocal boundary value problems involving mixed fractional-order derivatives
is yet to be initiated.

In this paper, we introduce a new class of nonlocal boundary value problems (BVP
for short) of mixed fractional differential equations and inclusions involving both left
Caputo and right Riemann–Liouville fractional derivatives and obtain some existence and
uniqueness results for the problems at hand. In precise terms, we investigate the problems

CDα
1−D

β
0+y(t) = f

(
t, y(t)

)
, t ∈ J := [0, 1],

y(0) = y′(0) = 0, y(1) = δy(η), 0 < η < 1,
(1)

and

Dα
1−D

β
0+y(t) ∈ F

(
t, y(t)

)
, t ∈ J := [0, 1],

y(0) = y′(0) = 0, y(1) = δy(η), 0 < η < 1,
(2)

where CDα
1− and Dβ

0+ denote the left Caputo fractional derivative of order α ∈ (1, 2]
and the right Riemann–Liouville fractional derivative of order β ∈ (0, 1], respectively,
f : J × R → R is a given function, F : [0, 1]× R → P(R) is a multivalued map, P(R)
is the family of all nonempty subsets of R, and δ ∈ R is an appropriate constant.

The rest of the paper is organized as follows. In Section 2, we recall some basic defini-
tions of fractional calculus and prove a basic result that plays a key role in the forthcoming
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analysis. Section 3 contains the existence and uniqueness results for problem (1), which
rely on fixed point theorems due to Banach, Krasnoselskii and Leray–Schauder nonlin-
ear alternative. Section 4 deals with the existence results for the multivalued problem,
concerning the upper semicontinuous and Lipschitz cases, which are based on nonlinear
alternative for Kakutani maps and Covitz and Nadler fixed point theorem for multivalued
maps. Illustrative examples for the obtained results are also presented. Though the tools
of the fixed point theory employed in the present analysis are the standard ones, their
exposition is proved to be of substantial value in achieving the desired results.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts [16] that we need
in the sequel.

Definition 1. We define the left and right Riemann–Liouville fractional integrals of order
α > 0 of a function g : (0,∞)→ R as

Iα0+g(t) =

t∫
0

(t− s)α−1

Γ(α)
g(s) ds,

Iα1−g(t) =

1∫
t

(s− t)α−1

Γ(α)
g(s) ds, (3)

provided the right-hand sides are point-wise defined on (0,∞), where Γ is the gamma
function.

Definition 2. The left Riemann–Liouville fractional derivative and the right Caputo frac-
tional derivative of order α > 0 of a continuous function g : (0,∞) → R such that
g ∈ Cn((0,∞),R) are respectively given by

Dα
0+g(t) =

dn

dtn
(
In−α0+ g

)
(t),

CDα
1−g(t) = (−1)nIn−α1− g(n)(t),

where n− 1 < α < n.

The following lemma, dealing with a linear variant of problem (1), plays an important
role in the forthcoming analysis.

Lemma 1. Let h ∈ C(J,R) and δ 6= η−(β+1). The function y is a solution of the problem

CDα
1−D

β
0+y(t) = h(t), t ∈ J := [0, 1],

y(0) = y′(0) = 0, y(1) = δy(η), 0 < η < 1,
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if and only if

y(t) =
1

Γ(β)

t∫
0

(t− s)β−1Iα1−h(s) ds

+
tβ+1

(1− δηβ+1)Γ(β)

[
δ

η∫
0

(η−s)β−1Iα1−h(s) ds

−
1∫

0

(1− s)β−1Iα1−h(s) ds

]
, (4)

where Iα1−y(s) is defined by (3).

Proof. We first apply the right fractional integral Iα1− to the equation CDα
1−D

β
0+y(t) =

h(t) and then the left fractional integral Iβ0+ to the resulting equation, and using the
properties of Caputo and Riemann–Liouville fractional derivatives, we get

y(t) = Iβ0+
(
Iα1−h(t) + c0 + c1t

)
+ c2t

β−1

= Iβ0+I
α
1−h(t) + c0

tβ

Γ(β + 1)
+ c1

tβ+1

Γ(β + 2)
+ c2t

β−1. (5)

Inserting the conditions y(0) = 0 and y′(0) = 0 in (5) yields c2 = 0 and c0 = 0,
respectively, and consequently, (5) reduces to

y(t) = Iβ0+I
α
1−h(t) + c1

tβ+1

Γ(β + 2)
. (6)

Making use of the condition y(1) = δy(η) in equation (6) yields

c1 =
Γ(β + 2)

1− δηβ+1

[
δIβ0+I

α
1−h(t)|t=η − Iβ0+Iα1−h(t)|t=1

]
,

which, on substituting in (6), completes the solution (4). The converse follows by direct
computation. The proof is completed.

3 Existence and uniqueness results for problem (1)(1)(1)

Let X = C([0, 1],R) denote the Banach space of all continuous functions from
[0, 1]→ R equipped with the norm ‖y‖ = sup {|y(t)| : t ∈ [0, 1]}.

By Lemma 1, problem (1) can be transformed into a fixed point problem as

y = Gy,
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where the operator G : X → X is defined by

Gy(t) =
1

Γ(β)

t∫
0

(t− s)β−1Iα1−f
(
s, y(s)

)
ds

+
tβ+1

(1− δηβ+1)Γ(β)

[
δ

η∫
0

(η − s)β−1Iα1−f
(
s, y(s)

)
ds

−
1∫

0

(1− s)β−1Iα1−f
(
s, y(s)

)
ds

]
. (7)

Remark 1. The operator (7) can be written as

Gy(t) =

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
f
(
u, y(u)

)
duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
f
(
u, y(u)

)
duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
f
(
u, y(u)

)
duds

]
.

Note that
t∫

0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

=

t∫
0

(t− s)β−1

Γ(β)

(u− s)α

Γ(α+ 1)

∣∣∣1
s

ds =

t∫
0

(t− s)β−1

Γ(β)

(1− s)α

Γ(α+ 1)
ds

6

t∫
0

(t− s)β−1

Γ(β)Γ(α+ 1)
ds

(
(1− s)α 6 1, 1 < α 6 2

)
=

tβ

Γ(α+ 1)Γ(β + 1)
.

Thus we have the following estimate.

Lemma 2. Let ‖f‖ = supt∈[0,1] |f(t, y(t))|. Then we have ‖y‖ 6 ‖f‖Ω1, where

Ω1 =
1

Γ(α+ 1)Γ(β + 1)

[
1 +

|δ|ηβ + 1

|1− δηβ+1|

]
. (8)
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3.1 Uniqueness result

Our first result deals with the existence and uniqueness of solutions for problem (1).

Theorem 1. Let f : [0, 1]× R→ R be a continuous function satisfying the condition

(H1) |f(t, x)− f(t, y)| 6 L|x− y| for all t ∈ [0, 1], x, y ∈ R, L > 0.

Then problem (1) has a unique solution on [0, 1] if

LΩ1 < 1,

where Ω1 is defined by (8).

Proof. Let us define supt∈[0,1] |f(t, 0)| = M and select r >MΩ1/(1−LΩ1) to establish
that GBr ⊂ Br, where Br = {y ∈ X : ‖y‖ 6 r} and G is defined by (7). Using
condition (H1), we have∣∣f(t, y)

∣∣ =
∣∣f(t, y)− f(t, 0) + f(t, 0)

∣∣ 6 ∣∣f(t, y)− f(t, 0)
∣∣+
∣∣f(t, 0)

∣∣
6 L‖y‖+M 6 Lr +M.

Then, for y ∈ Br, by using Lemma 2, we obtain

∥∥Gy∥∥ 6 sup
t∈[0,1]

{ t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)

∣∣f(u, y(u)
)∣∣duds

+
tβ+1

|1− δηβ+1|

[
|δ|

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)

∣∣f(u, y(u)
)∣∣ duds

+

1∫
0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)

∣∣f(u, y(u)
)∣∣duds

]}
6 (Lr +M)Ω1 < r.

This shows that Gy ∈ Br, y ∈ Br. Thus GBr ⊂ Br. Next, we show that G is a contraction.
For that, let y, z ∈ X . Then, for each t ∈ [0, 1], we have∥∥(Gy)− (Gz)

∥∥
6 sup
t∈[0,1]

{ t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)

∣∣f(u, y(u)
)
−f
(
u, z(u)

)∣∣duds

+
tβ+1

|1− δηβ+1|

[
|δ|

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)

∣∣f(u, y(u)
)
−f
(
u, z(u)

)∣∣duds
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+

1∫
0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)

∣∣f(u, y(u)
)
− f

(
u, z(u)

)∣∣duds

]}
6 LΩ1‖y − z‖,

which, in view of the given condition LΩ1 < 1, implies that G is a contraction. In
consequence, it follow by the contraction mapping principle that there exists a unique
solution for problem (1) on [0, 1]. This completes the proof.

3.2 Existence results

Our next existence result for problem (1) is based on Krasnoselskii fixed point theorem
[18].

Theorem 2. Let f : [0, 1] × R → R be a continuous function satisfying condition (H1).
In addition, we assume that:

(H2) |f(t, y)| 6 m(t) for all (t, y) ∈ [0, 1]× R and m ∈ C([0, 1],R+).

Then there exists at least one solution for problem (1) on [0, 1] if

L

Γ(α+ 1)Γ(β + 1)
< 1. (9)

Proof. Setting supt∈[0,1] |m(t)| = ‖m‖, we fix

% > ‖m‖Ω1, (10)

where Ω1 is defined by (8), and consider B% = {y ∈ X : ‖y‖ 6 %}. Introduce the
operators G1 and G2 on B% as follows:

G1y(t) =

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
f
(
u, y(u)

)
duds

and

G2y(t) =
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
f
(
u, y(u)

)
duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
f
(
u, y(u)

)
duds

]
.

Observe that G = G1 + G2. Now we verify the hypotheses of Krasnoselskii fixed point
theorem in the following steps.

Nonlinear Anal. Model. Control, 24(6):937–957
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(i) For y, z ∈ B%, we have

‖G1y + G2z‖
= sup
t∈[0,1]

∣∣(G1y)(t) + (G2z)(t)
∣∣

6 sup
t∈[0,1]

{ t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)

∣∣f(u, y(u)
)∣∣duds

+
tβ+1

|1− δηβ+1|

[
|δ|

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)

∣∣f(u, z(u)
)∣∣duds

+

1∫
0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)

∣∣f(u, z(u)
)∣∣ duds

]}
6 ‖m‖Ω1 6 %,

where we have used (10). Thus G1y + G2z ∈ B%.
(ii) It is easy to show that G1 is a contraction by using assumption (H1) together

with (9).
(iii) Using the continuity of f , it is easy to show that the operator G2 is continuous.

Further, G2 is uniformly bounded on B% as

‖G2x‖ = sup
t∈[0,1]

∣∣(G2y)(t)
∣∣ 6 ‖m‖(|δ|ηβ + 1)

|1− δηβ+1|Γ(α+ 1)Γ(β + 1)
.

In order to establish that G2 is compact, we define sup(t,y)∈[0,1]×B%
|f(t, y)| = f .

Thus, for 0 < t1 < t2 < 1, we have∣∣(G2y)(t2)− (G12y)(t1)
∣∣

6
f |tβ+1

2 − tβ+1
1 |

|1− δηβ+1|

[
|δ|

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

+

1∫
0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

]

6
f |tβ+1

2 − tβ+1
1 |

|1− δηβ+1|

[
|δ|ηβ + 1

Γ(α+ 1)Γ(β + 1)

]
→ 0

as t1 → t2 independently of y. This shows that G2 is relatively compact on B%. As all the
conditions of the Arzelà–Ascoli theorem are satisfied, so G2 is compact on B%. In view of
steps (i)–(iii), the conclusion of Krasnoselskii fixed point theorem is applied, and hence,
there exists at least one solution for problem (1) on [0, 1]. The proof is finished.
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Remark 2. Interchanging the role of the operators G1 and G2 in the foregoing result, we
can obtain a second result by requiring the conditionL(|δ|ηβ+1)/(Γ(α+1)Γ(β+1)) < 1,
instead of (9).

The following existence result is based on Leray–Schauder nonlinear alternative.

Theorem 3. Let f : [0, 1]× R→ R be a continuous function. Assume that:

(H3) There exist a function g ∈ C([0, 1],R+), and a nondecreasing function ψ :
R+ → R+ such that |f(t, y)| 6 g(t)ψ(|y|) for all (t, y) ∈ [0, 1]× R;

(H4) There exists a constant K > 0 such that

K

‖g‖ψ(K)Ω1
> 1.

Then problem (1) has at least one solution on [0, 1].

Proof. Consider the operator G : X → X defined by (7). We show that G maps bounded
sets into bounded sets in X = C([0, 1],R). For a positive number r, let Br = {y ∈
C([0, 1],R): ‖y‖ 6 r} be a bounded set inX . Then, by using the fact that (p−s)α−1 6 1
(1 < α 6 2), we have

∣∣Gy(t)
∣∣ 6 ‖g‖ψ(r)

{ t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

+
tβ+1

|1− δηβ+1|

[
|δ|

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

+

1∫
0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

]}
6 ‖g‖ψ(r)Ω1,

which, on taking the norm for t ∈ [0, 1], yields ‖Gy‖ 6 ‖g‖ψ(r)Ω1.
Next, we show that G maps bounded sets into equicontinuous sets of X . Let t1, t2 ∈

[0, 1] with t1 < t2 and y ∈ Br, where Br is a bounded set of X . Then, using the fact that
(p− s)α−1 6 1 (1 < α 6 2), we obtain∣∣Gy(t2)− Gy(t1)

∣∣
6 ‖g‖ψ(r)

{∣∣∣∣∣
t1∫
0

[(t2 − s)β−1 − (t1 − s)β−1]

Γ(β)Γ(α+ 1)
ds+

t2∫
t1

(t2 − s)β−1

Γ(β)Γ(α+ 1)
ds

∣∣∣∣∣
+
|tβ+1
2 − tβ+1

1 |
|1− δηβ+1|

[
|δ|

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds
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+

1∫
0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

]}

6 ‖g‖ψ(r)

{
2(t2 − t1)β + tβ2 − t

β
1

Γ(β + 1)Γ(α+ 1)
+
|tβ+1
2 − tβ+1

1 |
|1− δηβ+1|

[
|δ|ηβ + 1

Γ(α+ 1)Γ(β + 1)

]}
,

which tends to zero independently of y ∈ Br as t2 − t1 → 0. As G satisfies the above
assumptions, therefore it follows by the Arzelà–Ascoli theorem that G : X → X is
completely continuous.

The result will follow from the Leray–Schauder nonlinear alternative once it is shown
that the set of all solutions to the equation y = λGy is bounded for λ ∈ [0, 1]. For that,
let y be a solution of y = λGy for λ ∈ [0, 1]. Then, for t ∈ [0, 1], we have∣∣y(t)

∣∣ =
∣∣λGy(t)

∣∣
6 g(t)ψ

(
‖y‖
){ t∫

0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

+

1∫
0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

]}
6 ‖g‖ψ

(
‖y‖
)
Ω1,

which implies that
‖y‖

‖g‖ψ(‖y‖)Ω1
6 1.

In view of (H4), there is no solution y such that ‖y‖ 6= K. Let us set

U =
{
y ∈ X : ‖y‖ < K

}
.

The operator G : U → X is continuous and completely continuous. From the choice
of U , there is no y ∈ ∂U such that y = λG(y) for some λ ∈ (0, 1). Consequently, by
the nonlinear alternative of Leray–Schauder type [11] we deduce that G has a fixed point
u ∈ U , which is a solution of problem (1). This completes the proof.

3.3 Examples

In this subsection, we construct examples for the illustration of the results obtained in the
last section. For that, we consider the following problem:

CD
3/2
1− D

1/2
0+ y(t) = f

(
t, y(t)

)
, t ∈ J := [0, 1],

y(0) = y′(0) = 0, y(1) = 2y

(
3

4

)
.

(11)
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Here α = 3/2, β = 1/2, η = 3/4, δ = 2 (δ 6= 1/ηβ+1), and

f(t, y) =
et

51
tan−1 y +

|y|
(t2 + 51)(1 + |y|)

+
1√
t2 + 1

.

With the given value of the parameters, it is found that

Ω1 =
8

3π

[
1 +

√
3 + 1

|1− 3
√
3

4 |

]
≈ 8.84,

|f(t, y1) − f(t, y2)| 6 L|y1 − y2|, L = (e + 1)/51, and LΩ1 ≈ 0.643 < 1. Clearly, all
the assumptions of Theorem 1 hold true, and consequently, its conclusion can be applied
to problem (11).

In order to illustrate Theorem 2, we notice that (9) is satisfied as

L

Γ(α+ 1)Γ(β + 1)
=

8(e + 1)

153π
≈ 0.061 < 1

and ∣∣f(t, y)
∣∣ 6 m(t) =

πet

102
+

1

(t2 + 9)
+

1√
t2 + 1

.

As the hypothesis of Theorem 2 is satisfied, we deduce from the conclusion of Theorem 2
that problem (11) has at least one solution on [0, 1].

Now we demonstrate the application of Theorem 3 by considering the nonlinear
function

f(t, y) =
1

8
√
t2 + 4

(sin y + cos y + 3). (12)

Clearly, |f(t, y)| 6 g(t)ψ(‖y‖), where g(t) = 1/(8
√
t2 + 4), ψ(‖y‖) = (4 + ‖y‖). By

condition (H4) we find that K > 5.072625. Thus all the conditions of Theorem 3 hold
true, and consequently, problem (11) with f(t, y) given by (12) has at least one solution
on [0, 1].

4 Existence results for problem (2)(2)(2)

Before presenting the existence results for problem (2), we outline the necessary concepts
on multivalued maps [10, 14].

For a normed space (X, ‖·‖), let Pcl(X) = {Y ∈ P(X): Y is closed}, Pb(X) =
{Y ∈ P(X): Y is bounded}, Pcp(X) = {Y ∈ P(X): Y is compact}, and Pcp,c(X) =
{Y ∈ P(X): Y is compact and convex}. A multivalued map G : X → P(X) is
convex (closed) valued if G(x) is convex (closed) for all x ∈ X . The map G is bounded
on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X) (i.e.,
supx∈B{sup{|y|: y ∈ G(x)}} < ∞). G is called upper semicontinuous (u.s.c.) on X
if for each x0 ∈ X , the set G(x0) is a nonempty closed subset of X , and if for each
open set N of X containing G(x0), there exists an open neighborhood N0 of x0 such
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that G(N0) ⊆ N . G is said to be completely continuous if G(B) is relatively compact for
every B ∈ Pb(X). If the multivalued map G is completely continuous with nonempty
compact values, then G is u.s.c. if and only if G has a closed graph, i.e., xn → x∗,
yn → y∗, yn ∈ G(xn) imply that y∗ ∈ G(x∗). G has a fixed point if there is x ∈ X
such that x ∈ G(x). The fixed point set of the multivalued operator G will be denoted
by FixG. A multivalued map G : [0, 1] → Pcl(R) is said to be measurable if for every
y ∈ R, the function t→ d(y,G(t)) = inf{|y − z|: z ∈ G(t)} is measurable.

For each y ∈ X , define the set of selections of F by

SF,y :=
{
v ∈ L1

(
[0, 1],R

)
: v(t) ∈ F

(
t, y(t)

)
for a.e. t ∈ [0, 1]

}
.

Definition 3. A multivalued map F : [0, 1]× R→ P(R) is said to be Carathéodory if:

(i) t→ F (t, y) is measurable for each y ∈ R;
(ii) y → F (t, y) is upper semicontinuous for almost all t ∈ [0, 1].

Further, a Carathéodory function F is called L1-Carathéodory if

(iii) for each ρ > 0, there exists ϕρ ∈ L1([0, 1],R+) such that ‖F (t, y)‖ = sup{|v|:
v ∈ F (t, y)} 6 ϕρ(t) for all y ∈ R with ‖y‖ 6 ρ and for a.e. t ∈ [0, 1].

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y : y ∈ G(x)} and
recall two results for closed graphs and upper semicontinuity.

Lemma 3. (See [10, Prop. 1.2].) If G : X → Pcl(Y ) is u.s.c., then Gr(G) is a closed
subset of X × Y ; i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if when
n → ∞, xn → x∗, yn → y∗ and yn ∈ G(xn), then y∗ ∈ G(x∗). Conversely, if G is
completely continuous and has a closed graph, then it is upper semicontinuous.

Lemma 4. (See [20].) Let X be a separable Banach space. Let F : [0, 1]×X →
Pcp,c(X) be an L1-Carathéodory multivalued map, and let Θ be a linear continuous
mapping from L1([0, 1], X) to C([0, 1], X). Then the operatorΘ ◦SF,x : C([0, 1], X)→
Pcp,c(C([0, 1], X)),

(Θ ◦ SF,y)(y) = Θ(SF,y),

is a closed graph operator in C([0, 1], X)× C([0, 1], X).

For the forthcoming analysis, we need the following lemma.

Lemma 5 [Nonlinear alternative for Kakutani maps]. (See [11].) Let E be a Banach
space, C a closed convex subset of E, U an open subset of C, and 0 ∈ U . Suppose that
F : U → Pcp,c(C) is an upper semicontinuous compact map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u).
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Let (X, d) be a metric space induced from the normed space (X; ‖·‖). Consider Hd :
P(X)× P(X)→ R ∪ {∞} defined by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pb,cl(X), Hd) is
a metric space, and (Pcl(X), Hd) is a generalized metric space (see [17]).

Definition 4. A multivalued operator N : X → Pcl(X) is called:

(i) γ-Lipschitz if and only if there exists γ > 0 such that Hd(N(x), N(y)) 6
γd(x, y) for each x, y ∈ X;

(ii) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 6. (See [8].) Let (X, d) be a complete metric space. If N : X → Pcl(X) is
a contraction, then FixN 6= ∅.

Definition 5. A function y ∈ C([0, 1],R) is said to be a solution of the boundary value
problem (2) if y(0) = y′(0) = 0, y(1) = δy(η), and there exists a function v ∈ SF,y such
that v(t) ∈ F (t, y(t)) and

y(t) =

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

]
.

4.1 The upper semicontinuous case

In the case when F has convex values, we prove an existence result based on nonlinear
alternative of Leray–Schauder type.

Theorem 4. Assume that:

(H1) F : [0, 1] × R → P(R) is L1-Carathéodory and has nonempty compact and
convex values;

(H2) there exist a function φ ∈ C([0, 1],R+) and a nondecreasing function Ω :
R+ → R+ such that ‖F (t, y)‖P := sup{|w|: w ∈ F (t, y)} 6 φ(t)Ω(|y|)
for each (t, y) ∈ [0, 1]× R;

(H3) there exists a constant M > 0 such that M/(‖φ‖Ω1Ω(M)) > 1, where Ω1 is
defined by (8).

Then the boundary value problem (2) has at least one solution on [0, 1].
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Proof. Define an operator ΩF : X → P(X ) by ΩF (y) = {h(t): h ∈ X}, where

h(t) =

{ t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

]}

for v ∈ SF,y. We will show that ΩF satisfies the assumptions of the nonlinear alternative
of Leray–Schauder type. The proof consists of several steps. As a first step, we show that
ΩF is convex for each y ∈ C([0, 1],R). This step is obvious since SF,y is convex (F has
convex values), and therefore we omit the proof.

In the second step, we show that ΩF maps bounded sets (balls) into bounded sets
in X . For a positive number ρ, let Bρ = {y ∈ X : ‖y‖ 6 ρ} be a bounded ball in X .
Then, for each h ∈ ΩF (y), y ∈ Bρ, there exists v ∈ SF,y such that

h(t) =

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

]
.

Then, by using the fact that (p− s)α−1 6 1 (1 < α 6 2), we have

∣∣h(t)
∣∣ 6 ‖φ‖Ω(‖y‖){ t∫

0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

+
tβ+1

|1− δηβ+1|

[
|δ|

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

+

1∫
0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

]}
6 ‖φ‖Ω

(
‖y‖
)
Ω1,
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which, on taking the norm for t ∈ [0, 1], yields

‖h‖ 6 ‖φ‖Ω(r)Ω1.

Now we show that ΩF maps bounded sets into equicontinuous sets of X . Let t1, t2 ∈
[0, 1] with t1 < t2 and y ∈ Bρ. For each h ∈ ΩF (y), using the fact that (p− s)α−1 6 1
(1 < α 6 2), we obtain∣∣h(t2)− h(t1)

∣∣
6 ‖g‖Ω(r)

{∣∣∣∣∣
t1∫
0

[(t2 − s)β−1 − (t1 − s)β−1]

Γ(β)Γ(α+ 1)
ds+

t2∫
t1

(t2 − s)β−1

Γ(β)Γ(α+ 1)
ds

∣∣∣∣∣
+
|tβ+1
2 − tβ+1

1 |
|1− δηβ+1|

[
|δ|

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

+

1∫
0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
duds

]}

6 ‖g‖Ω(r)

{
2(t2 − t1)β + tβ2 − t

β
1

Γ(β + 1)Γ(α+ 1)
+
|tβ+1
2 − tβ+1

1 |
|1− δηβ+1|

|δ|ηβ + 1

Γ(α+ 1)Γ(β + 1)

}
,

which tends to zero independently of y ∈ Bρ as t2 − t1 → 0. As ΩF satisfies the above
assumptions, therefore it follows by the Arzelà–Ascoli theorem that ΩF : X → P(X ) is
completely continuous.

In our next step, we show thatΩF is upper semicontinuous. To this end, it is sufficient
to show that ΩF has a closed graph by Lemma 3. Let yn → y∗, hn ∈ ΩF (yn), and
hn → h∗. Then we need to show that h∗ ∈ ΩF (y∗). Associated with hn ∈ ΩF (xn),
there exists vn ∈ SF,xn

such that, for each t ∈ [0, 1],

hn(t) =

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
vn(u) duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
vn(u) duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
vn(u) duds

]
.
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Thus it suffices to show that there exists v∗ ∈ SF,y∗ such that, for each t ∈ [0, 1],

h∗(t) =

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v∗(u) duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v∗(u) duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v∗(u) duds

]
.

Let us consider the linear operator Θ : L1([0, 1],R)→ X given by

v → Θ(v)(t)

=

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

]
.

Observe that, as n→∞,∥∥hn(t)− h∗(t)
∥∥

=

∥∥∥∥∥
t∫

0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
(vn − v∗)(u) duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
(vn − v∗)(u) duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
(vn − v∗)(u) duds

]∥∥∥∥∥
→ 0.

Thus it follows by Lemma 4 that Θ ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ Θ(SF,yn).
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Since yn → y∗, therefore we have

h∗(t) =

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v∗(u) duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v∗(u) duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v∗(u) duds

]

for some v∗ ∈ SF,y∗ .
Finally, we show there exists an open set U ⊆ C([0, 1],R) with y /∈ θΩF (y) for

any θ ∈ (0, 1) and all y ∈ ∂U . Let θ ∈ (0, 1) and y ∈ θΩF (y). Then there exists
v ∈ L1([0, 1],R) with v ∈ SF,y such that, for t ∈ [0, 1], we obtain∣∣y(t)

∣∣ =
∣∣θΩF (y)(t)

∣∣
6

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
|v(u)|duds

+
tβ+1

|1− δηβ+1|

[
|δ|

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
|v(u)|duds

+

1∫
0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)

∣∣v(u)
∣∣ duds

]
6 ‖φ‖Ω

(
‖y‖
)
Ω1,

which implies that ‖y‖/(‖φ‖Ω(‖y‖)Ω1) 6 1. In view of (H3), there exists M such that
‖y‖ 6= M . Let us set U = {y ∈ X : ‖y‖ < M}. Note that the operator ΩF : U → P(X )
is upper semicontinuous and completely continuous. From the choice of U there is no y ∈
∂U such that y ∈ θΩF (y) for some θ ∈ (0, 1). Consequently, by the nonlinear alternative
of Leray–Schauder type (Lemma 5) we deduce that ΩF has a fixed point y ∈ U , which is
a solution of problem (2). This completes the proof.

4.2 The Lipschitz case

We prove in this subsection the existence of solutions for problem (2) with a nonconvex
valued right-hand side by applying a fixed point theorem for multivalued maps due to
Covitz and Nadler [8].
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Theorem 5. Assume that:

(A1) F : [0, 1]×R→ Pcp(R) is such that F (·, y(t)) : [0, 1]→ Pcp(R) is measurable
for each y ∈ R;

(A2) Hd(F (t, y), F (t, ȳ) 6 q(t)|y − ȳ| for almost all t ∈ [0, 1] and y, ȳ ∈ R with
q ∈ C([0, 1],R+) and d(0, F (t, 0)) 6 q(t) for almost all t ∈ [0, 1].

Then problem (2) has at least one solution on [0, 1] if

‖q‖Ω1 < 1, (13)

where Ω1 is defined by (8).

Proof. Consider the operator ΩF : X → P(X ) defined in the beginning of the proof of
Theorem 4. Observe that the set SF,y is nonempty for each y ∈ X by assumption (A1).
So F has a measurable selection (see [7, Thm. III.6]). Now we show that the operatorΩF
satisfies the assumptions of Lemma 6. To show that ΩF (y) ∈ Pcl(X ) for each y ∈ X , let
{un}n>0 ∈ ΩF (y) be such that un → u as n → ∞ in X . Then u ∈ X , and there exists
vn ∈ SF,x such that, for each t ∈ [0, 1],

un(t) =

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
vn(u) duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
vn(u) duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
vn(u) duds

]
.

As F has compact values, we pass onto a subsequence (if necessary) to obtain that vn
converges to v in L1([0, 1],R). Thus v ∈ SF,y, and for each t ∈ [0, 1], we have

un(t)→ u(t)

=

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v(u) duds

]
.

Hence, u ∈ ΩF (y).
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Next, we show that there exists θ̂ := ‖q‖Ω1 < 1 such that

Hd

(
ΩF (y), ΩF (ȳ)

)
6 θ̂‖y − ȳ‖, y, ȳ ∈ X .

Let y, ȳ ∈ X and h1 ∈ ΩF (y). Then there exists v1(t) ∈ F (t, y(t)) such that, for each
t ∈ [0, 1],

h1(t) =

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v1(u) duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v1(u) duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v1(u) duds

]
.

By (A2) we have
Hd

(
F (t, y), F (t, ȳ)

)
6 q(t)|y − ȳ|.

So, there exists w ∈ F (t, ȳ) such that∣∣v1(t)− w
∣∣ 6 (t)

∣∣y(t)− ȳ(t)
∣∣, t ∈ [0, 1].

Define U : [0, 1]→ P(R) by

U(t) =
{
w ∈ R:

∣∣v1(t)− w
∣∣ 6 q(t)

∣∣y(t)− ȳ(t)
∣∣}.

Since the multivalued operator U(t) ∩ F (t, ȳ) is measurable [7, Prop. III.4], there exists
a function v2(t), which is a measurable selection for U(t) ∩ F (t, ȳ). So v2(t) ∈ F (t, ȳ),
and for each t ∈ [0, 1], we have |v1(t) − v2(t)| 6 q(t)|y(t) − ȳ(t)|. For each t ∈ [0, 1],
let us define

h2(t) =

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v2(u) duds

+
tβ+1

(1− δηβ+1)

[
δ

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v2(u) duds

−
1∫

0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
v2(u) duds

]
.
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Thus ∣∣h1(t)− h2(t)
∣∣

6

t∫
0

(t− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
|v1 − v2|(u) duds

+
tβ+1

|1− δηβ+1|

[
|δ|

η∫
0

(η − s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
|v1 − v2|(u) duds

+

1∫
0

(1− s)β−1

Γ(β)

1∫
s

(u− s)α−1

Γ(α)
|v1 − v2|(u) duds

]
6 ‖q‖Ω1‖y − ȳ‖,

which yields ‖h1 − h2‖ 6 ‖q‖Ω1‖y − ȳ‖.
Analogously, interchanging the roles of y and y, we can obtain

Hd

(
ΩF (y), ΩF (ȳ)

)
6 ‖q‖Ω1‖y − ȳ‖.

By condition (13) it follows that ΩF is a contraction, and hence, it has a fixed point y by
Lemma 6, which is a solution of problem (2). This completes the proof.
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