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Abstract. In this paper, we investigate the controllability of nonlocal Hilfer-type fractional differ-
ential inclusions with noninstantaneous impulsive conditions in Banach spaces.
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1 Introduction

Fractional differential equations and inclusions arise naturally in various fields, and there
are many papers in the literature on existence and controllability results (see, for ex-
ample, [4,9, 11, 12, 14, 17,23]). Impulsive differential equations and inclusions arise in
applications in physics, biology, engineering, medical fields, industry and technology.
Mild solutions to impulsive differential equations and inclusions were studied in [2] and
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reference therein. Note that the introduction of the drugs in the bloodstream and the con-
sequent absorption for the body are gradual and continuous processes. To characterize this
process, Herndndaz and O’Regan [8] introduced noninstantaneous impulsive differential
equations, and for recent contributions, we refer the reader to [13, 18-21].

Hilfer fractional differential equations were studied in [3-5,7,9, 10,22]. However,
there are only a few papers on controllability of Hilfer-type fractional noninstantaneous
impulsive differential inclusions. In this paper, by avoiding any condition on the invert-
ibility of the linear controllability operator expressed in terms of measures of noncompact-
ness, we study the controllability of the Hilfer-type fractional noninstantaneous impulsive
differential inclusions with nonlocal conditions

DPa(t) € Ax(t) + F(t,x(t)) + B(u(t)), ae.te (sitipa), i=0,1,...,m,

(th) =gi(tiz(t;)), z=t)=gi(t,z(t;)), te€(tis) i=1,...,m, (1)
Ié;vx(O) =20+ g(x), I:;Wx(s:r) =gi(si,z(t])), i=1,...,m,

where 0 < a < 1,0 < <1, v =a+ 8- ab D +;1:( ) is the left-sided Hilfer
derivative [9] with lower limit at s; of order « and type 5. Let J = [0,0], b > 0, E be
a real Banach space and A be the infinitesimal of strongly continuous semigroup 7'(t),
t > 0.Inaddition, 0 = 59 < t1 < 81 < t2 < -+ < bty < S < typy1 = b,
x(t]), x(t;) are the right and left limits of = at the point ¢;, respectively, 151:7 is the
left-sided Riemann—Liouville integral of order 1 — ~ [11] with lower limit at s;, and
11+ Ya(sh) = lim, , + I1 7(t). Moreover, F : J x E — 2% — {(}} is a multifunction,
gt PCy_(J,E) — Eahd g; : [t;,s;] x E — E.i = 1,2,...,m, are functions. The
control function w is given in L”(J, X), p > 1/, a Banach space of admissible control
functions, with X being a real Banach space, B is a bounded linear operator from X into
E, and z( is a fixed point of E. The space PC;_., will be discussed in the next section.

The paper is organized as follows. In Section 2, we collect some background ma-
terial concerning multifunctions and fractional calculus, and we discuss a measure of
noncompactness on the space of piecewise weighted continuous functions. In Section 3,
we consider the controllability of (1), and in Section 4, an example is given to illustrate
our theory.

2 Preliminaries and notation

Let P,(E) = {B C E: B is nonempty and bounded}, P, (E) = {B C E: B isnon-
empty, convex and closed}, Pk (E) = {B C E: B is nonempty, convex and compact},
conv(B) (respectively, conv(B)) be the convex hull (respectively, convex closed hull
in F) of a subset B, and C'(J, E) be Banach space of all E-valued continuous functions
from .J to £ with the norm ||z||c(s,g) = sup,es ||2(t)|. Let LP(J,E) = {v: J — E
is Bochner integrable} endowed with the norm [|v||ro(s5) = ([ [v(t)[|P dt)'/?, p €
[1,00). Fora € [0,b) and 0 < v < 1, consider the weighted spaces of continuous func-
tions Cy([a, b], E) = {z € C((a,b], E): (t—a)z(t) € C([a,b], E)}. Now C,([a, b], E)

is a Banach space with norm ||z{|c ((a,b),2) = SUPse (a5 (t — @) ||z (2)]|-
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Let Ji = (g, trg1)s Je =[Sk, thg1] (k= 0,1,...,m), T; = (t;,s;] and T} = [t;, ;]
(i = 1,2,...,m), and consider the Banach space PCy_.(J, E) = {z: (t — s;)' "z €
C(Jx, E), lim, , +(t — si)' 7 z(t), = € C(T3,E), and lim, ,,+ z(t) exist, k = 0,
k [3
1,...,m, i =1,2,...,m}, with

lzll e, .2 =maX{,€:glf}X)m§ellf(t—8k Vel _max | sup flate ) -

Similar to the scalar case given in [5], we have
Remark 1. If z € PC,_,(J, E), then forany k = 0,1, ..., m, the following hold:
(i) @ is not necessarily defined at s, but lim, _, _+ (t — sk)x(t) and z(s; ;) exist.

(i) z(tgy1) = x(tkH) and z(t k+1) exists. Moreover, (t;+1 — sg)'~ 7||x(tk+1)|| <
||~THP01,7(J,E)

(iii) If z, — x in PCi_(J, E), then z,,(t) = x(t),t € (t;,s;],4 =1,...,m, and
(t — sp) 772, (t) = (t — sk) " 72(t), t € (Sk,txr1]. Consequently, x,(t) —
l‘(t), t e (Si,t“_l], and hence zn(ti-&-l) = In(ti_+1) — x(t¢+1) = I(t;_l)
i=0,1,...,m. Then z,,(t) — x(t) a.e. fort € J.

Next, the function x pc, __ (s,) : Po(PC1—~(J, E)) — [0, 00), defined by

.....

is a measure of noncompactness on PC: _,(J, E), where Z\J —{y eC(J, E): y*(t) =
(t—sp) 7y(t), t € Ji, y*(sk) = lim,_, .+ (t—sk) " y(t), y € Z} and Zg=1{y" €
C(TLE): y* (1) =y(t), t € To, y*(t:) = y(t)), y € Z).
Definition 1. (See [7, Def. 2.13].) Let f : J x E — FE be a function. By a mild solution
of

D§Pa(t) = Ax(t) + f(t2(t)), te (0,0, I 7 z(0%) =0 )

we mean a function € C((0, b], E), which satisfies

x(t) = Sa,p(t)zo + /Ka(t —s)f(s,z(s))ds, te(0,0],

where K, (t) = t* 1P, (t), P.(t) = f0°° QM. (0)T(t*0)do, t > 0, M,(0) =
Sl (=0 (n = )P~ n)) € (0,1),0 € C,and 5, 5(1) = €£ K1),
Note that the weight function M, (6) satisfies the equality [~ 67 M, (6)d6 =T'(1+ 1)/

I'(1+ 7p) for 6 > 0.
Remark 2. From [7, Remark 2.14]) we have:
) DY S, 5(t) = Ka(t), t € (0,0].
(i1) When B = 0, the fractional equation (2) reduces to the classical Riemann—

Liouville fractional equation, which was studied by Zhou et al. [24]. Note that
Sa0(t) = Ko (t) = t*7 1P, (1).

http://www.journals.vu.lt/nonlinear-analysis
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(iii) When 8 = 1, the fractional equation (2) reduces to the classical Caputo fractional
equation, which was studied by Zhou et al. [24]. Note S, 1 = Sq(t), where S, (t)
is defined in [24].

Lemma 1. (See [7, Props. 2.15, 2.16].) Suppose the semigroup T'(t), t > 0, satisfies the
condition

(H1) T(t) is continuous for the uniform operator topology for t > 0, and there is
M > 1 such that sup, > | T(t)|| < M.

Then we have

(i) P,(t) is continuous for the uniform operator topology for t > 0.
(ii) For any fixed t > 0, S, p(t) and K,(t) are linear bounded operators, and for
any fived © € E, [Sag(t)z] < (ME-T()lel,y = a + 8 — ap, and
[ Ko (t)z]| < (Mt~ /T(a)) ]zl
(iil) {Ka(t), t > 0} and {Sa.5(t), t > 0} are strongly continuous, which means that
forany x € Eand 0 < t; < ty < b, we have | K, (t1)x — Ko(t2)z|| — 0 and
||Sa)5(t1).%‘ — Sawg(tg)l‘H — 0asty — to.

Based on Definition 1 we present the concept of mild solutions of (1).

Definition 2. A function z € PCy_, [0,b] is called a mild solution of problem (1) if
there is f € Sll:(, 2()) such that

t

Sa,p(t)(@o + 9(2)) + riay Jo Kalt = 5)(f(s) + Bu(s))ds,
te (O,tl],

x(t) = S gi(t,z(t])), te(tiys), i=1,...,m,

Sas(t = s:)gi(si, 2(t;)) + [ Kalt — s)(f(s) + Bu(s))ds,
t e (Si7ti+1], t=1,...,m.

Definition 3. System (1) is said to be controllable on J if for every =y, 1 € F, there ex-
ists a control function v € LP(J, X) such that a mild solution of (1) satisfies [ é; Tz(0) =
xo + g(z) and 2:(b) = z1.

Lemma 2. (See [15].) Let C C L'(J, E) be a countable set such that there is a h €
LY(J, E) with f(t) < h(t), a.e. t € J and every f € C. Then the function t — x{f(t),
f € CY belongs to L*(J, E), and x{ [} f(s)ds, feC} <2 L x{f(s), f € C}ds.

Lemma 3. (See [6].) Let xc(j,r) be the Hausdorff measure of noncompactness on
C(J,E). If W C C(J,E) is bounded, then for every t € J, x(W(t)) < xc(s,5)(W),
where W (t) = {x(t), « € W}. Furthermore, if W is equicontinuous on J, then the map
t = x{x(t), x € W} is continuous on J, and xc( 5,5y (W) = sup,c ; x{z(t), v € W}.

Lemma 4. (See [16, Thm. 3.1].) Let D be a closed convex subset of a Banach space X
and N : D — P.(D). Assume the graph of N is closed, N maps compact sets into

Nonlinear Anal. Model. Control, 24(6):958-984
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relatively compact sets and that for some xy € U, one has

ZCD, Z=conv({zo} UN(Z)), Z = C withC C Z countable
= Z is relatively compact. 3)

Then N has a fixed point.

3 Controllability results

In this section, we establish some controllability results for (1).

Theorem 1. Let F' : JXE — Py (E) be a multifunction, X a Banach space, B : X — E
a bounded linear operator; g; : [t;, s;|x E — E (i = 1,2,...,m) and p be a real number
such that p > 1/a. In addition, (Hy) holds and we assume the following conditions:

(F1) For every x € PCi_(J, E), the multifunction t — F(t,x(t)) has a strong
measurable selection, and for almost every t € J,z — F\(t, z), is upper semi-
continuous.

(F%) There exist a function ¢ € LP(J,RT) and a continuous nondecreasing function
2 :[0,00) — (0,00) such that for every x € PCi_(J,E), |F(t,z(t)]] <
o) 2|zl po,_ (1.5)) for t € J and liminf,, o [[2(n)|/n =v < occ.

(F3) There exists a function ¢ € LP(J,R™) such that for any bounded subset D C E
andany k =0,1,...,m, x(F(t,D)) < (t — s1)*s(t)x(D), a.e. t € J, and

2n 2nN?
= 1
T(a)  T(@2) <"

b M sl o rme) @)
where n = b*~VP((p —1)/(pac — 1))P=V/P and x is the Hausdorff measure
of noncompactness on E.

(Hy) g : PCi_+(J,E) — E is continuous, compact, and liminf o [|g(z)[|/
Izllpe, . (s,5) = 0.

(Hgy,) Foreveryi = 1,2,...,m, g; : [ti,s;] X E — E is uniformly continuous on
bounded sets, and for any t € J, g;(t,-) is compact, and there exists a positive
constant h; such that for any x € E, ||g;(t,z)|| < hi(t; — s;_1) 7 |z|, t €
[ti, 57;].

(HW) The linear bounded operator W : LP(J, X)) — E, which is defined by W (u) =
fsbm Ko (b— s)B(u(s))ds, has an invertible W1 : E — LP(J, X)/Ker(W),
and there exists a positive constant N such that |W || < N and | B|| < N.

Then system (1) is controllable on J, provided that

Mnub' ol L MYTIN? TM(b - st
T(a) PHECEDT ) T T()
oM hM
- » — <1,
+ F(a)UH@HL (J,R*):| +h+ L(v) < )

http://www.journals.vu.lt/nonlinear-analysis
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Proof. Note that W is well defined. In fact, since p > 1/q, the functions s — (b—s)*~1
belongs to LP/(P=1)([0, ], Rt). Then by the Holder’s inequality, for any u € LP(.J, X),
we have

b
MN a—1
Wl < ML/ (b= )" u(s)] ds

MN p— 1 (p—1)/p
< e ba—l/p.
ray e (=7

Now, in view of (Fy) for every x € PCy_,(J, E), the multifunction t — F'(¢, z(¢)) has
a measurable selection f, and by (F5),

f@)| < o) 2(||zll pe,_, (1,5)) (6)

s0 f € S oy = {2z € LP(JE): 2(t) € F(t,(t) ae. for t € U2y (s tiva]}-

Next, [|Sa,5(0 = $m)gm ($m, 2(E))[| < (M(b = $m) ™ /T(y) A (ti — $m—1)'77 X
|lz(t;,) |- Thus, for any x € PCi_(J, E) and any f € Sf,(_ 2(-))» We can define, using

(HW), the control function u, 5 € LP(J, X) by

b
Upp =Wz — Sop(b— Sm)gm (Sm-z(t,)) — /Ka(b —39)f(s) ds], (7)

Sm

Therefore, we can define a multifunction R : PCy_.(J,E) — 2PC1-2(JE) a5
follows. For any « € PC1_,(J, E), a function y € R(x) if and only if

Sep() (@0 + (@) + [y Kot = s)(f(5) + Blu.(s))) ds,
te (0,t1]7

y(t) =< gi(t,x(t;)), te(ti,s], i=1,...,m,

St = 50)gi(sis2(t7)) + [1 Kal(t = $)(f(5) + Blua,s(5))) ds,
t e (Si7ti+1], t1=1,...,m,
where f € Sf,(, ()"
Let us show that using the control function defined by (7), any fixed point for R is

a mild solution for (1) and satisfies x(0) = x¢ and 2(b) = x;. In fact, if z is a fixed point
for R, then from (7) we have

2(b) = Sap(b = 5:)gm (sm, 2 (t:))
b

b
—|—/Ka(b—s)f(s)ds—i—/Ka(b—s)B(uxyf(s)) ds

Sm

Nonlinear Anal. Model. Control, 24(6):958-984
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= Sa,ﬁ(b - Si)gm(‘smvx(t;n)) + /Ka(b - S)f(s) ds + W(ux,f)

= Sa,8(b = 8:)gm (sm,z(t,)) + /Ka(b —5)f(s)ds

=T1.

We now prove using Lemma 4 that R has a fixed point. The proof will be given in
several steps. It is easy to see that the values of R are convex.

Step 1. In this step, we claim that there is a natural number n such that R(B,,) C B,,,
where B, = {x € PC1_(J, E): ||z||pc,_, (s,5) < n}. Suppose the contrary. Then for
any n € N, there are z,,, y, € PC1_(J, E) withy, € R(x,), [|7n|lpc, . (s,2) < nand
lynllpc,_,(7,) > n. Then thereis a f,, € Sg(.’z(_)), n > 1, such that

Sas()(x0 + 9(xn)) + fy Kalt — 8)(fa(s) + Blua, 1, (s))) ds,
t e (O,tl},
yn(t) = ¢ gi(t,zn(t;)), te€ (ti,si] i=1,...,m, (8)
Sa,ﬁ(t sl)gz(suxn )+ f Kot —s)(fn(s )+B(ua?n,fn (s)))ds,
t € (si,tiy1], i = 1,...,

Then, if t € [0, 1], using Holder’s inequality, we have

sup 177 [y (1)]]
te[0,t1]

< sup t177||5a,6(t)($0+9(33))’|
te[0,t1]

Mtr=70(||z,
+ sup (lznllpe, - 7(JE) / o(s)ds
0

te[0,t1] ['(a)

MNt=
+ sup ————

— s a—1 " s <
iefon) (@) / (t = )"tz g, ()] d

0
M Mbl=

MNb=
+ oy e fullze (om0 ©)

I'(a)

http://www.journals.vu.lt/nonlinear-analysis
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From (9) and Remark 1(ii) we get

v, gl Lo (1,x)

b
I ] 52500 s )+ B 50

I M(b— s,) 7t 1— _
g N —hm tm — o9m— v t
_||J?1|| + F('y) ( s 1) ||$( m)H
MOzl pe, ., 1,5))
+ F(a)l . ||</9||LP(J,R+)77]
[ M(b—s,) 7t MQ(n)
=N _||=’E1|| + Wh”mn”PCPW(J,E) + WU”@”LP(J,RH)
[ M(b— s,) 7t MQ(n)
<N h » . 10
_||$1|| + T(7) n+ T(a) nllellzr szt (10)
It follows from (9) and (10) that
sup 7 [y (1)||
te[0,t1]
M Mbl=7
< = n — {2 P
e [lzoll + [lg(zn)||] +n (o) ()llellLe(sr+)
Mb=7N? M(b— sp)7 MQ(n)

_ h . 11
+ F(a) n ||‘T1||+ F(’Y) n+ F(a) 77H<PHLP(J,]R+) (11)

Ift € (t;,8:],71=1,2,...,m, then from Remark 1(ii),

. [yn ()] < h(ti = si-1)" |z (87) || < hllznllpe, e < hn. (12)
te|t;,s;

Similarly, we get for ¢t € (s;,t;41],i=1,2,...,m,

sup (t— Si)l_’YHyn(t)H

t€lsitisa]
S t€[§:/71£+1] Mngl(?"(j)n(t;))n Z\?lz;—)v Q2n)llellLe szt
Wn :||x1|| | M I:(i';)ﬂy_lhn T ]‘ﬁfé;’)mgpmmﬂ:
< T+ 2 0wl oy
Wn :||x1|| | M ;(i’;)v_lhm ]‘?ﬁg‘) @|LP(J,R+)U:. (13)

Nonlinear Anal. Model. Control, 24(6):958-984
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From (11), (12) and (13) we have

n < ynllpc,_, (1.0
M Mbl—7
< 7“‘330“ + Hg(:cn)H] +77W'Q(n)”90”LP(J,R+)

S I()
L MONE T MO, MO
O R () D(a) "I
o+ Mhn
I(y)

Divide both sides by n and pass to the limit as n — oo, and we obtain

Mnobt—7
1< WH@HLP(.I,W)
MYONE TMO = sm) ", | oM [ thy MM
n nllell e ,r+ -,
I(a) r(v) D(a) FHEPERED T(v)

which contradicts (5).
Thus we deduce that there is a natural number ng such that R(B,,,) C B,,.

Step 2. Let K = {z € PC1_(J,E), z € R(By,)}. We claim that the subsets
KITk (k=0,1,...,m) and Klf (¢ = 1,2,...,m) are equicontinuous, where KITk =
{2: T = E, 2(t) = (t — si)' 7 y(t), t € Ji, 2(sk) = limyys, (t — sk)1772(t), y €
R(z), © € By} and Kim = {y* € C(T;, E): y*(t) = y(t), t € [ti,si], y*(t:i) =
y(t"), y € R(z), x € By, }.

Case I. Let z € K ;. Then there is a x € By, and a fe Sf,(w(‘)) such that for
t € (0,t4],

o) = 17 Sa,ﬂ(t)(xo—l—g(x))—l—/Ka(t—s)(f(s)—|—B(uw,f(s)))ds ,
0

and z(0) = lim,_,o1 '~ 7y(¢). It follows for t = 0, 6 € (0,¢;] that

. _ 1 1—vy _ 1 1—r _
51;%1+Z(5) 515&5 y(9) t1—1>%1+t y(t) = 2(0)-

Let ¢, t 4+ ¢ be two points in (0,¢;]. Then

|zt +6) — 2(t)||

<[(E46)' 780,58t + ) (w0 + g(x)) — ' 7750 5(t) (0 + g(2)) |

http://www.journals.vu.lt/nonlinear-analysis
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t+6
+ (t+5)177/Ka(t+5fs)(f(s)+B(ux7f(s)))d5
0
—tl_W/Ka(t—s)(f(s)+B(um,f(s)))ds
0
< §I’Lv

where
L= (t+0)"77|Sa,5(t + 6)(z0 + g(x)) = Sas(t) (z0 + g(2))]|,

I =[(t+0)" = 1 77[|Sa,5(t)(z0 + g(x))

t+0

)

I3 = (t+5)1_V/Ka(t+5—s)f(s)ds ,
Iy = /[(t+5)1_7Ka(t+5—5)f(8)—tl_'y(t—s)a_lPa(t+5—s)f(s)] ds|,
0
I = /[tl—V(t—s)a—lpa(Ha—s)—tl—wa(t—s)}f(s) s,
’ t+6
Is = (t—&—é)l_”/Ka(t—i—é—s)B(ur’f(s)) ds||,
I; = / [(t+0) Ko (t+6—58) =t 7(t —s)* ' Py(t+6 —s)]
0
X B(ug,f(s)) ds||,
Iy = /[tlfW(tfs)aflpa(tJr(;fs)7t1*7Ka(tfs)}B(um7f(s)) ds||.
0

In view of Lemma 1, it follows that

lim 1, = lim (¢ + §) | Sas(t + 6) (zo + g(x)) = Sap(t) (zo + g(z))||
=0

Nonlinear Anal. Model. Control, 24(6):958-984
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and

glg(l) I, = hm | + 6 — t1_7| ||Sa’5(t) (zo + g(z)) H

Mt_”(xo—i-g )| 1 [(¢ +8)" 7~ #7| =0

From Lemma 1 and (F3) we get

t+6
lim I3 = lim (t—&-é)l_v/Ka(t—i—é—s)f(s)ds
6—0 6—0
t
M2(ng) s
no) ;. 1— a—1
< 20 g - =0.
S T %%(t*f*é) /(t+5 $)* T p(s)ds =0

Similarly,

hm I, < hm

/ [(t+6)" Kot +6—s)f(s)

0

— (= ) Pt 4+ 6 — s)f(s)] ds

/t+51w+5 $)* P, (t+ 6 — 5)f(s)
0

— 1t = s)* T Py (t+ 6 — s) f(s)] ds

M.Q(no li 1 ¥ 1—v a—1
gI‘(aéao/’tJﬂs (t+6—s)*"" —t"77(t = 5)* Hep(s)ds

Since ¢ € LP(J,RY), f(f[(t + OV (t+ 5 —s) 7 =17 (t — 5)* " Hep(s) ds exists,
and from Lebesgue dominated convergence theorem we see that lims_,o Iy = 0.
For I5, note that

hm Iy = hm [t (t—5) ' Po(t+6—s) — t' VKo (t—s)| f(s)ds

[t (t—5)* ' Pa(t+6—s) — t' 7 (t—5) " Py (t—s)] f(s) ds|.

Ji
i
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To find this limit, let € > 0 be enough small. We have

t—e
lim I5 < 2(ng)t' 7 lim [ (t —5)* to(s) sup |Pa(t+6 —5) — Po(t —s)||ds
6—0 6—0 s€[0,t—e]
0
¢
+ }in}) (- $)* | Pa(t +6 = 5) f(s) — Palt — s) f(s)ds||
—
t—e

< N2(ng)t' ™7 lim /(t —5)* Lp(s) sup HP (t+6—s)— Pa(t —s)| ds
60 s€[0,t—¢]
¢

Py [t
< Q(no) - hg%) (t — S)a_lw(s)xe?élf ]HPa(t-i-é _ S) _ Pa(t . S)H ds
0 ,t—€
W i Utlw(t —5)* 7 p(s) ds
_ /(tfe)l—v(tf €— 5)047190(8) ds]
0
W%% [/(t_ﬁ)lv(t—G—S)algo(s)ds

_ t/etl—V(t R ) ds] .

From Lemma 1, lims o Sup,ejg—q [|[Pa(t + 0 — s) — Pa(t — s)|| = 0, and since
¢ € LP(J,RT), then from the Lebesgue dominated convergence theorem we see that
Is —+0asd —0ande — 0.

Next, it follows from (10) that

t+4d

hmlﬁ—hm(t-l-(Sl’Y /K (t+ 06— 5)B(ug,f(s)) ds

M@t +6)"'N
< lim ME+O TN

i N Fioe oo
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. M(t+6)'"N
< lim ——— 27 % »
< lim e vz, | Lo (1.x)

46 (r—1)/p
X (/ (t+6 —s)la=bp/(P=D) ds)

t

M(b—s,,)7"1! MQ2(n
N (a1 + ( F(’Y)) hn+ T( ())77||%0||LP(JR+)]

o+ (r-1)/p

1=y

o i ME+) TN /(t 46— s)@-Dp/-D) g
6—0 F(a)

t

=0.
For I, note that
I[E+0) 7 (t+6—s) " —t"7(t—s)* ] f(s)]|
<o) [+t =)+t —5)*p(s), ae s€0,t]

Since ¢ € LP(J,R+) and fot[(t + OVt + 66— ) — 177 (¢ — )L p(s) ds exists,
then from the Lebesgue dominated convergence theorem we see that

/ [(t+6) T Ko(t+6—s) —t'"7(t—s)* Pyt +6 —s)]
0

lim I7 < lim
§—0 §—0

X B(ug,f(s)) ds

t
= lim / [(t4+8)" 7t +06—s)* =t (t—s)*7 !
6—0
0
X HPa(t—l—zs—s) (tz,5(s) Hds

NMQ(n
\71 1—v _ 1—y/4 _ a—1
o) 5133)/| (t+8)"(t+6—s)* =t (t —5)* 7
X ||tz r(s)| ds
NM.Q(TLO)HU I
S ) Masleox

; (p—1)/p
X hm </| (t+ 8Tt +6—s)* " =t — S)oz71|P/(P—1) ds)
0
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NMQ(no) M(b— s,,)7 MO(no)
X ~/ N —hm 7 N P
F(OL) HwIH + F(’Y) ng + F(Oé) ’r]HSD”L (J,RT)
t (p—1)/
% 111’%(/ |(t+ 5)177@_"_ 5 — 8)0471_ tlfﬁy(t _ S)chl‘P/(P—l) dS)
—
0
=0.
Next,
t
hmlg_hm / [t7( )T Pyt 46— s) —t' TV K (t— )]
6—0
0

X B(ug,f(s)) ds

= lim

lim / [t =) ' Pa(t+ 0 —s) =t (t — 5)* ' Pu(t — 3)]

0

X B(ug,f(s)) ds||.

To find this limit, let € > 0 be enough small. We have

t—e
lim Iy < N©2 wm/ (t — ) [z (5)]
0

x sup ||[Pa(t+6—5) — Pa(t—s)||ds
s€[0,t—e]

t
+ lim (= 8)* | Pa(t 4+ 6 — 8)B(ug,f(s))

t—e

X —Py(t — 5)B(ua,s(s))|| ds

t—e
< NQ(no)t* Jim /t e

0
X sup HP +5—s)f(s)—Pa(t—s)Hds
s€[0,t—e]
t
2MN2(ng) .. _ e
)l [ 0709 e (5

t—e
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< N2(ng)t ’YhII(l)/(t*S)a e, r (3)]|
0
x sup |[Pa(t+6—s)f(s) — Palt—s)||ds
s€[0,t—e]

From Lemma 1, lims—,0 Supsejo s—¢ | Pa(t + 0 — 5) — Po(t — s)|| = 0, and since
ug,r € LP(J, X), then from the Lebesgue dominated convergence theorem we see that
Ig —>0asd —0ande — 0.

Case 2. Lety € Kp,,i = 1,2,...,m. Then y(t) = g;i(t,z(t;)). t € (ti, s, @
L,...,m. Leti € {1,2,...,m} be fixed and t,£ + & € (;, s;]. Since ||z||pc,__ (s E
ng, it follows from the uniform continuity of g; on bounded sets that lims_,o ||y (t + 9)
y(t)|| = lims_y0 [|gs(t + 6, (t; ) — g:(¢, z(¢;))]| = 0, independent of x.

Whent = ¢;,7=1,...,m,let § > 0 be such that t; + 0 € (¢;,s;] and A > 0 such
thatt; < A <t; + 6 < s;. Then we have ||y*(¢; + ) — y*(¢:)]| = lim, .+ lly(ti +0) —
y(M[l =0.

Case 3. Letz € K5,k =1,...,m. Thenthereisaz € B,, anda f € 52(.,z(.))
such that for t € (g, tx+1],

/AN

2(t) = (t — s)* lsaﬁ(t — Sk) Gk (sk,x(t;))

+/Ka(t = 8)(fu(s) + B(ux,r(s))) ds|.

sk
Letk € {1,2,...,m} be fixed. If t = s, and § > 0, then
I = i —s)t

5_1)%1+z(sk +0) 6_1>%1+(5k +0—sk) " "y(sk +0)

= lim (t—sx)* Ty(t) = 2(s1).

t—sk+
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Next, let t,t + § € (s;,ti+1], d > 0. Then we have
|2t +6) —2(t)|| = ||(t + 6 — 1) 7 Sap(t + 6 — sk)gr(sk, 2(t),))

— (t = s)' 7" Sa,p(t — s)gn sk, z ()|
(t45 =)' [ Kalt 45~ 5) (fals) + Blus, 5, (5))) ds

Sk
t+4§

(05 [ Kalt = 8) (1al5) + Blua, 1, () ds |

Sk

+

Arguing as in Case 1, we conclude that lims_,o ||2(t + 0) — z(t)]| = 0.

Step 3. The graph of the multivalued function Rp, : Bn, — 2870 is closed.
Consider a sequence {z,,},>1 in By, with x,, — = in B,,, and let y,, € R(x,) with
Yn — yin PC1_(J, E). We need to show y € R(x). Recalling the definition of R, for
any n > 1, thereisa f, € Sf,(_’rn(‘)) such that (8) holds.

In view of (6), ||fn(?)|| < @(t)2(ng) for every n > 1 and for a.e. ¢ € J. Then
{fn, n = 1} is bounded in L?(J, E). Because p > 1, L?(J, E) is reflexive, and hence,
without loss of generality, we can assume that { f,,} converges weakly to a function f €
L?(J, E). From Mazur’s lemma, for every natural number j, there is a natural number
ko ng ) > j and a sequence of nonnegative real numbers \; ., k = ko(j), ..., j, such that
Zk":j Ajk = 1, and the sequence of convex combinations z; = Zk":j Nk fen § =1,
converges strongly to f in L!(J, E) as j — oo.

Take 7,,(t) = ZZO:(Z) An Yk (t). Then
S8 (0)(0 + 9(n)) + i Kalt = 5)(on(5) + Bltg, -, (5))) ds,
t € (0,14],
U, () = gi(t,zn(t])), te(tis],i=1,...,m,
Sap(t = 5:)gi(si, 20 (t7)) + [ Ka(t — 5)(zn(s) + B(ua, =, (s))) ds,

t e (Si,ti+1], 1=1,...,m.

From the continuity of W ~! and the fact that 2, (t) — f(t) a.e. it follows from the
Lebesgue dominated convergence theorem that lim,, oo Uz, -, (£) = ug ¢(t), ae. t € J.
Then by the continuity of g and B and by the uniform continuity of g; on bounded sets it
follows from the Lebesgue dominated convergence theorem that 3, (t) — v(t), where

Sas(t) (@0 + 9(@)) + [y Kalt — s)(f(s) + Bluz 5(s))) ds,
t € (0,14],
v(t) = q gi(t,z(t;)), te (s, i=1,...,m,

St = 5)gi(s0,2(17)) + [2 Kalt = 5)(f(s) + Blug,¢(s))) ds,
t e (Si,ti+1], 1=1,...,m.
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Since y,, — y, then y = v. For almost everywhere ¢, F'(¢, -) is upper semicontinuous
with closed convex values, so from [1, Chap. 1, Sect. 4, Thm. 1] it follows that f(t) €
F(t,z(t)), a.e. t € J, and hence R is closed.

Step 4. We show (3) holds with z¢ = 0.

Let Z C B,,, Z = conv({0} UR(Z)), Z = C with C C Z countable. We claim that
Z is relatively compact in PC_(J, E). Since C'is countable and C' C Z = conv ({0} U
R(Z)), we can find a countable set H = {y,, n > 1} C R(Z) with C C conv({0}UH).
Now for any n > 1, there exists z, € Z C B,, with y, € R(z,). Thus there is
af, € Si“(-,zn(-)) such that (8) holds. According to the definition of x pc,__ (7,£)(Z),
one obtains

xrc,_ 16 (Z) = xpey_ (1,5 (Z) = Xpcy_, 4,5 (C)
=Xprcy_,(1,5)(C) < xpey_ 1,5 (conv({zo} UH))
=xrc,_. 5,5 (H)

= max{k:{)r,lla:.}i,m XC(Tk,E) (’H\ Jk)» Z:I{l’a)fm XC(f,E) (H\f) }

Since ZIJT and Z Ty are equicontinuous, then from Lemma 3 the last inequality be-
comes

xpc,_.(5,5)(Z)
< max{ max max x{y;(t), n > 1}, _max max x{yy(t), n > 1}}, 14)

i=0,1,..,m 4 J, L..om 4T,
where
t1=7y(t), te (0,t],
lim; o t"y(t), t=0,
Y () = gi(t,zn(t;)), te€ (ti,si], i=1,...,m,
yn(t:_), t=1,,
(t—s)'77y(t), te€ (sitiv1],i=1,...,m,
limy s, (t—8;)7 ty(t), t=s,i=1,...,m.
That is,

177 Sa,5(t) (o + g(xn))
HT [T Ko (t— 8)(fa(8) + Blug, 1, (s)))ds, € (0,t],
limy o t'Vy(t), t=0,
gi(t,zn(t;)), te€ (ti,si],i=1,...,m,
Yn(t) = Q gi(ti, zn(t;)), t=ti,
(t = 5:)" 7 Sa,p(t — 5i)gi(si, Tn(t; )
+(t = 5)' T f) Kalt = 8)(fa(s) + Blua, 1, () ds],

te (sitiy1], i=1,...,m,
hmt—mj (t—s)"tyt), t=si=1,...,m.
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Then, using the properties of the measure of noncompactness, one has

X{tl_’ysa,ﬁ( )(@o + g(wn)), n > 1}

—l—tl_'yx{fo (t —8)* IP,(t — 8) fu(s)ds, n > 1}
HIX [y (= 8)* 7 Pa(t — ) B(ua, 1, (s))) ds, n > 1},
t € (0,14],

x{limy_,o+ 1y, (¢), n > 1}, t=0,

x{gi(t,zn(t7)),n =1}, te (ti,sl], i=1,...,m,

x{gi(tian(t;)), n 21}, t=t,i=1,....m,

x{(t = i) S0 p(t = 51)gi(si, zn(t; ), n > 1}
=) L (=9 ) ds 0> )
+(t—s) xS, (- S)a_lB(“xn,fn( )))ds, n =1},

te (sitiv1], i=1,...,m,

x{limysg, (t — s) 1 Yy (t), n > 1}, t=s;.

From the compactness of g and the continuity of S, g it follows that x{¢!=7.S, s(t) x
(o +g(xn)), n > 1} = 0.
Then, if ¢t € Jy, using Lemma 2, we get that

2t1

x{vn(t), n

¢
/ (t— 5)"‘7lx{fn(5)7 n> 1}d5
0

21—

+ Ta) O/(t — s)ailx{B(ugﬁn,fn(s))7 n> 1} ds.

Observe that from (F3) we have

X (), n =1} <o(s)s"{an(s), k > 1} <<(8)xpor, 1,m)(2)
fora.e. s € Jy. Thus

t

¢
/(t _ S)aflx{fn(s), n = 1} ds < XPCl,_Y(J,E)(Z) /(t — S)aflg(s) ds
0 0

< xper_, () (Zs|lLe(gre)- (15)

Next, in order to estimate the quantity x{ﬁf(t — 8)* ' B(ug, £.(s), n = 1}, we
consider the operator © : LP(Jy, X) — E:

O(h)(t) = /(t 1 B(h(s)) ds;
0
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here h € LP(Jy, ) Now 6 is linear, and for any hy, hy € LP(Jy, X) and any ¢ € J,
[©(h1)(t) — O(h2)(1)]|

< / (t = $)°7Y[B(hi(s)) — B(ha(s))|| ds

0
t
<IBI [ (6= 9 h(s) = ha(s)|ds < Nl = hal s 1.

Thus O is linear and continuous (bounded). Moreover, from the linearity and bound-
edness of W 1, the compactness of g,,, the continuity of Se,3(b— sm), (7) and (15) we
have

XLP(J,X) Uz, fr> T = 1}

< XLP(J,X) (W_l {9?1 — Sa,8(b = 5m)gm (sm,z(t;,))

b
S —5) 1 f,(s)ds, n
F(a)s/m(b )7 fu(s) ds, >1}>

<N lx{xl — 80,80 = 5m)9m (SWL?“T(t;n))

b

/ (b—s)*~ 1fn()ds,n>1}]
_F(a)x{/Ka (b—s)*" fn(s)ds,n21}

Sm

2MN

(t— s)a_lx{fn(s), n > 1} ds
«) 0/

2 MN
WXPCI,W(J,E) (D)llsllzrsrty-

N

It follows that

x{ /(t — s)"‘_lB(ummfn(s))7 n > 1}

= x{O(ua,.1.), n = 1} <||OllxLr(s,x){Uan,f0> 7 = 1}

2nM N?
< Ty Xros @)l o).
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This inequality with (15) gives

(@) " T(a)

max x{ys(t), n > 1} < xpo,_, (1,50 MIls|| Lo (s r+)

2n 2nN?
te(0,t]

} . (16)
Next, from the compactness of g one obtains

X{yZ(OL nz 1}

(-TO +g(xn)), nz 1}

ZX{ lim 'Yy, (1), n > } X{
v I()
=0 )
Moreover, since z,(t; ) — x(t; ), the set {x,,(¢; ), n > 1} is bounded for every
i =1,2,...,m. Then from the compactness of g; we getfor: =1,...,m,
Xoi(t,an(t7)), n=1} =0, te (ts] (18)

and x{gi(t;, zn(t;)), n > 1} = 0.
Then fori =1,2,...,m,

w{uisi),n > 1} =x{ lim (¢ = 57 y(), n > 1}

t%si
M
=X 98 xnlt; ,n)l}:O. (19)
{0
As above, x{(t — $;)177S, 5(t — si)gi(si,xn(t;)),n =1} =0,i=1,2,...,m.
Then, arguing as above, we see that forany £ = 1,2,...,m,
_ 2n 2nN?
* 1
(101> 1} < oo 0 Ml | s + s |- QO
From (4), (14), (16)—(20) we get
_ 2n 2nN?
Xper . (15)(Z) < xper b T Ml (gre {F(a) * F(a)Q}

< ch(Z).

Thus X pc,_,(5,5)(Z) = 0, and hence Z is relatively compact.

Step 5. R maps compact sets into relatively compact sets.

Let B be a compact subset of B,,,. Let (y,), n > 1, be a sequence in R(B). Then
there is a sequence (x,), n > 1, in B, such that y, € R(z,). Thus there is a f,, €
S%(wn(-)) such that for ¢ € J, (8) holds. We show that Z = {y,, n > 1} is relatively
compact in PC_(J, E). Since B is compact in PC_(J, E), we can assume, without
loss of generality, that z,, — x in B. As in Step 3, we see that there is a subsequence of
(yn), which converges to a function v € R(B). Then the set {y,, n > 1} is relatively
compact in PCy_~(J, E). Thus R(B) is relatively compact.
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Now, by applying Lemma 4, there is a x € PC,_(J, E) and f € Sg(_ +(-)) Such that

S (t)(@o + g(x)) + [y Ka(t = s)(f(s) + Blus 5(5))) ds,
t € (0,t]

z(t) =< ¢:(t,z(t;)), te (ti,sl],i=1...,m,
St = 50)gi(50,2(1;)) + [1 Kalt = 5)(f(s) + Blug,¢(s))) ds,
te (Si7ti+1], 1= 17...,777,.
This completes the proof. O

Theorem 2. Assume (Hy), (F1), (F3), (Hy), (Hy,) and (HW) hold and, in addition,
suppose

(F5) For any natural number n, there is a function p, € LP(J,R") such that
Sup|g<n 1 F &) < @n(t), ae t € J, and

lim inf 1222 0ED o @1)
n—oo n
Then problem (1) is controllable, provided that
M?p'=YN? (b — s;,)7 7! Mh
b= om) ™ g MRy 22)

M) " TO) r()
Proof. We have only to prove that there is a natural number n such that R(B,,) C B,,
where B, = {x € PC1_(J, E): ||z||pc,_. (s,5) < n}. Suppose the contrary. Then for
any n € N, there are v,,,y, € PC1_,(J, E) with y,, € R(zn), [|znlpc,_,1p) <1
and [|yn|lpc,_. (s,5) > n. Then thereis a f, € S§(~,mn(~))’ n > 1, such that (8) holds.
Lett¢ € [0,¢1]. Asin Step 1 in Theorem 1, we get

M Mbt—
Ny, (V)] < =— + D +n—=—onllLr
S |y (2) ] o) [llzoll + ||g(zn)||]] +n () lonllLe(rr+)
MNb—
Jrﬁw”“m,fn LP(JR+)-

Note

(b—sm)’™

leall+ =5y o (oot

[t g |l Lo () < |[W ]

(b—sm) " n

< 3
(b—sm) " n

= N . .
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Then

sup 177 ||y (8)
te[0,t1]
1 b=~

b'-TN? (0—sm) " U
h n .
F(Oé) n ||I1|| + 1—\<7) n+ F(Oé)H(p ||LP(J,]R+)

Ift (tl,Sl],Z: 1,2,...,m, then

Sup ]Ilyn(t)H = gi(t. 2 (7)) ]| < hn.

€lti,s;

+

i3S4
Similarly, we get for ¢t € (s;,t;+1],4=1,2,...,m,
sup - (t —s:)' 77|y (1))
tE[si,tit1]

Mlgi(si xn(t; DI MY
—— : + F(Oé) ||(PnHLP(.],R+)T]

< sup
= tG[Si,t,H,l] F(’Y)

Mbl—Y N2
(o)
< Mhn n Mbt— lonll
S () 71_‘(&) PrllLe(J,RHT
Mb—7 N2 M(b— sp)7~! nM
_— h nllLe .
ol + O ol e

M(b—s,)" 7t Mn
ol + FEEE b+ S elznrnr

Therefore,

n < lyallror s < — izl + lg@)]] + 12 fonllir iz
B I'(7) I'(a) ’

M(b—s,) 7t

MY N ) + ECL
UARIES! () n T(a) PnllLe(J,RT)

[(a)
Mhn
T(v)

Divide both sides by n and pass to the limit as n — oo, and we have from (21) that

M2=YN2 (b — $,,)7"} Mh
n +h+ =,
['(a) INGD) INGY)

which contradicts (22). O

+ hn +

1<

Theorem 3. Suppose (H1), ('), (Fy), (I3), (Hy,) and (HW) hold and, in addition,
assume

(Hy) g: PCy_,(J,E) — E is Lipschitz continuous with Lipschitz constant k and
compact.
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Then problem (1) is controllable, provided that

Mk M2H'IN? (b— s,,)7""! Mh

) RS Y Py RS Ve RS Yoy R @y
Proof. We have only to prove that there is a natural number n such that R(B,,) C B,
where B, = {x € PC,1_(J, E): |zl|pc,_,(s,E) < n}. Suppose the contrary. Then for
any n € N, there are ,,,y, € PCy_,(J,E) with y,, € R(zn), |znlpc,_,1p) <1
and [|yn|lpc,_ (s,5) > n. Then thereis a f, € Sf,(wn(.)), n > 1, such that (8) holds.
Lett € [0,¢1]. As in Step 1 of Theorem 1, if ¢ € [0, ¢1], we get

sup 77|y (t) ||
te[0,t1]

M
<ty Mool + lloten) = 5O + lo@)]]

¢
Mt
+ sup /(t —8)* Lo, (s)ds
a)
0

te[0,t1]

t
1
+ sup M/t—s(’ 1H“a:mfn Hds
te[0,t1] 5

M v
e )[||$0|| +kn+ [lg(0)]] + ||90nHLp(JR+)

MNb'~ ” I
+ N |Us p .
n F( ) nsfn | LP(JRT)

Note (23), and we have

sup i~ 7Hyn H
te[0,t1]
M Mblf'y
< gy leoll + &+ O] + - lenllrms)

_,_M [ ||_|_M(b_—5m)Hh +ﬂ|| [
O 0 De) PrED ]

Therefore,

M Mb
n <|ynllpc,_,1.m) < e )[||f00|| +kn+ ||g0)||] + n—— () ||<Pn||Lp(JR+)

Mbl—7N? M(b—s,)" ! Mn
W” [||331|| + T(y) hn + (o )|\<Pn||LP JJR+)]
+ b+ Mhn
n4 —"
T(y)
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Divide both sides by n and pass to the limit as n — co, and we have

Mk M2b1IN? (b — sm)%lh oy Mb
I'(v) T(a) " T() I(v)’

which contradicts (24). O]

1<

4 An example

In this section, we give an example to illustrate our theory.

Take a = 1/2,0 < B < l,y=a+B—aB,J =[0,1]and E = X = L?[0,1].
Now E is a separable Hilbert space. Set s = 0, ¢, = 1/4, 1 = 1/2and ty = b = 1.
For any function z : J — L?(J) and any ¢ € [0, 1], we let z(¢)(y) := z(t,y), y € J.
Let F : J x E — Py(FE) be such that z € F(t,z) < z(y) € P(t,z(t,y)), where
P : J xR — Pxk(R) is chosen such that (F}), (Fy) and (F3) are satisfied. Define
g1: [t1,81) x E — Eas gi(t,z) = t*~7L(x), where L : D(L) = E — E is a compact
linear bounded operator. Now (I, ) holds. Let B : £ — E, B = I, where I is the
identity operator and v > 0, and let g : PC1_+(J,E) = E, g(x) = Zle i L(x(t:)),
where c¢;, ¢ = 1,2..., are real numbers. Observe that for any z,y € PC’l,V(J7 E),
lg(x) — gl < 1Ll Z?Zl leil(|lx — y||). Moreover, the compactness of L implies that
g is compact, and hence (H g*) is satisfied.

Now we consider

D2 u(t,y) € wyy(ty) + P(t2(ty)) + Blu(t)),
ae.te (sistit1), i=0,1,
z(tfy) = (t,z(ty,y), yed, (25)
z(t,y) = g1 (tz(t7,y)), te(t,sl] yel,
e (0y) = w0+ 9@y, I e(sTy) = g1 (s, (17, 0)),

where u € L?(J, L2(J)).

Define A : D(A) C L?[0,1] — L?[0,1] by Az = x,,,, where domain A is given
by D(A) = {z € L?[0,1]: x,x, are absolutely continuous, z,,, € L?[0,1], z(¢,0) =
z(t,1) = 0}. Then A can be written as Az = Y > n?*(z,z,)x,, * € D(A), where
Tn(y) = V2sinny, n = 1,2,..., is the orthonormal basis of E. Moreover, for any
z € L?[0,1], we have T(t)(z) = Y o, e*”2t<x,mn>xn. Now A is the infinitesimal
generator of the strongly continuous semigroup {7T'(¢), t > 0}.

Next, the operator P /o(-) can be written as Py /o (t) = (1/2) [;° 0&3,4(0)T(t'/20) d6.

Define W : L?(J,L?(J)) — L%*(J) by W(u) := f11/2(1 —5)"Y2T(1 — s)u(s) ds.
Now W is linear and bounded. We now show W is surjective. Let z € L?(J). Consider
the Mittag-Leffler function as follows: Ej/o(—n?/v2) = [ M1/2(9)e—n2/\/§)9 do,
ncN.
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Note that for any natural number n and any 6 > 0, we have 8/v/2 < 0n?//2, and
hence, e—(n?/V2)0 < e=9/V2 < 1. Thus

2

By (—\%) < By (—%) < /OOM1/2(9) o =1.

Then

1 2
0<1 —El/g(—\/§> <1 —E1/2<—$§) <1

Zn? (x,2n)Tn
uty =S DIy g (26)
HZ::I 71— E1/2(—%)

1
1 oo
_ o / P . .’E xn n d
s s S
/( ) 1/2(1 Z 1—Eo(— 7)
1/2 =
1 e3¢}
— /(1 ) 1/2( /9M1/2(0) 75 1/20 Z 21 Z‘l'n x d@) ds
1/2 0 1/2(= f)
1 1 [e%e}
= /(1—3)1/2<2/9M1/2(9)
1/2 0
i 2 1/2 1’ X (ﬂ
xZe*(’m(ls <Z 2 - 7;2 x >xmd9>d
=1 L=Byjs(~25)
o0 ) 1
= [ Mipp(0) Y e
0/ 1 1= Erp(=25)
1 m29 2 1/2
X Te_em =" (1—5) 712 ds | (&, 2 ) 2 O
1/2
o0 oo 1
= /M]_/Q(H) Z —le[l —emeH/ﬁ] d9<$,$m>$m
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oo 1 0 ,
= Z e /M1/2(9) [1—em 9/\/5] db{(x, T )x
1 Bp(-2) )
= ;m [/Ml/z(ﬁ) de /Ml/g(o)e"”"/ﬁda] (2, T T
1 1—E1/2(_ﬁ) 5 /
[e's) 1 oo ,
=2 1= [ Mal0) 02 0| ()
=i 1-Erp(—25) J

From the above computations W is surjective, where W~z = v and u is given by (26).
Note that W1 is linear, and for z € D(A),

Then

Observe that W ! (z) is independent of ¢ € [0, 1]. Consequently, we obtain ||[W ~!|| <
1/(v[1 = E12(—1/v/2)]). Then from Theorem 3 system (25) is controllable.
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