
Nonlinear Analysis: Modelling and Control, 2005, Vol. 10, No. 4, 297–304

A Comparative Study of Two Real Root Isolation
Methods

A. G. Akritas 1, A. W. Strzeboński2

1University of Thessaly, Department of Computer and Communication Engineering
GR-38221 Volos, Greece

akritas@uth.gr
2Wolfram Research, Inc., 100 Trade Center Drive, Champaign, IL 61820, USA

adams@wolfram.com

Received:
Accepted:

07.10.2005
10.11.2005

Abstract. Recent progress in polynomial elimination has rendered the
computation of the real roots of ill-conditioned polynomials of high degree (over
1000) with huge coefficients (several thousand digits) a critical operation in
computer algebra.
To rise to the occasion, the only method-candidate that has been considered by
various authors for modification and improvement has been the Collins-Akritas
bisectionmethod [1], which is a based on a variation of Vincent’s theorem [2].
The most recent example is the paper by Rouillier and Zimmermann [3], where
the authors present

... a new algorithm, which is optimal in terms of memory usageand as
fast as both Collins and Akritas’ algorithm and Krandick variant ... [3]

In this paper we compare our owncontinued fractionsmethodCF [4] (which
is directly based on Vincent’s theorem) with the best bisection methodREL
described in [3]. Experimentation with the data presented in [3] showed that,
with respect to time, our continued fractions methodCF is by far superior to
REL, whereas the two are about equal with respect to space.

Keywords: root isolation, Vincent’s theorem, coninued fractions method,
bisection (or Collins-Akritas) method.

1 Description of the two algorithms

For completeness we briefly describe our implementation of both the continued

fractions method CF and algorithm REL. The correctness of the first algorithm

297

A. G. Akritas, A. W. Strzebónski

along with an analysis of its computational complexity can be found in the li-

terature [5–8]. A discussion of the second algorithm can be found elsewhere [3].

1.1 Description of the Continued Fractions Algorithm CF

Let us first introduce the notation used in the algorithm. Letf ∈ Z[x] \ {0}.

By sgc(f) we denote the number of sign changes in the sequence of nonzero

coefficients off . For nonnegative integersa, b, c, andd, such thatad − bc 6= 0,

we put

intrv(a, b, c, d) := Φa,b,c,d

(

(0,∞)
)

,

where

Φa,b,c,d : (0,∞) 3 x −→
ax + b

cx + d
∈ (0,∞)

and byinterval datawe denote a list

{a, b, c, d, p, s},

wherep is a polynomial such that the roots off in intrv(a, b, c, d) are images of

positive roots ofp throughΦa,b,c,d, ands = sgc(p).

The value of parameterα0 used in step 4 below needs to be chosen empiri-

cally. In our implementationα0 = 16.

Algortihm Continued Fractions (CF)
Input: a squarefree polynomialf ∈ Z[x] \ {0}.

Output: the listrootlist of positive roots off .

1. Setrootlist to an empty list. Computes ← sgc(f). If s = 0, return an

empty list. If s = 1, return{(0,∞)}. Put interval data{1, 0, 0, 1, f, s} on

intervalstack.

2. If intervalstack is empty, returnrootlist, else take interval data{a, b, c,

d, p, s} off intervalstack.

3. Compute a lower boundα on positive roots ofp.

4. If α > α0, setp(x)← p(αx), a← αa, c← αc, andα← 1.

298

A Comparative Study of Two Real Root Isolation Methods

5. If α≥ 1, setp(x) ← p(x + α), b ← αa + b, andc ← αc. If p(0) = 0, add

[b/d, b/d] to rootlist, and setp(x)← p(x)/x. Computes← sgc(p). If s=0,

go to step 2. Ifs = 1, addintrv(a, b, c, d) to rootlist and go to step 2.

6. Computep1(x) ← p(x + 1), and seta1 ← a, b1 ← a + b, c1 ← c,

d1 ← c + d, andr ← 0. If p1(0) = 0, add[b1/d1, b1/d1] to rootlist, and set

p1(x) ← p1(x)/x, and r ← 1. Computes1 ← sgc(p1), and set

s2 ← s− s1 − r, a2 ← b, b2 ← a + b, c2 ← d, andd2 ← c + d.

7. If s2 > 1, computep2(x)← (x + 1)mp(1
x+1), wherem is the degree ofp. If

p2(0) = 0, setp2(x)← p2(x)/x. Computes2 ← sgc(p2).

8. If s1 < s2, swap{a1, b1, c1, d1, p1, s1} with {a2, b2, c2, d2, p2, s2}.

9. If s1 = 0, goto step 2. Ifs1 = 1, addintrv(a1, b1, c1, d1) to rootlist, else

put interval data{a1, b1, c1, d1, p1, s1} on intervalstack.

10. If s2 = 0, goto step 2. Ifs2 = 1 addintrv(a2, b2, c2, d2) to rootlist, else

put interval data{a2, b2, c2, d2, p2, s2}on intervalstack. Go to step 2.

In the present paper we also address the issue of memory usage by the con-

tinued fraction method. We show that the algorithm can be so structured that the

maximal number of transformed versions of the polynomial that need to be stored

at any given time is bounded by1 + log2 n, wheren is the degree of the input

polynomial. This bound is based on the following conjecture, which we have not

proven, but which we have extensively tested.

Conjecture. Let f be a polynomial of degreen, and letsgc(f) denote the

number of sign changes in the sequence of nonzero coefficients off . Then

sgc
(

f(x + 1)
)

+ sgc
(

(x + 1)nf(
1

x + 1
)
)

≤ sgc
(

f(x)
)

Hence the number of sign changes in any interval onintervalstack is at

least equal to the total number of sign changes in all intervals above it. Sincethe

number of sign changes in the top interval is at least 2, and the total number of

sign changes in all intervals on stack is at most the degreen of f , the number

of possible levels inintervalstack is at mostlog2 n. Therefore the maximal

number of transformed polynomials we need to keep at any given time is at most

1 + log2 n.

299

A. G. Akritas, A. W. Strzebónski

1.2 Description of the Algorithm REL

As in [3], let

Ha(p)(x) = p(ax),

Ta(p)(x) = p(x + a).

The algorithm calls subprocedureDesBoundwhich for a polynomialp of

degreem returnsmin(2, sgc((x + 1)mp(1
x+1))). This is done by computing

subsequent coefficients of the Taylor shift ofxmp(1
x
), returning2 as soon as we

get two sign changes.

Algortihm REL

Input: a squarefree polynomialf ∈ Z[x] \ {0}.

Output: the listrootlist of positive roots off .

1. Setrootlist to an empty list. Setp ← f . Compute an upper boundB on

positive roots ofp (a nonnegative power of2). If B > 1, setp(x)← p(Bx).

2. Computes ← DesBound(p). If s = 0, return an empty list. Ifs = 1,

return {(0, B)}. Put pairs(1, 1) and then(1, 0) on intervalstack. (Pair

(k, c) corresponds to interval[B c
2k , B c+1

2k).) Setk ← 0 andc← 0.

3. If intervalstack is empty, returnrootlist, else take pair(k′, c′) off inter-

valstack.

4. Computep ← 2n(k′
−k)H2k−k′ (T2k−k′c′−c

(p)). ([3] proves that the transla-

tion is either the identity or the Taylor shift.)

5. If p(0) = 0, add[B c′

2k′
, B c′

2k′
] to rootlist, and setp(x)← p(x)/x.

6. If k′ ≤ k, computes← sgc(p). If s = 1, add(B c′

2k′
, B) to rootlist. If s = 0

or s = 1, returnrootlist.

7. Setc← c′, k ← k′, and computes← DesBound(p).

8. If s > 1, put pairs(k + 1, 2c + 1) and then(k + 1, 2c) on intervalstack. If

s = 1, add(B c
2k , B c+1

2k) to rootlist. Go to step 3.

300

A Comparative Study of Two Real Root Isolation Methods

2 Empirical results

We compare performance of our continued fraction algorithm CF, and the algo-

rithm REL described in [3]. We have implemented both algorithms as a part of

Mathematicakernel. They both use the same implementation of Shaw and Traub’s

algorithm for Taylor shifts (see [9]). As benchmark examples we use Chebyshev,

Laguerre, Wilkinson, and Mignotte polynomials used in [3], as well as threetypes

of randomly generated polynomials used in [4].

All computations were done on a 850 MHz Athlon PC with 256 MB RAM.

The memory used data was obtained usingMathematicaMaxMemoryUsed com-

mand, so is includes the total memory used byMathematicakernel. The startup

size ofMathematicakernel is 1.6 MB.

In case of special polynomials, Table 1, CF is faster by factors ranging from

around3 for Chebyshev polynomials to50000 for Mignotte polynomials. The

case of Mignotte polynomials is especially advantageous for our continued frac-

tions method, because there is a point with a very simple continued fraction

expansion (namely15), which lies between the two close roots. For Chebyshev

polynomials we used the fact that the polynomials are even and so with both

methods we isolated only the positive roots.

Table 1. Special polynomials

Polynomial Degree No. of roots CF REL
T (s)/M (MB) T (s)/M(MB)

Chebyshev 1000 1000 2172/9.2 7368/8.5
Chebyshev 1200 1200 4851/12.8 15660/11.8
Laguerre 900 900 3790/8.7 22169/14.1
Laguerre 1000 1000 6210/10.4 34024/17.1
Wilkinson 800 800 73.4/3.24 3244/10
Wilkinson 900 900 143/3.66 5402/12.5
Wilkinson 1000 1000 256/4.1 8284/15.1
Mignotte 300 4 0.12/1.75 803/7.7
Mignotte 400 4 0.22/1.77 3422/15.8
Mignotte 600 4 0.54/1.89 26245/49.1

The results given for random polynomials, Table 2, were averaged over sets

of 5 random polynomials each, both methods were tested on the same sets of

301

A. G. Akritas, A. W. Strzebónski

randomly generated polynomials. When all coefficients were randomly generated

integers CF was faster by factors between1.5 and5.

Table 2. Polynomials with randomly generated coefficients

Coefficients Degree No. of roots CF REL
(bit length) (average) T (s)/M (MB) T (s)/M (MB)

10 500 3.6 0.78/2.2 1.66/2.81
10 1000 4.4 6.67/3.75 34.2/7.5
10 2000 5.6 215/11.4 562/22.8

1000 500 3.2 0.56/2.28 2.19/2.97
1000 1000 3.6 12.7/5.1 31.4/6.5
1000 2000 6.0 329/14.2 510/24.3

The case of monic polynomials, Table 3, with randomly generated large in-

teger coefficients, at lower terms proved to be especially hard for REL. In this

case CF was several thousand times faster. This is because such polynomials tend

to have both very large and small roots, so an isolation method based on interval

bisection starts with a very large interval, and needs to bisect it many times before

it isolates the small roots. CF does not have this problem, because the size ofits

each “step” is based on an estimate of how far the next root is.

Table 3. Monic polynomials with randomly generated coefficients

Coefficients Degree No. of roots CF REL
(bit length) (average) T (s)/M (MB) T (s)/M (MB)

10 500 5.2 1.43/2.48 8.84/3.84
10 1000 4.8 7.12/3.74 80.7/10.1
10 2000 6.8 263/11.4 1001/37.1

1000 100 4.4 0.01/1.75 56.8/5.5
1000 200 6.0 0.086/1.93 252/17
1000 500 5.6 0.57/2.28 1917/96.8
1000 1000 6.0 25.5/5.2 >5000/?

For polynomials with all roots being randomly generated integers, Table 4,

CF was up to25 times faster for small roots, but REL was up to4 times faster for

large roots. The latter being the only case when we found CF to be slower than

REL.

302

A Comparative Study of Two Real Root Isolation Methods

Table 4. Products of factors (x-randomly generated integer root)

Coefficients Degree No. of roots CF REL
(bit length) T (s)/M (MB) T (s)/M (MB)

10 100 100 0.8/1.82 0.61/1.92
10 200 200 2.45/2.07 10.1/2.64
10 500 500 33.9/3.34 878/8.4

1000 20 20 0.12/1.88 0.044/1.83
1000 50 50 16.7/3.18 4.27/2.86
1000 100 100 550/8.9 133/6.49

3 Conclusions

We have shown that our continued fraction root isolation algorithm CF is almost

always faster than the algorithms based on interval bisection. Its bound onmem-

ory usage, given in terms of the number of transformed polynomials it needsto

keep, is not much worse then for the algorithm REL presented in [3], and in

practice its memory usage is often smaller than that of REL.

The link http://members.wolfram.com/webMathematica/Users/

adams/RootIsolation.jsp gives access to both isolation methods with one

caveat: the memory comparison does not work too well. Probably due to the fact

that webMathematica is using a kernel shared by several users, if somebody had

run a memory intensive computation before, MaxMemoryUsed will return the

memory used by that computation, and will not change after our test examples.

References

1. G. E. Collins, A. G. Akritas. Polynomial real root isolation using Descartes’ rule of
signs, in: Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic
Computations,Yorktown Heights, N.Y., pp. 272–275, 1976.

2. A. J. H. Vincent. Sur la resolution des équations numériques, Journal de Mathé-
matiques Pures et Appliquées,1, pp. 341–372, 1836.

3. F. Rouillier, P. Zimmermann. Efficient isolation of polynomial’s real roots,Journal
of Computational and Applied Mathematics,162, pp. 33–50, 2004.

4. A. G. Akritas, A. V. Bocharov, A. W. Strzeboński. Implementation of real root
isolation algorithms, in Mathematica, in:Abstracts of the International Conference

303

A. G. Akritas, A. W. Strzebónski

on Interval and Computer-Algebraic Methods in Science and Engineering
(Interval’94), St. Petersburg, Russia, March 7–10,pp. 23–27, 1994.

5. A. G. Akritas. An implementation of Vincent’s Theorem,Numerische Mathematik,
36, pp. 53–62, 1980.

6. A. G. Akritas. The fastest exact algorithms for the isolation of the real roots of a
polynomial equation,Computing,24, pp. 299–313, 1980.

7. A. G. Akritas. Reflections on a pair of theorems by Budan andFourier,Mathematics
Magazine,55, pp. 292–298, 1982.

8. A. G. Akritas.Elements of Computer Algebra with Applications,Wiley, New York,
NY, 1989. Available also in Russian, MIR Publishers, Moscow, 1994 (with new
material).

9. J. von zur Gathen, J. Gerhard. Fast Algorithms for Taylor Shifts and Certain
Difference Equations, in: Proceedings of ISSAC’97, Maui, Hawaii, U.S.A.,
pp. 40–47, 1997.

304

