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Fixed Point in Minimal Spaces
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Abstract. This paper deals with fixed point theory and fixed point proper
in minimal spaces. We will prove that under some conditigng X, M) —
(X, M) has a fixed point if and only if for eactn-open cover{ B, } for X
there is at least one € X such that both: and f(z) belong to a commom®,.
Further, it is shown that ifX, M) has the fixed point property, then its minimal
retract subset enjoys this property.
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1 Introduction and preliminaries

Fixed point theory is a very attractive subject, which has recently dranchmu
attention from the communities of physics, engineering, mathematics etc. In this
field, there have been many representative approaches method by[Dfbits
[2], authors used fixed point theory to find a method to estimate the optimum
neighborhood with the chosen gain matrix.

In this paper, we prove some results too stunning not be in the spotlight.
These results are typical of the most attractive aspects of the fixed peontyth
in minimal spaces in that they are proved. We show any retract subsejpaica
with fixed point property would have the fixed point property.

In 1950, H. Maki, J. Umehara and T. Noiri [3] introduced the notions of
minimal structure and minimal space. They achieved many important results
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compatible by the general topology case. Some other results about miniesspa
can be found in [4-9].

For easy understanding of the material incorporated in this paper wi reca
some basic definitions. For details on the following notions we refer to [4], [3
and [7].

Definition 1. [3] A family M C P(X) is said to be minimal structure oX if
0, X € M. Inthis casg X, M) is called a minimal space. Throughout this paper
(X,M) or (Y, N') means minimal space.

Example 1. [3] Let (X, 7) be a topological space. The = 7,50(X),
PO(X),a0(X) andBO(X) are examples of minimal structures &n

Definition 2. [3] A setA € P(X) is said to be anm-open set ifA € M.
B € P(X) is anm-closed set iB° € M. We set

m — Int(A) = | {U: U C A, U e M},
m—CI(A)=({F: ACF, F* e M}.

Remark 1. Choosing one of the, SO(X), PO(X),aO(X) andO(X) instead
of M, thenm — Int(A) would beInt(A), sInt(A),pInt(A),alnt(A) and
BInt(A) respectively. Similarlym — CI(A) is equal toCl(A), sCI(A), pCIl(A),
aCl(A) and3CI(A) respectively.

Proposition 1. [3] For any two setsA and B,
(i) m —Int(A) C A and m — Int(A) = A if A isanm-open set;
(i) ACm—CIi(A) and A=m — CI(A) if A isanm-closed set;
(i) m — Int(A) Cm — Int(B) and m — Cl(A) Cm —Cl(B) if ACB;

(iv) m—Int(ANB) = (m—Int(A))N(m—Int(B)) and (m — Int(A))U
(m — Int(B)) Cm — Int(AU B);

(V) m — Cl(AU B) = (m — Cl(A)) U (m — CI(B)) and m — CI(ANB) C
(m — CU(A)) N (m — CUB));
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(Vi) m — Int(m — Int(A)) = m — Int(A) and m — Cl(m — Cl(B)) =
m — Cl(B);

(vii) (m —CIl(A))¢ =m — Int(A°) and (m — Int(A))¢ = m — CI(A°).

Definition 3. [7] A minimal spacé X, M) enjoys the property/ if the arbitrary
union ofm-open sets is am-open set.

Proposition 2. [7] For a minimal structureM on a setX, the following are
equivalent.

(i) M has the property/.
(i) If m—Int(A) = A, then A e M.
(iii) If m — Cl(B) = B, then B € M.

Definition 4. Let (X, M) and (Y, ') be two minimal spaces. We say that a
functionf: (X, M) — (Y, N) is a minimal continuous (briefhy.-continuous) if
f~YB) e M,foranyB € N,

The following results are the immediate consequences of Definition 4.
Proposition 3. Supposé X, M) and (Y, ) are minimal spaces. Then
(i) the identity mapdx: (X, M) — (X, M) is m-continuous;

(i) idx: (X, M) — (X,N) is m-continuous wher¢ X, M) and (X, \) are
minimal spaces and/’ < M;

(i) any constant functiorf: (X, M) — (Y, N) is m-continuous.

Theorem 1. The composition of twm-continuous functions is am-continuous
function.

2 Orbits and fixed point

For two setsX andY and each element of X we associate a nonempty subset
F(z) of Y and this correspondenae— F'(x) is called amulti-valued mapping
or amultifunctionfrom X into Y; i.e., F' is a function fromX to 2¥ \ {}} and is
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denoted byF': X — 2Y. Thelower inverseof a multi-valued mapping” is the
multi-valued mapping” of Y into X defined by

Fl(y) = {9: eX: ye F(x)},
also for any nonempty subsBtof Y we have,
Fi(B)={x € X: F(x)NB#0},

finally it is understood thaf(()) = (. The set{z € X: F(x) C B} is the
upper inversef B and is denoted by™(B). f is minimal lower semicontinuous
(m.l.s.c.), if for everyU C Y m-open,f'(U) is m-open inX.

Let f: X — 2¥ andg: Y — 2% be two multifunctions. The composition
gof: X — 2% is defined by

gof(x) = |J 9.
yEf(z)
Definition 5. [7] For a minimal spacé X, M),

(i) afamily ofm-open setsd = {A;: j € J} in X is called anm-open cover
of Kif K C Uj Aj. Any subfamily of4 which is alsom-open cover of<
is called a subcover ofl for K

(i) asubsetk of X is m-compact whenever given amyopen cover ok has
a finite subcover;

(i) (X, M) is said to ben —T5 space if for each distinct points y € X, there
existsU, V € M containingz andy respectively, such thdf NV = (.

In the following lemma we show the equivalence of point-wiseontinuity
andm-continuity which has a key role for our result.

Lemma 1. Supposegf: X — Y is a function, wheré¢ X, M) and (Y, ) are two
minimal spaces. Thefiis point-wisem-continuous iff is m-continuous.

Proof. Assumef is point-wisem-continuousx € X,V € N andf(z) € V.
Thenz € W = f~1(V) € M. Therefore f(W) C V. O
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Definition 6. A minimal spacé X, M) enjoys the property if the finite intersec-
tion of m-open sets is am-open set.

Theorem 2. SupposeM is a minimal structure with property on X, (X, M) is

m — Ty space andf: (X, M) — (X, M) is m-continuous. Therf has a fixed
point if and only if for eachn-open cove{ B,,: a € A} of X thereisx € X and

a € A such that bothr and f(z) lie in B,.

Proof. One direction is straightforward. For the converse, supposefthas no
fixed point. Then: # f(x) foreache € X. Sincef ism-continuousX ism—1T5
andM has property, so there id¥V,, andU,, in M containing respectively and
f(z) suchthat,nW,, # @ andf(W,) C U,. Now{W,: z € X} is anm-cover
of X, so there ix € X andzy € X such thati,, contains both: and f(z).
Sincez € Wy, sof(z) € f(Wy,) C Us,. On the other handl(z) € W, so
f(z) € Wy, N Uy, which is impossible. O

Extending one direction of Theorem 2 is our next task.
Theorem 3. Supposé’: X — 2% is a multifunction such that:

(i) for eachm-open cove{W,: a € A} for X there arez € X anday € A
for whichW,,, contain bothz and F'(z) (i.e.,z € W,, and F(z) C W,,);

(i) if z ¢ F(z) then there ardV, andU, of M with {z} C W, and f(z) C U,
such thatl7, N W, = 0.

ThenF has a fixed point.

Proof. On the contrary, ifz: ¢ F(z) for eachz € X then from (ii) there are
W, andU, with mentioned properties. TheiV,: z € X} is anm-open cover
for X so from (i) there are two elemenis, zo € X such that bothz} and
F(z0) are contained in?,,,. On the other hand;y € W, implies thatF'(z) C
f(W,,) C U,,. SinceF(zg) C W,,, s0F(xy) C U,, N W,, = 0 which is a
contradiction. O

Definition 7. A family{A;: j € J} in P(X) has the finite intersection property
if any its finite subfamily has nonempty intersection.
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Our next result indicates the relation of fixed point and orbits of a multifunc-
tion.

Proposition 4. SupposeF: X — 2% is a multi-valued map and there is
xo € X such thatO(xo) has finite intersection property. Thdn has a fixed
point if O(F?(x)) C F(z) forall x € X.

Proof. Itis easy to see that'(O(xp)) C O(zg), SO
K={ACO(z): A#0, F(A) C A}

is a nonempty set. Partially orderéd by inclusion. SinceO(z() has finite
intersection property, so from Zorn’s lemnid has minimal element, sag'.
F(C) C CandF(F(C)) C F(C) imply that F'(C) = C. Now, if u ¢ F(u)
for eachu € C, thenu ¢ O(F?(u)). F(u) C F(C) = C follows from the fact
thatu € C, thereforeF*(u) C C for any nonnegative integér. O(F?(u)) = C
can be derived from minimality of’. Consequentlyy € O(F?(u)) which is a
contradiction. O

We are ready to extend a result due to Ciric [10].

Definition 8. Suppos€ X, M) is a minimal space. A subsdtof X is said to be
have minimal closure finite intersection property if the intersection of elesmodn
any familyA = {m — CIi(A4,) C A: a € I} is nonempty, where any its finite
intersection of elements gf is nonempty.

Theorem 4. Supposé X, M) is a minimal spacel’: X — 2% is a multifunction
and

(i) there iszg € X such thatm — CI(O(zp)) has minimal closure finite
intersection property,

(i) m — CIl(O(F?(x))) C F(z) forall z € X,
(i) F(m — CU(O(x0))) € m — CUO(x0)).

ThenF has fixed point.
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Proof. Setk = {m — Cl(A): A C O(xg), F(m — CI(A)) C m — Cl(A)}
which is a nonempty set by (iii))K is a partially ordered set by inclusion. Then

K has a maximal element by Zorn's lemma. We denote this maximal element
by m — Cl(B). ConsequentlyF'(m — Cl(B)) € m — CIl(B) and soF (m —
Cl(B)) =m—CIl(B). Now if x ¢ F(x) forall z € B, then (ii) implies that: ¢

m — Cl(O(F?(x))). Butz € B, soO(F?(z)) C B, thusm — CI(O(F?(x))) C

m — CIl(B). Then

F(m —Cl(O(F?*(z)))) € F*(z) € m — Cl(O(F*(z))).

Therefore,O(F?(x)) = B concludes from maximality o3, soz € O(F?(z))
which is a contradiction. O

An immediate consequence of Theorem 4 can be state in the following.

Corollary 1. SupposéX, 7) is a topological spacef’: X — 2% is a set valued
map and

(i) thereiszy € X such thatO(x() is compact,

(i) O(F?(x)) C F(z) forall z € X,

(i) F(O(xp))) C O(xo).
ThenF has fixed point.

Proof. It should be noticed that in topological space minimal closure finite inter-
section property is equivalent to the compactness. Applying Theoremmgletes
the proof. O

Definition 9. A functionf: X — X is called strongly non-periodic if for every
r € X,z # f(x) impliesz ¢ O(f?(x)). A functionf is said to be orbitally
continuous if for each, y € X, y = lim; f (z) impliesf(y) = lim; f%*1(x).

Corollary 2. [10] Let X be a topological space anfl: X — X be a strongly
non-periodic and orbitally continuous mapping. If for somec X the setD(x)

is compact, then there exist a cluster pointe O(zg) such thatf(z) = =x.

Furthermore, if for everyz,y) € X x X, z # y implies(fz, fy) # (x,y), then
x is a unique fixed point of in X.

Proof. Apply Corollary 1 but for single valued mafa O
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3 Fixed point property

Definition 10. (X, M) and (Y, \) are calledm-homeomorphic if there exists a
bijective functionf : X — Y for which f and f~! arem-continuous. In this case,
f is called anm-homeomorphism an® andY are said to ben-homeomorphic.

Definition 11. (X, M) is said to have the fixed point property if evenyconti-
nuous functiory: X — X has a fixed point.

Example 2. SupposeX = {x1,z2,23} and M = {0, {x1}, {z2}, X} is a
minimal structure onX. In order to show thafX has the fixed point property
it is enough to show that any functioh: (X, M) — (X, M) which has not
fixed point is notm-continuous. Iff has not fixed point, therf(zs) # x3
and thenf(z3) = 1 or f(z3) = z2. Therefore,zs € f~1({z1}) and since
f*{z1}) ¢ M so f~1({z1}) does not lie inM or z3 € f~1({x2}) ¢ M
which implies thatf: (X, M) — (X, M) is notm-continuous.

Next result shows that fixed point property is invariant ungehomeomor-
phisms.

Proposition 5. SupposeX is m-homeomorphic t&”. ThenY has the fixed point
property if X has this property too.

Proof. Supposé: X — Y is anm-homeomorphism ang: ¥ — Y is anm-
continuous function. Sinck~'ogoh: X — X is m-continuous, applying Theo-
rem 1 and fixed point property df, there exists:g € X inwhichh~togoh(z¢) =
zo. Setyg = h(xzg), thenh~tog(yo) = 0. Thereforeg(yy) = h(x) = yo Which
is required. O

Definition 12. A subset4 of a minimal spacé X, M) is a minimal retract ofX
if there is anm-continuous functiom: X — A by r(a) =a forall a € A. In
this caser is called minimal retraction.

In following we prove the fixed point property for some subset of a stt w
this property.

Proposition 6. Supposé X, M) has the fixed point property andlis a minimal
retract of X. ThenA has the fixed point property too.
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Proof. Supposef: A — A is anm-continuous function and: X — Ais a
minimal retraction. Consider the following compositions,

wherei is the inclusion map. From Proposition 3js anm-continuous func-
tion. Since X has the fixed point property, there exists € X such that
iofor(xg) = xo and sofor(xzg) = xo. Puta = r(zg) € A, thenf(a) = zp.
Consequently;(f(a)) = r(z¢) which implies thatf (a) = a. O
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