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1 Introduction

The nonlinear Korteweg-de Vries (KdV) equatign + ¢¢, — a¢,,, = 0is a
universal model to describe one-dimensional nonlinear waves in dispenedia
without dissipation, in which the law of dispersion for nonlinear waves has th
form w = ok + azk3. The KdV equation is a basis for modelling magneto-
acoustic and ion-sound waves in plasma, acoustic waves in crystab;esarid
internal waves of a moderate amplitude in oceans [1]. The KdV equation is
integrated by the inverse scattering method [2] and has an1 supersymmetric
extension [3].

In a few papers [4-9] the following nonlocal generalizations of the KdV a
examples of the first group were proposed.

However, these generalizations result in destruction of integrability, and th
conserved values disappear. It would be of interest to find integrainlergliza-
tions of the KdV equation that could preserve both the properties of nalitipc
and the conservation laws.
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The present work offers a weakly nonlocal generalization of the &eolar
ry KdV and super-KdV (sKdV), which possesses also an unlimited nurober
conservation laws and exact solutions.

2 The nonlocal supersymmetric KdV equation

Let the superfield [10} = QaD}c_ng)Jrl/z unite two fields with different properties:
the “bosonic” fieldp(z,t) € CH(Q) € R?, Q = (x,t): 2 € R, ¢t > 0 and
its spinorial superpartnep(z,t) € C1(Q) C R?; 0 is the Grassmann variable
(constant Majorana spinor)D% f(z) is the fractional derivative in the sense of
Riemann-Liouville [11]:

xT
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Do) = s 4o | e e @

a

in which0 < p < 1, anda is the parameter of nonlocality.
The transformations of the fields v, because of the fractional derivatives
«D% f(z), are nonlocal:

{6777!) = nanllfip¢7 (2)

8, aDz T = mb,.
However, the commutator of the two transformations (2) is a spatial translation:
[0, ¢] = 2€n0,. 3)

The supersymmetric equation

1
Xt = (xm + §><Dx)$, 4)

(hereD = 60, + 0, is a supersymmetric derivative) is a system of two evolutio-
nary equations,

1
wt = wxwx + _(aDi_pd) ’ w)a}?

z 5)
¢t = d):m:x + iaDg [(G‘D;_p(ﬁy - wwx]’
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which is invariant in respect of the supertransformations (2). In thergéoase,
the system (5) is a system of two nonlinear nonlocal evolution equatiorishwh
becomes local when

¢t = wxmm +

(bt = ¢xxa: +

(@2¥) s

(6)

=
Il
o
L R ST

wt - wzxz + _((b/(/}):cv
(rbt = ¢acmm + §(¢2 - W/)x)x

The supersymmetric equation (4) and the corresponding system of etpuatio
(5) unites two fields of different nature, and only one of them is nonlocal.

At the parameter of fractional derivatige= 1 the supersymmetric equation
(4) turns into the ordinary supersymmetric KdV equation (7), which allow® us
designate equation (4) as a nonlocal supersymmetric KdV equation (nsKdV

The analytical solutions of the classical KdV and the KdV with quadratic
nonlinearity are well known. The nKdV relations with these equations allow us
to express the solutions of nKdV through classical solutions of the quomnetng
equations. In particular,

(7)

[l V)

O, 1) = — 5 DL e[Vl ~ )] ®)

is the nonlocal generalization of the classical soliton solution.

3 Integrability and conservation laws

The supersymmetry of nsKdV does not mean its integrability. The most direct
proof of the integrability of supersymmetiimcal KdV equation (4) is that it has a
Lax representation. Let apply supersymmetric Lax representation imomlocal
case:

£, =[-4LY% 0], L= —¢D, 9)
and the conservation laws are obtained as follows:

Hopiq = /sRes £2H/2 da.dp. (20)
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For the super pseudodifferential operafoe= Y 1" «,D'
n .
P, = Z a,D', sResP =a_y, (11)
i=0

where definite integration takes place overRék =: = € R, § € =.
The first conservation law is the difference of asymptotic states:

/ [Dx(2,0)] dvdd = / (02, + DL 7Pp) dxdd

(12)
= [z = w(eroc) = ¥(-o0) =0.
The second conservation law is
Hy = / dxdf(xDx) = / dz [(,D3779)° — ¥, ). (13)

This list of conserved quantities could be continued according to the @ener
expression (10).

The physical meaning of the corresponding conservation laws becdsaesrc
in the pure “bosonic” case. In the case of the nsKdV (4) without syparsetry

1 _
¢t + §aD£(aD; P )2 - a¢xmz = Oa (14)

forz € R, Vt > 0, ;Di Pp(+00,t) = oDa Pp(+oo, t) = 0, we deal with a
conservation value:

10 = / DI Py dr = inv, (15)
as
+0o0
I®) 1
% = / |0 DEP6 = S (D79 da
% ‘ (16)
+oo
= et o - 5(0ireP] | =0
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This conservation value shows that the difference in asymptotic valueanfor
time moment remains unchanged. In the applicationg, at 1 this conserva-
tion law is called the “mass” conservation law, becay$e, t) can be a one-
dimensional density or gradient of any physical, chemical or biologicalninag
tude.

Even this simple example highlights two important properties of the nonlocal
conservation law (15): it interrelates the conservation values of tworéiffe
dynamic systems, which can be of different mathematical naéuge ifh our case
these values are integral and discrete).

As follows from the integrable hierarchy (9) or by a direct verification like
above in the bosonic case, the momentum conservation law is

—+00
1

P=g / (,DL7P¢)? dx = inv. (17)

—0o0
The energy conservation law is

+o00o
= [ (k0 - 5(DE 70| da = ino. as)

—0o0

These conservation laws at the= 1 turn into the momentum and energy conser-
vation laws of the classical KdV evolution equation.

4 Conclusions

Thus, we see that it is possible to construct a supersymmetric weakly abnloc
generalization of the evolutionary KdV equation. The nonlocal term is similar to
the same one in the Burgers evolutionary equation [12] which could be dpplie
for solving the problem of cold dust matter distribution [13].

We use deliberately the nonlocal teg? (,Ds "¢)2/2 and the supertrans-
formation[d, , 6. = 2{nd, (3) for the construction of the nsKdV, nevertheless we
suppose that it is possible to construct a nskdV for the case of superstyic
transformation of the form

[6777 55] = 2677 aDg' (19)
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Considering the specific nature of the fractional differential operateould be
extremely interesting to find such representation.
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