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Abstract. The present work describes the effect of magnetohydrodimam
natural convection flow on a sphere in presence of heat gimera The
governing boundary layer equations are first transformeddmon-dimensional
form and the resulting nonlinear system of partial diff¢i@nequations are
then solved numerically using the Keller-box method. Heeehave focused
our attention on the evolution of the surface shear stregsrins of local skin
friction and the rate of heat transfer in terms of local Nitssember, velocity
distribution as well as temperature distribution for a séten of parameter
sets consisting of heat generation paraméjé¢e= 0.0,0.5,1.0,2.0) and the
magnetic parameted (= 0.0,0.2,0.5,0.8,1.0). Numerical solutions have been
considered for Prandtl numbé&r(= 0.7, 1.0, 2.0).

Keywords: modelling, magnetohydrodynamic, natural convection, thea
generation, sphere.

Nomenclature

a Radius of the sphere

Cy, Local skin friction coefficient

C,  Specific heat at constant pressure
f Dimensionless stream function
Gr  Grashof number

g Acceleration due to gravity

k Thermal conductivity

M  Magnetic parameter
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Nu, Local Nusselt number

Pr  Prandtl number

Q Heat generation parameter

Guw Heat flux at the surface

r Radial distance from the symmetric axis to the surface
T Temperature of the fluid in the boundary layer

T  Temperature of the ambient fluid

T,  Temperature at the surface

u,v  Dimensionless velocity components alang directions
u,v Dimensional velocity components alomgy directions
x,y AXis in the direction along and normal to the surface respectively
Greek symbols

P Stream function

Tw Shearing stress

o) Density of the fluid

I Viscosity of the fluid

v Kinematic viscosity

0 Dimensionless temperature function
8 Coefficient of thermal expansion

5o Strength of magnetic field

00 Electric conduction

Subscripts

w Wall conditions
00 Ambient temperature

1 Introduction

A study of the flow of electrically conducting fluid in presence of magnetic field
is important from the technical point of view and such types of problems hav
received much attention by many researchers. The specific problectesketer
study is the flow and heat transfer in an electrically conducting fluid adjacen
to the surface. The surface is maintained at a uniform temperdiunehich

may either exceed the ambient temperaflite or may be less thefi,,. When

T, > T, an upward flow is established along the surface due to free convection;
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while whenT,, < T, there is a down flow. Additionally, a magnetic field of
strengthg, acts normal to the surface. The interaction of the magnetic field and
the moving electric charge carried by the flowing fluid induces a force, lwhic
tends to oppose the fluid motion. And near the leading edge the velocity is
very small so that the magnetic force, which is proportional to the magnitude
of the longitudinal velocity and acts in the opposite direction, is also very small.
Consequently, the influence of the magnetic field on the boundary layegrigdx
only through induced forces within the boundary layer itself, with no addition
effects arising from the free stream pressure gradient. Kuiken [Hjextuthe
problem of magnetohydrodynamic free convection in a strong crossAidd the
effect of magnetic field on free convection heat transfer has studiépbyrow

and Cess [2]. MHD free convection flow of visco-elastic fluid past amiiafi
porous plate was investigated by Chowdhury and Islam [3]. Raptis afalka
sias [4] have investigated the problem of magnetohydrodynamic freeectoon

flow and mass transfer through a porous medium bounded by an infiniteaber
porous plate with constant heat flux. Elbashbeshy [5] also discuseesffdtt

of free convection flow with variable viscosity and thermal diffusivity alang
vertical plate in the presence of magnetic field. But Hossain [6] introdtleed
viscous and joule heating effects on MHD-free convection flow with vigiplate
temperature. Moreover, Hossighal. [7-9] discussed the both forced and free
convection boundary layer flow of an electrically conducting fluid in pneseof
magnetic field.

However, the study of heat generation or absorption in moving fluids is im-
portant in problems dealing with chemical reactions and those concerned with
dissociating fluids. Possible heat generation effects may alter the tempedistur
tribution; consequently, the particle deposition rate in nuclear reactocs;cie
chips and semiconductor wafers. In fact, the literature is replete with example
dealing with the heat transfer in laminar flow of viscous fluids. Vajravelu and
Hadjinolaou [10] studied the heat transfer characteristics in the laminadboy
layer of a viscous fluid over a stretching sheet with viscous dissipatioricer f
tional heating and internal heat generation. In this study they consitleatthe
volumetric rate of heat generatiogi? [w. m—3], should beg™ = Qo(T — Tx),
for T > T, and equal to zero foF' < T, where(@) is the heat generation /
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absorption constant. The above relation is valid as an approximation of the sta
of some exothermic process and havifig as the onset temperature. When the
inlet temperature are not less thag, they used;”™ = Qo(T — T,). Hossain

et al. [11] also discussed the problem of natural convection flow along a &értic
wavy surface with uniform surface temperature in presence of heatraggon /
absorption. Also the effects of the conjugate conduction-natural ctinoneheat
transfer along a thin vertical plate with non-uniform heat generation staxted

by Mendez and Trevino [12].

The problems of free convection boundary layer flow over or on bafiesr-
ious shapes discussed by many mathematicians, versed engineereanchesrs.
Amongst them are Nazat al. [13,14], Huang and Chen [15]. Nazzatral. [13,14]
considered the free convection boundary layer on an isothermalesphdron an
isothermal horizontal circular cylinder in a micropolar fluid. The effedaaifinar
free convection from a sphere with blowing and suction studied by Huadg a
Chen [15]. However, Cheng [16] studied the mixed convection both izdraal
cylinder and a sphere in a fluid-saturated porous medium. On the othetteand
analysis of mixed forced and free convection about a sphere distbgsehen
and Mucoglu [17].Very recently, Hossaget al. studied [18-20] the conjugate
effect of heat and mass transfer in natural convection flow from ciaésmal
sphere with chemical reaction, temperature dependent thermal corijuatid
radiation effect respectively. To our best of knowledge, heatrgeioa effect on
magnetohydrodynamic free convection flow from an isothermal spherexdita
been studied yet and the present work demonstrates the issue.

The present work considers the natural convection boundary layerofh
a sphere of an electrically conducting and steady viscous incompressitole fl
in presence of strong magnetic field and heat generation. The govegraing
tial differential equations are reduced to locally non-similar partial difféad
forms by adopting appropriate transformations. The transformed boutayer
equations are solved numerically using implicit finite difference scheme tagethe
with the Keller box technique [21] and [22]. Here we have focused tian&on
on the evolution of the surface shear stress in terms of local skin frictidn an
the rate of heat transfer in terms of local Nusselt number, velocity distributio
as well as temperature distribution for a selection of parameters sets cansistin
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of heat generation paramet@(= 0.0, 0.5, 1.0, 2.0) and the magnetic parameter
M(=0.0,0.2,0.5,0.8,1.0). Numerical solutions have been considered for vari-
ous Prandtl numbePr = 0.7,1.0 and2.0.

2 Formulation of the problem

The steady two dimensional laminar natural convection flow on a spheadiofsr

a, which is immersed in a viscous incompressible and electrically conducting fluid
of ambient temperaturé,, in presence of uniform transverse magnetic field of
strengthd, is considered. It is assumed that the surface temperature of the sphere
is T,, whereT,, > T,. The coordinates x and y measure the distance along
the surface of the sphere from the stagnation point and the distancelrtorma
the surface of the sphere respectively. The flow configuration ancbibrelinates
system are shown in Fig. 1.

r(x)

X

R

Fig. 1. Physical model and co-ordinate system.

Under the Boussinesq and boundary layer approximations, the gogernin
equations for mass continuity, momentum and energy take the following forms:

o, 9, __

5z "+ ) =0 (1)
9 _du 0% . (x\ 0ol

U%—F’Ua—y —Va—g2+gﬁ(T—Too)Sln (a) — P u, (2)

orT 0T k 0°T Qo
I = — —— + (T — Ti).
oz Tt oy pcp Oy? + pcp( ) )
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The boundary conditions for the equations (1) to (3) are

v=0, T=T, on g=0, (4a)
u—0, T—-Tyw at y— oco. (4b)

Wherer(z) = asin(z/a) is the radial distance from the symmetrical axis to the
surface of the spheréz, y) are the dimensional coordinate along and normal to
the tangent of the surface of the sphere &ngdy) are the velocity components
along (z,y) directions,g is the acceleration due to gravity, is the coefficient

of thermal expansiony = p/p is the kinematic viscosity/" is the fluid tem-
perature,p is the density,o is the electrical conduction, anftr = uC,/k

is the Prandtl numbeg is the thermal conductivity an@), the specific heat at
constant pressure. The amount of heat generated or absorbedifpariume is
Qo(T—-Tw), Qo being a constant, which may take either positive or negative. The
source term represents the heat generation wher 0 and the heat absorption
when@)y < 0. To make the above equations dimensionless, we introduce the new
variables follows as

T = f, Y= Gr1/4g, _ Gr\%u, v= a4 Gr—'/15,
a a v v
5
g T=Tw o _ 98(Tu —T)a? ®)
Tw—Tso’ V2 '

WhereGr is the is the Grashof number afids the non dimensional temperature.
Thus we have

r(z) = asinzx. (6)

Introducing the above dimensionless variables into equations (1) to (3javee

0 0
%(ru) + a—y(rv) =0, 7
ou ou 02 . 0B%a?
u%—kva—y—a—yg—i-ﬁsmx—mu, (8)
2 2
00, 90 _ 10 Q __da* ©

Yor Ty T Progg pe,  vGriP
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The boundary conditions associated with equations (7) to (9) are
u=v=0, =1 at y=0, (10a)
u—0, 6—-0 as y— oo. (10b)

To solve the equations (7) to (9) subject to the boundary conditions (10),
we assume the following variablesy = zr(x)f(z,y). Here is the non-
dimensional stream function, which is related to the velocity components in the
usual way as

w=1% and y=_1%¥ (11)
r Oy r Or
We may proceed to transform the conservation of momentum and energy
equations (8) and (9) into the new co-ordinates. To facilitate the transtfiomméa
is useful to have the velocity components explicitly expressed in terms of the ne

variables. Therefore we obtained

% + <1 + Siix cosx) gi;; - <Z—ch>2 + gsinx — Mg—jyF
_ x(?—g % _ % giy];), (12)
Pir giyz + (1 + Simcosx)fg—z +0Q0 = x(g—i % - % g—z), (13)
whereM = Z(gﬁ‘i is the magnetic parametéy = Cpizgol/z is the heat genera-

tion parameter.
The corresponding boundary conditions for the present problemtthran
into

u=v=0, =1 at y=0, (14a)
of
8_y —0, 6—0 as y— oc. (14b)

It has been seen that the lower stagnation point of the sphereA:d), equations
(12) and (13) reduce to the following ordinary differential equations:

d* f d*f rdfy\? df

AR (—dy> FO- MG =0, (15)
1 d36 do

Ed—yQ'FQfd—y-l-Qe—O (16)

355



Md. M. Molla, M. A. Taher, Md. M. K. Chowdhury, Md. A. Hossain

along with the boundary conditions

F=% 0 =1 a y—o (17a)
dy

g—>0, f—0 as y— oo (17b)

dy

However, in practical application, it is very important to calculate the values
of the rate of heat transfer and surface shear stress in terms ofliiNugsber and
the skin friction coefficient respectively. These can be written in non-damoaal
form as

Gr—3/4¢2 aGr—1/4
Cf = TTw and Nu = mqw (18)
Wherer,, = 11(%)5—0 andg,, = k(3L )g=0 , k being the thermal conductivity
of the fluid. Using the new variables (6), we have
0% f
_ (9] 19
Cr x(ayz)yzo, (19)
06
Nu, = —(=— . 20
u (8y>y:0 ( )

Also we discuss velocity distribution as well as temperature distribution for
a selection of parameter sets consisting of heat generation parapetagnetic
parametel/ with the Prandtl numbePr atz = 7 /6 of the surface of the sphere.

3 Resultsand discussion

Here we have investigated the effect of magnetohydrodynamic natumagciion
flow on a sphere in presence of heat generation paramgtethe numerical
solutions start at the lower stagnation point of the sphere i ~ab, with initial
profile as given by equations (12) and (13) along with the boundargitons
(14) and proceed round the sphere up to the pointz 7/2. Solutions are
obtained for different values of Prandtl numbéhs= 0.7, 1.0, 3.0, 7.0 for a wide
range of values of magnetic parameié(= 0.0,0.2,0.5,0.8,1.0) with the heat
generation parameté} = 0.0, 0.5, 1.0, 2.0. Also the results for local rate of heat
transfer and local skin friction coefficient have been obtained fronagons (19)
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and (20) for fluids having Prandtl numb&y = 0.7,1.0,2.0 and7.0 at different
position ofz for a wide range of values of magnetic paramétémwith the heat
generation parameté).

Numerical values of the rate of heat transfer in terms of local Nusselt eumb
Nu,, as given by equation (19), has been obtained by several authorge in th
absence of magnetic field and the numerical results are summarized in Table 1
for Prandtl numberPr = 0.7 and Pr = 7.0 for the surface of the sphere from
lower stagnation point ~ 0 to the pointz ~ = /2.

Table 1 depicts the comparisons of the present numerical results of the Nus
selt numberVu, with those obtained by Nazat al. [13] and Huang and Chen
[15]. Here, the magnetic paramefdrand heat generation parametgis ignored
and Prandtl numberBr = 0.7 and7.0 are chosen. The present results agreed well
with the solutions of Nazaat al. [13] in the absence of micropolar parameter and
of Huang and Chen [15] in the absence of suction and blowing.

Table 1. Comparisons of the present numerical resulty offor the Prandtl
numbersPr = 0.7,7.0 without effect of the magnetic and heat generation
parameter with those obtained by Naggal. [13] and Huang and Chen [15]

Pr=0.7 Pr=17.0

xin Nazar Huang & Present Nazar Huang & Present
degree etal.[13] Chen[15] results etal.[13] Chen[15] results
0 0.4576 0.4574  0.4576 0.9595 0.9581  0.9582
10 0.4565 0.4563  0.4564 0.9572 0.9559  0.9558
20 0.4533 0.4532  0.4532 0.9506 0.9496  0.9492
30 0.4480 0.4480 0.4479 0.9397 0.9389  0.9383
40 0.4405 0.4407  0.4404 0.9239 0.9239 0.9231
50 0.4308 0.4312  0.4307 0.9045 0.9045 0.9034
60 0.4189 0.4194 0.4188 0.8801 0.8805 0.8791
70 0.4046 0.4053  0.4045 0.8510 0.8518  0.8501
80 0.3879 0.3886  0.3877 0.8168 0.8182 0.8161
90 0.3684 0.3694 0.3683 0.7774 0.7792  0.7768

Numerical values oy, and Nu, for different values of Prandtl numbétr
while M = 1.0 and@ = 1.0 are depicted in Table 2. From Table 2, we found
that the values of local skin friction coefficieat;, increase at different position
of x for Prandtl numberPr = 0.7,1.0 and2.0. The rate of increase of local
skin friction coefficientC', is 3.81335 % as the Prandtl numbé?r change from
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Table 2. The values @f';, and Nu, while M = 1.0 and@ = 1.0 for different
values of Prandtl numbé&?r

T Pr=0.7 Pr=1.0 Pr=2.0
(oF Nuy, Cra Nuy, Cte Nuyg

0.0 0.00000 —0.75118 0.00000 —0.99796 0.00000 —1.78159
7/18 0.16585 —0.75593 0.16731 —1.00384 0.17158 —1.79078
w/9 0.32912 —0.76901 0.33222 —1.02002 0.34112 —1.81608
w/6 048732 —0.79061 0.49241 —1.04678 0.50664 —1.85794
w/4  0.70962 —0.83968 0.71873 —1.10761 0.74297 —1.95330
w/3 0.90643 —0.91000 0.92121 —1.19498 0.95879 —2.09077
w/2 1.18795 —1.12109 1.22032 —1.45852 1.29766 —2.50950

0.7 to 2.0. Furthermore, it is seen that the numerical values of local heat transfer
rate Nu, decrease for increasing values Prandtl numBer As Pr increases,

the maximum point moves towards the stagnation point and this suggest that a
surface transfer more heat for small values of Prandtl nurfbeAnd the rate of
decrease of local heat transfer rafe., is 57.44695 % as the Prandtl numbé?r
change from0.7 to 2.0.

Figs. 2(a)—(b) illustrate the variation of local skin friction coefficiéht, and
the rate of local heat transfé¥u, with = for different values of heat generation
parametei)(= 0.0,0.5,1.0,2.0) as obtained by solving numerically equations
(12) and (13) wher@d/ = 0.5. The Prandtl numbePr is taken equal t6.7, which
corresponds to the air. It is seen from Fig. 2(a) that the skin frictiofficaant

2.5F 4.0 o
(a) 0 - (b) 0.0
20F — 0.0 -7 - T Tt 0.5
—————— 0.5 -~ 2.0 - - == 1.0
- --=== 1.0 2 mm———— 2.0
1.5F —————— 20 o7
) N e
& 7 e
1.0k S e -
R .- 2.0 F
. PP
osfF el TTTmmm————
POt 40 TTTm=-
0 % 1 1 1 1 1 1 1 1 1 1
89 03 06 09 1.2 1.5 0.0 0.3 0.6 0.9 1.2 1.5

Fig. 2. Variation of Local skin-frictionC, (a) and rate of heat transfer
Nu, (b) with z for different valueg) while M = 0.5 andPr = 0.7.
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C', is influenced considerably and increases when the values of heaatiene
parametet) increases at different position of(in radian) with magnetic parame-
ter M = 0.5 and Prandtl numbePr = 0.7. Thus we may conclude that when the
body is at low temperature compared with fluid, say air, the skin friction is high.
Moreover, Fig. 2(b) indicates that the rate of heat tranafaf, decreases owing
to increase the values of heat generation paranigteith magnetic parameter
M = 0.5 and the Prandtl numbd?r = 0.7. It can be seen that the analytical
solution is an excellent agreement with the numerical solution and this is egpecte
since the heat generation mechanism will increase the fluid temperaturtheear
surface. On the other hand, the presence of heat absorglicn () creates a
layer of cold fluid adjacent to the heated surface and therefore thdrhaater
rate from the surface increases. This means that if the body is at low tetuer
compared with fluid (say air) the rate of heat transfer is very slow.

Figs. 3(a)—(b) display results for the velocity and temperature profigsgd
on equations (12) and (13) with the boundary conditions (14), forréiffiesmall
values of generation paramet@(= 0.0,0.5,1.0,2.0) plotted against y at =
7 /6 having Prandtl numbePr = 0.7 andM = 0.5. Itis seen from Fig. 3(a) that
the velocity profile is influenced considerably and increases when the alu
heat generation paramet@rincreases. But near the surface of the sphere velocity
increases significantly and then decreases slowly and finally appsothaero.
The maximum values of the velocity abe29811, 0.38816, 0.52165 and0.86885
for @ = 0.0,0.5,1.0, and2.0 respectively which occur at = 1.05539 for first

1.0 3.0r
) (b)
@ sk N 0 ¢
/ \ 0.0 0.0
/ vommm - 0.5 2.0 0.5
0.6/ Nommmmm 1.0 10
o, Y m——m——— 2.0 —_ 2.0
of G .\\\\ ~ .
6.7 0.4 W RN AN X 1.0 -
y ':“' :\\\ 3 .
0.2 T;:’ ‘\\\\_
. o . .
0879 2.0 7.0 6.0 0.9. 6.0
y ¥

Fig. 3. Variation of velocity profiles (a) and dimensionlésmperature (b) with
y for various values of) while M = 0.5 and Pr = 0.7.

359



Md. M. Molla, M. A. Taher, Md. M. K. Chowdhury, Md. A. Hossain

maximum valuey = 1.11440 for second and third maximum values andjat
1.99806 for last maximum value. Here it is observed that the velocity increase
by 65.6891 % as(@ increases fron.0 to 2.0. Also from Fig. 3(b), we observed
that when the value of heat generation paraméténcreases, the temperature
distributiong(x, y) also increases significantly. Here it is observed thatfor
0.0 and 0.5, the maximum values of the temperature profiles are attained at the
surface but forQ = 1.0 and 2.0 the maximum values of the temperature are
1.21952 and2.69520 respectively which occur at = 0.73363 andy = 0.94233.
Thus the temperature profiles increasesby6440 % as (@ increases frond.0 to
2.0.

The variation of the reduced local skin friction coeffici€nt, and local rate
of heat transfeN u, for different values of magnetic paramefdi(= 0.0, 0.2, 0.5,
0.8,1.0) with x are illustrated in Figs. 4(a)—(b) both f@ = 1.0 and Pr = 0.7.
From Fig. 4, it is observed that both local skin friction coefficiéht, and local
rate of heat transfeV v, decrease slightly as the values of magnetic paraméter
increases at different position of(in radian). Thus we can say that the magnetic
field is limited to retardation though in presence of heat generation parageter

(a)

0-85 0.3 20 T3 0.0 0.3 .0 T3

Fig. 4. Variation of Local skin-frictionC', (a) and Local Nusselt number
Nu, (b) with x for some small values aff where@ = 1.0 andPr = 0.7.

Figs. 5(a)—(b) deal with the effect of magnetic paramateon the velocity
and temperature distributions againstat + = 7/6 with the heat generation
parameter) = 1.0 and the Prandtl numbePr = 0.7. Here it is found from
Fig. 5(a) that the velocity distribution decreases slightly as the magnetic parame
M(=0.0,0.2,0.5,0.8,1.0) increases in the regian € [0, 6] but near the surface
of the sphere velocity increases and become maximum and then decredses a
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0.6

O N N 0

of

oy
0.2F

0875 7.0 70 5.0
y ¥

Fig. 5. Variation of velocity profiles (a) and dimensionléssperature (b) with
y for some small values aff while Q = 1.0 and Pr = 0.7.

finally approaches to zero. The maximum values of the velocity0di&382,
0.53513, 0.52090 and 0.49694 for M = 0.0,0.2,0.5,0.8 and 1.0 respectively
which occur aty = 1.11446 for first and third maximum values and at=
1.17520 for last two maximum values. Here we see that the velocity decreases by
10.27 % asM increases from.0 to 1.0. However Fig. 5(b) shows the distribution

of the temperature profilegx, y) with y for some small values of magnetic pa-
rameterM (= 0.0,0.2,0.5,0.8,1.0). Clearly it is seen that the temperature distri-
butiong(z, y) increases owing to increasing the values of magnetic paraméter
and the maximum moves closer to the wall. The local maximum values of the tem-
perature profiles aré.14148,1.17917,1.24350,1.31649 and1.36874 for M =
0.0,0.2,0.5,0.8 and 1.0 respectively which occurs at = 0.58973,0.68459,
0.73363,0.83530 and0.88811. Here we found that the temperature profiles in-
crease byl16.6035 % as M increases from.0 to 1.0.

4 Conclusions

Magnetohydrodynamics natural convection flow from an isothermalrepligh
temperature dependent heat generation has been investigated hareriddu
results of the equations governing the flow are obtained by using implicit finite
difference method together with the Keller-box method. From the presezg-inv
tigation, it may be drawn the following conclusions:

e Anincrease in the values of heat generation parandgteads to increase the
local skin friction coefficientC'y, but decrease the local rate of heat transfer
Nug.
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Both the velocity and temperature profiles increase significantly when the

values of heat generation paramefeincrease.

The local skin friction coefficienC's, and the local rate of heat transth,
decrease slightly when the values of magnetic paraniétarcrease.

For increased values of magnetic paramététhe velocity distribution de-
creases but the temperature distribution increases slightly.
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