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Abstract. Toxin producing phytoplankton (TPP) plays an important role in
aquatic systems. To observe the role of TPP, we consider a three species
food chain model consisting of TPP-zooplankton-fish population. The similar
type of model considered by Upadhyayet al. [1] for terrestrial ecosystem and
obtained chaotic dynamics in some region of parametric space. We modify their
models by taking into account the toxin liberation process of TPP population
and represented as aquatic systems. We consider Holling type I, type II and type
III functional forms for this process. We observe that increasing the strength of
toxic substance change the state from chaos to order. Our conclusion is that TPP
has a stabilizing contribution in aquatic systems and may beused as a bio-control
mechanism.

Keywords: toxin producing phytoplankton, chaos, limit cycle, functional
response, aquatic system.

1 Introduction

The major concern in population and community ecology is to understand how

a population of a given species influences the dynamics of population of other

species, which are members of same interaction network [1]. Interaction networks

∗The work is supported by Department of Science and Technology, NewDelhi, grant under fast
track scheme for young scientists 2001–2002 to the first author (RKU).
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in natural ecosystems can be visualized as consisting of simple units known as

food-chains or food-webs that consists of a number of species linked by tropic

interactions. Researcher have focused a great deal of their attention toanalyzing

the dynamical behavior of model food chain. Two species continuous time models

of interacting species have been extensively studied in literature. These models

exhibit only two basic patterns: approach to equilibrium (stable focus) or toa

limit cycle. Three species continuous time models are reported to have more

complicated patterns. These models form dissipative dynamical systems which

can possess three distinct dynamical possibilities like stable focus, limit cycle

and chaos in the phase space. The research of the last two decades demonstrates

that very complex dynamics can arise in three or more species food chain models

[2–4], while similar results are obtained for multi-species food web models [5–7].

May [8] reviewed the literature and concluded that the study of nonlinear systems

are indispensable as far as understanding about nature is concerned. Since the

seminal work [9, 10] of Sir Robert May deterministic chaos have been studied in

models [11–13], in the laboratory [14, 15] and in the field [16–18]. Although it

has been seen in the models quite a bit, yet there are very few examples from

the laboratory as well as from the field. Therefore, it can be understood that no

unambiguous evidence of chaos exists till date. The investigations by Upadhyayet

al. [1, 19] into reason why chaos had been rarely observed in natural populations

concluded that natural terrestrial ecosystems are not suitable candidates for the

exploration of chaotic dynamics. This is paradoxial, since ecological systems

have all the necessary characteristics (nonlinearity, high-dimensions, etc.) to be

able to support chaotic dynamics. The existence of chaos in almost all the physical

systems [20, 21] motivates one to critically study the same in natural population.

Since almost all form of scientific enquiry have found application of ideas from

nonlinear dynamics and chaos, there is a natural curiosity and urge to explore the

possibility of aquatic systems evolves on strange chaotic attractor or not?
Recent studies on ecological systems [6, 13, 22] indicate that chaotic dy-

namics may play an important role in continuous time models. There are some

evidences that the real time evolution of species involved in two or three food

chains could be characterized by chaotic attractors as observed in many natural

food chains. Now the more challenging issue is the observation that natural

systems seems to have no difficulty switching from one state into the other, from
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chaos to order and from order to chaos. In aquatic ecosystem, toxin producing

phytoplankton may act as controlling factor for such dynamics. The role oftoxin

producing phytoplankton (TPP) for reduction of grazing pressure ofzooplankton

is well known [23]. Toxicity may be a strong mediator of zooplankton feedingrate

as shown by field studies [24,25] and laboratory studies [26]. Areas rich in some

phytoplankton organisms, e.g.Phacocyslis, Coscinodisem, Rhizosopenia are un-

accepted or avoided by zooplankton due to dense concentration of phytoplankton

or the production of toxic substances released by phytoplankton. This phenomena

are well explained by “Exclusion principle” [27, 28]. Chattopadhyayet al. [29]

investigated the role of toxin producing phytoplankton for the termination of

planktonic blooms.

In this paper, we modify first the model of Upadhyayet al. [1] by introduc-

ing an extra mortality term in specialist predator y and interprete the system for

aquatic environment consisting of TPP-Zooplankton-fish food chain model. In

their paper, Upadhyayet al. [1] have shown that chaos exists in very narrow

parameter regimes and in region of 2D parameter space of measure zero and

suggested for further investigation for its route cause. In this paper, using realistic

regions of parameters, numerical qualitative analysis of the asymptotic behavior

of the system is performed. The transition behaviour when some parametersof

the system vary is studied. Chaotic dynamics is observed via sequences ofperiod-

doubling bifurcation of limit cycles. The period doubling phenomena leading

to chaos is a well known feature of a range of nonlinear differential equations,

often used in modeling biological population. This phenomena can suddenly

break down and reverse, giving rise to period-halving bifurcation leading to stable

limit cycles and again giving rise to stable focus. The results of the presentstudy

indicate that increasing the strength of toxic chemical release by TPP population

reduce the propensity of chaotic dynamics and changing the state of chaosto limit

cycle and finally settled down to stable focus or order.

2 Three species model systems

Consider a situation where a prey populationx is predated by individuals of

populationy. The populationy, in tern serves as a favourite food for individuals of

populationz. This interaction is represented by the following system of a simple
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prey – specialist predator – generalist predator interaction [7,30]

dx

dt
= a1x − b1x

2
−

wxy

x + D
, (1a)

dy

dt
= −a2y +

w1xy

x + D1

−
w2y

2z

y2 + D2
2

− θf(x)y, (1b)

dz

dt
= cz −

w3z
2

y
, (1c)

wherea1, a2, b1, w, w1, w2, w3, D, D1, D2, D3 and c are positive constants. In

this model, TPP population (prey) of sizex serve as the only food for the specialist

predator zooplankton population of sizey. This zooplankton population, in turn,

serves as a favorite food for the generalist vertebrate predator fish population of

sizez. The equations for rate of change of population size for prey and specialist

predator have been written following the Volterra scheme i.e., predator population

dies out exponentially in the absence of its prey. The interaction between this

predator y and the generalist predatorz is modeled by the Leslie-Gower scheme

where the loss in a predator population is proportional to the reciprocal ofper

capita availability of its most favorite food.a1 is the intrinsic growth rate of

the prey populationx, a2 is the intrinsic death rate of the predator populationy

in the absence of the only foodx, c measures the rate of self-reproduction of

generalist predatorz. The parametersw, w1, w2, w3 are the maximum values

which per capita growth rate can attain.b1 measures the strength of intra-specific

competition among the individuals of the prey speciesx. D and D1 quantify

the extent to which environment provides protection to the preyx and can be

thought of as a refuge or a measure of the effectiveness of the prey inevading

a predator’s attack.D2 is the value of y at which per capita removal rate of y

becomesw2/2. The coefficientw/(x + D), of the third term on the right hand

side of (1a) is obtained by considering the probable effect of the densityof the

prey’s population on predators attack rate. If this coefficient is multiplied byx

(the prey population at any instant of time), it gives the attack rate on the prey

per predator. Denotep(x) = wx/(x + D), whenx → ∞, p(x) → w, which is

the maximum that it can reach. The third termw2y2z

y2+D2

2

on the right hand side of

(1b) represents the per capita functional response of the vertebrate predatorz and

was first introduced by Takahashi (May [9]). The ecological role ofper capita

functional response was well described by May [9]. Some insect top-predators
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very often switch to alternative prey in situations when their favorite food is in

short supply. This fact can be accommodated by replacingy2 with y in this

term of equation (1b) as their functional response is of Holling type II. Heref(x)

represents the toxin liberation process of TPP population for which the mortality

of zooplankton increases and a result the grazing pressure of zooplankton on

TPP population decrease. The parameterθ is the rate of toxin release by TPP

population. Since the generalist predatorsz (in (1c)) are assumed to be sexually

reproducing species, their growth has two phases: a linear phase and aquadratic

phase [30]. For almost all the predator densities the linear phase prevails. Since a

single mathematical formulation can not be given to describe these two pases,we

write separate model for them. In this case, the last equation (1c) is modified to

dz

dt
= cz2

−
w3z

2

y + D3

. (1d)

This third equation also says that in the absence of the middle predator (y = 0,

but the Leslie-Gower formulation breaks down in such a case), the top predator

goes extinct ifcD3 < w3 and grows unboundedly if the inequality reverse, which

is, of course, biologically not acceptable [31]. In conducive medium, aquatic

organisms stimulate their growth by releasing allelopathic substances which have

similar genetic make-up. Sparse populations rarely provide sufficient opportuni-

ties for social interaction necessary for reproduction. Equations (1a)–(1c) define

the linear phase of the model. The non-linear phase is described by equations

(1a), (1b) and (1d) which represent model 1B (as used in Upadhyayet al. [1]).

The typical situation represented by the model is presented in Fig. 1.

Fig. 1. Typical ecological situation presented by food-chain model 1B.

Consider now the case when the predatorz is a invertebrate predator [32].

Then (1b) is modified as

dy

dt
= −a2y +

w1yx

x + D1

−
w2yz

x + D3

− θf(x)y. (2)
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Equations (1a), (2) and (1d) represent model 1A (as used in Upadhyay et al.

[1]).The real world example for this model is presented in Fig. 2.

Fig. 2. Typical ecological situation presented by food-chain model 1A.

To characterize interface between phytoplankton and zooplankton population

in the presence of toxic chemical, Holling type I, II, III functional responses are

considered to study the behaviour of the system.

Explanation (origin of the model). Let us explain that the first two equations of

both the phases (linear and nonlinear) are standard. These are Classical Rosen-

zweig-MacArthur predator-prey type used to interpret the dynamical behavior of

certain predator-prey communities. The third term of the second equation in both

the phases is due to middle predator y being a vertebrate. The equation (1d)is

absolutely not standard one.

For discussing the stability, bifurcation or chaotic behavior, many authors

[3,4] consider the third equation as

dz

dt
=

(

− d1 +
d2y

d3 + y

)

z,

that is a system in whichx is the number of logistic-type prey,y is the number of

Holling-type II specialist predator andz the number of Holling type II generalist

predator. An interesting formulation of this equation for discussing the predator

dynamics was given by Leslie [33] and reported in the book by Pielou [34]. This

equation was taken as

dz

dt
= cz

(

1 −
z

my

)

,

wherec andm are parameters. In this formulation, the growth of the predator

population is taken as

dz

dt
= cz

(

1 −
z

K

)

,
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of logistic type, where the measures of the environmental carrying capacityK is

assumed to be proportional to the prey abundance that is,K = my. Thus, the

logistic equation becomes

dz

dt
= cz

(

1 −
z

m1 + my

)

,

the additional constantm1 normalizes the residual reduction in the predator popu-

lationz because of severe scarcity of the favourite food. Simplifying, we obtain

dz

dt
= cz −

c

m

[ z2

m1

m
+ y

]

= cz −
w3z

2

y + D3

,

whereD3 = m1

m
andw3 = c/m.

Let us now assume that a generalist predatorz predates on predatory. Even

though the generalist predators have their favourite preys, they switch over to other

preys when these are in short supply. Taking this into account and usingHolling’s

type III functional response, the growth rate equation for the predatorz can be

written as

dz

dt
= cz −

w3z
2

y
.

Most of the generalist predators are sexually reproducing. In sexually reproducing

populations a behavioral phenomenon known as sexual selection [35] iscommon.

Since sexual selection depends on the success of certain individuals over others

of the same sex and involves behavioral traits such as choosiness and species

recognition, it is natural to expect that the growth of a sexually reproducing popu-

lation will be proportional to the number densities of two sexes. It is known from

population genetics that evolution attempts to maintain the ratio of the number

densities of two sexes to unity. In order to accommodate these facts, above

equation is modified to

dz

dt
= cz2

−
w3z

2

y + D3

,

wherew3 measures the limitation on growth of the generalist predator by its

dependence on its most favorite preyy.

We chose to study the non-linear phase as the linear phase does not support

the chaotic behavior at all. The sexually reproducing populations are covered by
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this phase when they are under Allee effect. We have also done the extensive

simulation experiment with the linear phase of the model systems (1a)–(1c). It

was observed that the system only supports stable focus and limit cycle (i.e.,order)

not chaos.

3 Results and conclusion

Upadhyayet al. [1] considered four model systems modeling different but very

common ecological situations and obtained the chaotic solutions (SCA) in narrow

parameter regimes as well as in regions of natural measure zero only for first

model systems. The other model systems hardly display chaos. Our primary in-

terest is to observe the role of toxin producing phytoplankton in such ecosystems.

The role of TPP for controlling blooms or for decreasing grazing pressure is now

well known, but the functional forms for releasing toxic substances arenot known

( Chattopadhyayet al. [29]). For this reason, we shall considered Holling type I,

type II, and type III functional forms to describe the liberation of toxin production

process.

Model 1A and model 1B are integrated using fourth-order Runge-Kutta me-

thod considering the parameter values of Upadhyayet al. [1,19] except forθ. We

observed stablity, limit cycle and chaotic dynamics of the system by changing the

intrinsic growth rate coefficienta1 of the TPP population. Our approach is first

to fixed θ and then observe the exchange of states (stability-limit cycle-period

doubling – chaos) in the model systems for different value ofa1 ∈ [0.5, 3]. We

observe that, iff(x) is Holling type II functional response, then forθ = 0.05

anda1 ∈ [0.5, 1.5], the model system 1A settles down to a steady state solution,

depicting a stable focus. Limit cycle oscillations of the system occur ata1 ∈

[2.4, 3.0]. The period-doubling oscillations of the system occur ata1 ∈ [2.1, 2.3]

and ata1 = 1.95. Chaotic dynamics of the system occurs only ata1 = 2.0. The

similar behavior is observed for other form of the functional response functions

and for model system 1B. Now, by changing the value ofw2 , the per capita

reduction rate, from0.55 to 1.45, Upadhyayet al. [1] obtained SCA (strange

chaotic attractor) for both the model systems. Now, we shall observe how these

dynamics are changing for different values ofθ and also for different functional

forms. In real life situations, it has been observed that increasing the strength of
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toxic substances has a stabilizing effect. Here, we like to see whether this is true

or not in our considered model systems?

From Table 1, it is observed that for both the models, the increase of value

of toxic substances released by TPP has a stabilizing effect. This observation

is true for different form of toxic substance liberation process (i.e.,f(x)) as

well as both the model systems. Now, we are demonstrating only the effect of

θ for model 1A and with Holling type II functional response. The effect ofθ

for this model 1A and for model 1B are presented in Table 1. It is observed

that, for θ ∈ [0.001, 0.0075], [0.0085, 0.015], [0.09, 0.1] and atθ = 0.2, we

obtain chaotic behavior (SCA) (see Fig. 3). By increasing the value of toxic

substances in the rangeθ ∈ [0.02, 0.085], [0.25, 0.4] and for θ = 0.008, 0.15,

we obtain the oscillatory behavior (different order limit cycles P3, P4, P5,P6 and

P7 are obtained) (see Fig. 4). Forθ ∈ [0.45, 0.75], we obtain stable focus (SF)

or order (see Fig. 5). The different dynamics of the system is studied through

three-dimensional phase plot. As the fractional changes of TPP population have a

great impact on the ecosystem functioning, and also the nature of toxic liberation

process is still unknown, different possible combinations of these functional forms

have been considered to search the order of the food chain model. We observe that

the rate of toxic substance released by TPP is to be high for type I functional form

than those of type II and type III functional form (see Table 1). Theseobservations

indicate us that to maintain the order of an ecosystem functioning, type II or type

III functional form for toxin liberation process is more appropriate.

Fig. 3. Phase plane diagram for model system 1A depicting chaotic attractor
for θ = 0.2 (other parameters are same as given in Table 1).
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Fig. 4. Phase plane diagram for model system 1A depicting limit cycle attractor
for θ = 0.35 (other parameters are same as given in Table 1).

Fig. 5. Phase plane diagram for model system 1A depicting stable focus for
θ = 0.5 (other parameters are same as given in Table 1).

The above findings indicating that the strength of toxic substances released by

TPP reduce the prevalence of chaos. The conclusion of such an observation is that

toxic substances released by TPP population may act as bio-control by changing

the state of chaos to order. As aquatic systems are very much complex, so it

is not easy to conclude that order in aquatic systems is obvious. The role ofTPP

population in aquatic systems is still in a stage of infancy. The development of this

topic needs special attention from experimental as well mathematical ecologists.

We believe that our results may give some insight in this direction.
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Table 1. Simulation experiments of model system (1) given inUpadhyayet
al. [1]. The values of the common parameters used in the model are: a1 = 2.0,
b1 = 0.05, w = 1.0, D = 10, a2 = 1.0, w1 = 2.0, D1 = 10, D2 = 10,
c = 0.0257, w3 = 1.0 andD3 = 20. P3 – limit cycle of period 3, P4 – limit
cycle of period 4, P5 – Limit cycle of period 5, P6 – limit cycleof period 6,
P7 – limit cycle of period 7, SF – Stable focus, LC – Limit cycle, SCA – strange

chaotic attractor

R
es

ul
ts

of
U

pa
dh

ya
ye

ta
l.

[1
]

Results of the proposed Results of the proposed Results of the proposed
model for Holling type I: model for Holling type II: model for Holling type III:
f(x) = x f(x) = x/(x + D4) f(x) = x2/(x2 + D2

4
)

θ θ θ

M
od

el
1A

(θ
=

0)
:
w

2
=

0.
55

,S
C

A

0.001–0.003 SCA 0.001–0.0075 SCA 0.001–0.0065 SCA
0.004 P5 0.008 P5 0.007 P5
0.005 P3 0.0085–0.015 SCA 0.0075–0.015 SCA
0.006 P4 0.02 P3 0.02 P3
0.0065–0.009 SCA 0.025 P5 0.025 P6
0.0095 P6 0.03 P6 0.03–0.035 P8
0.01 P5 0.035–0.04 Long 0.04 P6

order
0.015 SF 0.045 P6 0.045–0.06 P3

0.05 P5 0.065 P5
0.055–0.07 P3 0.07 P3
0.075 P7 0.075–0.15 SCA
0.08–0.085 P3 0.2 P2
0.09–0.1 SCA 0.25–0.35 LC
0.15 P2 0.4–0.6 SF
0.2 SCA
0.25 P2
0.3–0.4 LC
0.45–0.75 SF

M
od

el
1B

(θ
=

0)
:

w
2

=
1.

45
,S

C
A 0.001–0.003 SCA 0.001–0.0075 SCA 0.001–0.0062 SCA

0.004 LC 0.08 P7 0.063 P7
0.0045–0.009 P2 0.085 P4 0.065–0.07 P4
0.01 P3 0.09–0.1 P2 0.075–0.1 P2
0.015 SF 0.15–0.359 LC 0.11–0.32 LC

0.4–0.75 SF 0.33–0.64 SF
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