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Abstract. Toxin producing phytoplankton (TPP) plays an importanerii
aguatic systems. To observe the role of TPP, we consideres tkpecies
food chain model consisting of TPP-zooplankton-fish pojta The similar
type of model considered by Upadhyatyal. [1] for terrestrial ecosystem and
obtained chaotic dynamics in some region of parametricespae modify their
models by taking into account the toxin liberation proces3 P population
and represented as aquatic systems. We consider Hollied tyype 1l and type
Il functional forms for this process. We observe that imsiag the strength of
toxic substance change the state from chaos to order. Oalusion is that TPP
has a stabilizing contribution in aquatic systems and mayske as a bio-control
mechanism.

Keywords: toxin producing phytoplankton, chaos, limit cycle, fuoctal
response, aquatic system.

1 Introduction

The major concern in population and community ecology is to understand how
a population of a given species influences the dynamics of population ef oth
species, which are members of same interaction network [1]. Interactianmes
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in natural ecosystems can be visualized as consisting of simple units known as
food-chains or food-webs that consists of a number of species linkerbpic
interactions. Researcher have focused a great deal of their attentoali@ing
the dynamical behavior of model food chain. Two species continuous timelmod
of interacting species have been extensively studied in literature. Thedslano
exhibit only two basic patterns: approach to equilibrium (stable focus) er to
limit cycle. Three species continuous time models are reported to have more
complicated patterns. These models form dissipative dynamical systems which
can possess three distinct dynamical possibilities like stable focus, limit cycle
and chaos in the phase space. The research of the last two decadesttates
that very complex dynamics can arise in three or more species food chaeisnod
[2—4], while similar results are obtained for multi-species food web modeld [5—
May [8] reviewed the literature and concluded that the study of nonlinesaems
are indispensable as far as understanding about nature is conc&imeg the
seminal work [9, 10] of Sir Robert May deterministic chaos have beenestua
models [11-13], in the laboratory [14, 15] and in the field [16—18]. Altjtoit
has been seen in the models quite a bit, yet there are very few examples from
the laboratory as well as from the field. Therefore, it can be undetstad no
unambiguous evidence of chaos exists till date. The investigations by ymaeth
al. [1, 19] into reason why chaos had been rarely observed in natypalgtmns
concluded that natural terrestrial ecosystems are not suitable camsdidatbe
exploration of chaotic dynamics. This is paradoxial, since ecological ragste
have all the necessary characteristics (nonlinearity, high-dimensituns te be
able to support chaotic dynamics. The existence of chaos in almost allytbiegh
systems [20, 21] motivates one to critically study the same in natural population.
Since almost all form of scientific enquiry have found application of ideas f
nonlinear dynamics and chaos, there is a natural curiosity and urgeltoeime
possibility of aquatic systems evolves on strange chaotic attractor or not?
Recent studies on ecological systems [6, 13, 22] indicate that chaotic dy-
namics may play an important role in continuous time models. There are some
evidences that the real time evolution of species involved in two or three food
chains could be characterized by chaotic attractors as observed in ratmgln
food chains. Now the more challenging issue is the observation that natural
systems seems to have no difficulty switching from one state into the other, from
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chaos to order and from order to chaos. In aquatic ecosystem, toxdngng
phytoplankton may act as controlling factor for such dynamics. The raiexai
producing phytoplankton (TPP) for reduction of grazing pressumooplankton
is well known [23]. Toxicity may be a strong mediator of zooplankton feedate
as shown by field studies [24, 25] and laboratory studies [26]. Aieasir some
phytoplankton organisms, e.@hacocyslis, Coscinodisem, Rhizosopenia are un-
accepted or avoided by zooplankton due to dense concentration opfamkton
or the production of toxic substances released by phytoplankton. Taispiena
are well explained by “Exclusion principle” [27, 28]. Chattopadhyhl. [29]
investigated the role of toxin producing phytoplankton for the termination of
planktonic blooms.

In this paper, we modify first the model of Upadhyetyal. [1] by introduc-
ing an extra mortality term in specialist predator y and interprete the system for
aquatic environment consisting of TPP-Zooplankton-fish food chain mdde
their paper, Upadhyagt al. [1] have shown that chaos exists in very narrow
parameter regimes and in region of 2D parameter space of measure gero an
suggested for further investigation for its route cause. In this pageg tealistic
regions of parameters, numerical qualitative analysis of the asymptotigibeha
of the system is performed. The transition behaviour when some pararogters
the system vary is studied. Chaotic dynamics is observed via sequenpearsoof
doubling bifurcation of limit cycles. The period doubling phenomena leading
to chaos is a well known feature of a range of nonlinear differentiahtojs,
often used in modeling biological population. This phenomena can suddenly
break down and reverse, giving rise to period-halving bifurcationitegt stable
limit cycles and again giving rise to stable focus. The results of the pretsiy
indicate that increasing the strength of toxic chemical release by TPP fiopula
reduce the propensity of chaotic dynamics and changing the state oftoHzwis
cycle and finally settled down to stable focus or order.

2 Three species model systems

Consider a situation where a prey populatioris predated by individuals of
populationy. The populationy, in tern serves as a favourite food for individuals of
populationz. This interaction is represented by the following system of a simple
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prey — specialist predator — generalist predator interaction [7, 30]

dz 9  wWTY

- _ — 1
T L (1a)
dy wiry  way’z
e s R ol (1b)
dz w322

— ez — 1c
= (10)

whereay, as, by, w, wy, we,ws, D, D1, Dy, D3 and ¢ are positive constants. In
this model, TPP population (prey) of sizeserve as the only food for the specialist
predator zooplankton population of sige This zooplankton population, in turn,
serves as a favorite food for the generalist vertebrate predatordsiigtion of
sizez. The equations for rate of change of population size for prey andaistc
predator have been written following the Volterra scheme i.e., predatotgimpu
dies out exponentially in the absence of its prey. The interaction between this
predator y and the generalist predatds modeled by the Leslie-Gower scheme
where the loss in a predator population is proportional to the reciprogaémof
capita availability of its most favorite fooda; is the intrinsic growth rate of
the prey populatiorn, as is the intrinsic death rate of the predator population
in the absence of the only foad, ¢ measures the rate of self-reproduction of
generalist predatog. The parameters, wq, ws, w3 are the maximum values
which per capita growth rate can attain.measures the strength of intra-specific
competition among the individuals of the prey speciesD and D; quantify
the extent to which environment provides protection to the preand can be
thought of as a refuge or a measure of the effectiveness of the peyading

a predator’s attack.D- is the value of y at which per capita removal rate of y
becomesw, /2. The coefficientv/(x + D), of the third term on the right hand
side of (1a) is obtained by considering the probable effect of the dewisttye
prey’s population on predators attack rate. If this coefficient is multiplied: by
(the prey population at any instant of time), it gives the attack rate on thye pre
per predator. Denotg(z) = wz/(x + D), whenx — oo, p(xz) — w, which is
the maximum that it can reach. The third tei@% on the right hand side of
(1b) represents the per capita functional response of the vertebeal&t@rz and
was first introduced by Takahashi (May [9]). The ecological rolgpef capita
functional response was well described by May [9]. Some insect tegapors
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very often switch to alternative prey in situations when their favorite food is in
short supply. This fact can be accommodated by replagigyith y in this
term of equation (1b) as their functional response is of Holling type lieHféx)
represents the toxin liberation process of TPP population for which the lityorta
of zooplankton increases and a result the grazing pressure of n&tptaon
TPP population decrease. The paramétes the rate of toxin release by TPP
population. Since the generalist predater@n (1c)) are assumed to be sexually
reproducing species, their growth has two phases: a linear phaseqaadatic
phase [30]. For almost all the predator densities the linear phase pr&iaie a
single mathematical formulation can not be given to describe these two pases,
write separate model for them. In this case, the last equation (1c) is modified to

dz 5  wsz?
% =cz° — = Dy’
This third equation also says that in the absence of the middle predator(
but the Leslie-Gower formulation breaks down in such a case), the talatore
goes extinct ikD3 < w3 and grows unboundedly if the inequality reverse, which
is, of course, biologically not acceptable [31]. In conducive mediunnatgq
organisms stimulate their growth by releasing allelopathic substances whieh hav
similar genetic make-up. Sparse populations rarely provide sufficiertropp-
ties for social interaction necessary for reproduction. Equations-(le))define
the linear phase of the model. The non-linear phase is described by eguatio
(1a), (1b) and (1d) which represent model 1B (as used in Upadétyaly [1]).
The typical situation represented by the model is presented in Fig. 1.

(1d)

TPP Zooplankton Fish

v

v

(prey) (specialist predator) (generalist predator)
Fig. 1. Typical ecological situation presented by foodichmodel 1B.
Consider now the case when the predatas a invertebrate predator [32].

Then (1b) is modified as

dy WYL WoYz
— =— — -0 . 2
Ty, My M AL @
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Equations (1a), (2) and (1d) represent model 1A (as used in Upgdiyal.
[1]).The real world example for this model is presented in Fig. 2.

TPP Zooplankton Molluscs

\ 4

v

(prey) (specialist predator) (generalist predator)
Fig. 2. Typical ecological situation presented by foodichmodel 1A.

To characterize interface between phytoplankton and zooplanktorgiaou
in the presence of toxic chemical, Holling type I, Il, Il functional respes are
considered to study the behaviour of the system.

Explanation (origin of the model). Let us explain that the first two equations of
both the phases (linear and nonlinear) are standard. These are &l&ssen-
zweig-MacArthur predator-prey type used to interpret the dynamids\ier of
certain predator-prey communities. The third term of the second equatiathin b
the phases is due to middle predator y being a vertebrate. The equatias (1d)
absolutely not standard one.

For discussing the stability, bifurcation or chaotic behavior, many authors
[3,4] consider the third equation as

%: (_d1+djz+yy>z’

that is a system in which is the number of logistic-type prey,is the number of
Holling-type Il specialist predator andthe number of Holling type Il generalist
predator. An interesting formulation of this equation for discussing theapoed
dynamics was given by Leslie [33] and reported in the book by Pielou [Bdik
equation was taken as

@ :cz<1— i),

wherec andm are parameters. In this formulation, the growth of the predator
population is taken as
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of logistic type, where the measures of the environmental carrying cagadiy
assumed to be proportional to the prey abundance th&f is; my. Thus, the
logistic equation becomes

d

L oe(1-—2),
the additional constamt, normalizes the residual reduction in the predator popu-
lation z because of severe scarcity of the favourite food. Simplifying, we obtain

dt m

dz c 22 B w322
[% +y } y+ D3’
whereD3 = L andwsz = ¢/m.

Let us now assume that a generalist predatpredates on predatgr Even
though the generalist predators have their favourite preys, they swigchaother
preys when these are in short supply. Taking this into account andidsitigg’s
type lll functional response, the growth rate equation for the predatam be
written as

Most of the generalist predators are sexually reproducing. In $gxaproducing
populations a behavioral phenomenon known as sexual selection [5himon.

Since sexual selection depends on the success of certain individealstbers

of the same sex and involves behavioral traits such as choosiness emessp
recognition, it is natural to expect that the growth of a sexually repriodymopu-

lation will be proportional to the number densities of two sexes. It is knoom fr
population genetics that evolution attempts to maintain the ratio of the number
densities of two sexes to unity. In order to accommodate these facts, above
equation is modified to

dz 5 w3z’
— =cz" — ,
dt Yy + D3

where ws measures the limitation on growth of the generalist predator by its
dependence on its most favorite prey

We chose to study the non-linear phase as the linear phase does ntt supp
the chaotic behavior at all. The sexually reproducing populations aered\by
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this phase when they are under Allee effect. We have also done theiegtens
simulation experiment with the linear phase of the model systems (1a)—(1c). It
was observed that the system only supports stable focus and limit cycler@er,)

not chaos.

3 Resultsand conclusion

Upadhyayet al. [1] considered four model systems modeling different but very
common ecological situations and obtained the chaotic solutions (SCA) imnarro
parameter regimes as well as in regions of natural measure zero onlystor fi
model systems. The other model systems hardly display chaos. Our primary in
terest is to observe the role of toxin producing phytoplankton in suclyst=mss.

The role of TPP for controlling blooms or for decreasing grazing pressunow

well known, but the functional forms for releasing toxic substancesa@irknown

( Chattopadhyayt al. [29]). For this reason, we shall considered Holling type |,
type Il, and type Il functional forms to describe the liberation of toxinduction
process.

Model 1A and model 1B are integrated using fourth-order Runge-Kutta me
thod considering the parameter values of Upadhgtay. [1, 19] except for. We
observed stablity, limit cycle and chaotic dynamics of the system by changing th
intrinsic growth rate coefficieni; of the TPP population. Our approach is first
to fixed 6 and then observe the exchange of states (stability-limit cycle-period
doubling — chaos) in the model systems for different value;,0€ [0.5, 3]. We
observe that, iff () is Holling type Il functional response, then fér= 0.05
anda; € [0.5,1.5], the model system 1A settles down to a steady state solution,
depicting a stable focus. Limit cycle oscillations of the system occun at
[2.4,3.0]. The period-doubling oscillations of the system occuiat [2.1,2.3]
and ata; = 1.95. Chaotic dynamics of the system occurs onlyat= 2.0. The
similar behavior is observed for other form of the functional responsetions
and for model system 1B. Now, by changing the valuewef, the per capita
reduction rate, fron0.55 to 1.45, Upadhyayet al. [1] obtained SCA (strange
chaotic attractor) for both the model systems. Now, we shall observe hasg th
dynamics are changing for different valuesfo@nd also for different functional
forms. In real life situations, it has been observed that increasing #negsitr of
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toxic substances has a stabilizing effect. Here, we like to see whether thig is tr
or not in our considered model systems?

From Table 1, it is observed that for both the models, the increase of value
of toxic substances released by TPP has a stabilizing effect. This absarv
is true for different form of toxic substance liberation process (if¢z)) as
well as both the model systems. Now, we are demonstrating only the effect of
# for model 1A and with Holling type Il functional response. The effectyof
for this model 1A and for model 1B are presented in Table 1. It is obderve
that, for& < [0.001,0.0075],[0.0085,0.015],[0.09,0.1] and atd = 0.2, we
obtain chaotic behavior (SCA) (see Fig. 3). By increasing the value of tox
substances in the rangec [0.02,0.085],[0.25,0.4] and ford = 0.008,0.15,
we obtain the oscillatory behavior (different order limit cycles P3, P4P8m:nd
P7 are obtained) (see Fig. 4). Rbre [0.45,0.75], we obtain stable focus (SF)
or order (see Fig. 5). The different dynamics of the system is studiedighr
three-dimensional phase plot. As the fractional changes of TPP popuifatie a
great impact on the ecosystem functioning, and also the nature of toxiatldoer
process is still unknown, different possible combinations of these furadtiorms
have been considered to search the order of the food chain model.Sékvebhat
the rate of toxic substance released by TPP is to be high for type | funictioma
than those of type Il and type Il functional form (see Table 1). Thidmservations
indicate us that to maintain the order of an ecosystem functioning, type lper ty
Il functional form for toxin liberation process is more appropriate.

Molluscs

Zooplankton 0o TPP

Fig. 3. Phase plane diagram for model system 1A depictingtahattractor
for = 0.2 (other parameters are same as given in Table 1).
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Molluscs

20 30
10 20

Znoplankton TRPP

Fig. 4. Phase plane diagram for model system 1A depictinig diyale attractor
for & = 0.35 (other parameters are same as given in Table 1).

Molluscs
@ ~
] ~ n @

"
Hm

3

Znoplankton L]

Fig. 5. Phase plane diagram for model system 1A depictingestacus for
6 = 0.5 (other parameters are same as given in Table 1).

The above findings indicating that the strength of toxic substances release
TPP reduce the prevalence of chaos. The conclusion of such avaifiseis that
toxic substances released by TPP population may act as bio-controabgioh
the state of chaos to order. As aquatic systems are very much complex, so it
is not easy to conclude that order in aquatic systems is obvious. The roRFof
population in aquatic systems is still in a stage of infancy. The developmerisof th
topic needs special attention from experimental as well mathematical ecalogists
We believe that our results may give some insight in this direction.
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Table 1. Simulation experiments of model system (1) givetpadhyayet
al. [1]. The values of the common parameters used in the modekare 2.0,
by = 0.05, w = 1.0, D = 10, ap = 1.0, w; = 2.0, D; = 10, Dy = 10,
¢ = 0.0257, wz = 1.0 and D3 = 20. P3 — limit cycle of period 3, P4 — limit
cycle of period 4, P5 — Limit cycle of period 5, P6 — limit cyaé period 6,
P7 —limit cycle of period 7, SF — Stable focus, LC — Limit cy %A — strange

chaotic attractor

- E Results of the proposed Results of the proposed Results of the proposed
8 © model for Holling type I:  model for Holling type Il:  model for Holling typd1
S8 | /@) =0 f@)=a/@+Ds)  fl@) =2/ + D}
&5
8 0 0 0
D
0.001-0.003 SCA 0.001-0.0075 SCA 0.001-0.0065 SCA
0.004 P5 0.008 PS5 0.007 P5
0.005 P3 0.0085-0.015 SCA 0.0075-0.015 SCA
S 0.006 P4 0.02 P3 0.02 P3
N 0.0065-0.009 SCA  0.025 P5 0.025 P6
g‘ 0.0095 P6 0.03 P6 0.03-0.035 P8
S 0.01 PS5 0.035-0.04 Long 0.04 P6
I order
g 0.015 SF 0.045 P6 0.045-0.06 P3
= 0.05 P5 0.065 PS5
T 0.055-0.07 P3 0.07 P3
S 0.075 pP7 0.075-0.15 SCA
i 0.08-0.085 P3 0.2 P2
T 0.09-0.1 SCA 0.25-0.35 LC
3 0.15 P2 0.4-0.6 SF
= 0.2 SCA
0.25 P2
0.3-0.4 LC
0.45-0.75 SF
=< | 0.001-0.003 SCA 0.001-0.0075 SCA 0.001-0.0062 SCA
I'$ | 0.004 LC  0.08 P7 0.063 P7
S 5 | 0.0045-0.009 P2 0.085 P4 0.065-0.07 P4
= j 0.01 P3 0.09-0.1 P2 0.075-0.1 P2
g I | 0.015 SF 0.15-0.359 LC 0.11-0.32 LC
§ ) 0.4-0.75 SF 0.33-0.64 SF
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