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Abstract. This paper presents an algebraic approach to the problerarsf n
linear observer design. We show, that an observer whichergeg globally
and asymptotically can be designed for a class of homogsmamiems of odd
degree.
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1 Introduction

Given an input-output nonlinear system, a state observer is a dynamiesyste
which is expected to produce an estimation of the state of the system. The non-
linear observer has been a topic of interest in control theory [1—4]lirkear sys-
tems, it has been extensively studied, and has proven extremely usetd;jaly

for control applications. For nonlinear systems, the theory of obseigemot
nearly as complete nor successful as it is for the linear case. Manyrautiee
worked on the development of state observers. Some observersesggaet for

a restricted class of nonlinear systems such as bilinear systems [5—8jefy
methods has been developed for constructing nonlinear observemierclasses

of systems [9-17]. In [12], an observer which guarantees the ogenee to zero

of the error has been presented, based on a Lyapunov-like suffa@iadition.
Also, this problem has been recently solved by [15] for nonlinear sysikith

are uniformly observable for any input and can be transformed into endzal
form. Even if these conditions are satisfied, the construction of the adyssri
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remains a difficult problem due to the need to solve a set of simultaneoud partia
differential equations to obtain the actual transformation function. In thispae

are devoted to developing a geometrical design method of continuousrelsser
for a class of homogeneous systems of odd degree. This is possibls thahk
feedback law proposed by the authorqif] which is required for stabilization

of homogeneous nonlinear systems of odd degree. The sulfficienitioosdve
propose is of Lyapunov type that guarantees the observation errergmbally

and asymptotically stable, and it turns out to be also necessary to the lisear ca

2 Conception of the observer

In this paper we consider the following system

{:i::f(:c)+Bu, )

y=Cuz,

wherez € R" is the statex, € IR! is the inputy € IR™ is the output of the
system andf is a smooth vector field ofR™ such that all its component$ are
homogeneous polynomials of the same odd defreel andC (respectivelyB)

is am x n (respectivelyh x [) constant matrix. Recall that homogeneous of degree
k means that for alh € R andz € R™, f(A\z) = \¥f(2).

When the states of the system (1) are not available, the usual technigoes is
build a control system whose inputs are the input and output of the initiedrays
called observer which is designed to give an approximation of the staté. of (1

Letp € IN be the rank of”. Without loss of generality, we can write system
(1) in the following form:

{i:ﬂ@+Bm @)

yi=xi t=1,...,p.

The matrixC is such that
tCC = diag(A1,..., 7, 0,...,0), N=1, i=1,...,p.

Notice that such a change of coordinates does not affect the prepeeitber on
the observability nor on the construction of an observer. So, througiisyaper,
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we consider the system (1) as in the form (2). Recall that, a global astimpto
observer for the system (1) is a dynamic system of the form

'%:g(jvy7u)7 (3)

which is expected to produce the estimatig) of the stater(¢) of the system
(2). More precisely, if system (1) and (3) are initialized at the same pém(rﬁ)t) =
£(0)), we want to havéz(t) = (t)), Vt > 0. It means that,

g(z,Cz,u) = f(x) + Bu, VreR".

This means that the observer and the plant have the same dynamics under the
condition that the output functio@'z copies the output functiof’z (see [19]).
Also, for any initial condition|z(0) — z(0)|| one hag|z(t) — x(¢)|| tends to zero
globally and asymptotically.

Letting, e = & — x, the derivative is given by = # — 4. Thus,

é=g(r+ey,u)— f(x) — Bu.

We want that the error equation to be globally asymptotically stable about the
origin. Therefore, it suffices to prove the existence of a Lyapunoetfan W
positive definite odR™ such that its time-derivative along the trajectories of the
error equation is negative definite @&ti".

In the following, we will assume the existence of a definite positive function
V: IR™ — IR homogeneous, proper and independent of the time which satisfies
the following hypothesis:

(H1) VV(e)(f(z+e)— f(z)) <0, VeecKerC\{0}, VzeR"Y

aVv
(HQ) 86,‘

(e)=0, for i=1,...,p, VeeKerC.

Recall that for autonomous functidn positive definite means th&t(0) = 0
andV (z) > 0 for all z # 0 and proper means th&t(z) — +oo as||z| — +oc.
Consider the system

&= f@) —a(|2]* + |fo(Ci - y)F ) C(Ch — y) + Bu 4)

with a > 0.
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Theorem 1. If there exists a positive definite and homogeneous fundtiarf
degree2d which satisfies assumptioli®(;) and (H2), then for a certainx > 0
the systenfd) is a global asymptotic observer f¢t).

Proof. The error equation is given by

¢=flx+e)— f(z) —al|z+elFt + [tCCe|F1) CCe. (5)
Suppose thatH;) and(H2) hold. Consider the following function

W(e) = 2—1d(tetcce)d +U(e),

whereU (e) = V(0, ...,0, ept1, ..., €n).

First, remark thatV is homogeneous definite dR"™ which will be used as a
Lyapunov function candidate for the system (5).

Taking into account the form d#/, we have

v = (fefCcce)tLlelCC
1%

0,...,0,—(0,...,0
+<7 ) 786]}—{-1(’ yJs €p+1, 7en)a

ov
..,87(0,...,0,6124,_1,...,6”)).

Since {(*CCe) =! (e1,...,€p,0,...,0) then, the time-derivative ofi” along
the trajectories of (5) is given by
Wie) = VW(f(x +e)— f(x))
—a(te'CCe) ||z + €|t + [|fCCe| ) |FOCel . (6)
W is a homogeneous function of, ¢) of even degre@d + k — 1. Hence, its sign

doesn’t change along any ray issuing from the origifRéf x IR [20]. This sign
can be evaluated on the sphere

§={(@,e) e R" x R" / |[(x,e)| = /2P + [le]® = v2}.

Let

S
I

{(z,e) e R" x R" / ||lz|| = 1, [e|]| =1},
Dy ={(z,e) e R" x R" / 1 < [|lz]| < V2, |le|| < 1},
Dy ={(z,¢) e R"x R" / |lz]| < 1, 1 < |le]| < V2}.
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Obviously, we have
S C D1 UDy U Ds.
Let

C_={(z,e) e R" x R" /| VIV (f(z +e) - f(z)) <0},
Cy={(z,e) e R" xR" /| VW (f(z +¢€) — f(z)) = 0}.

On C_N(D; UDyUD3) we haveW(e) < 0. Still to prove that
Wi(e) <0, Y(z,e)eCrnN(DiUDy;UDs), eD0.
Let
CL = {(z,¢) eR" x R" / ||(z,)|| < V3}.
Remark that
Cy N (D1 UDyUD3) C CLN (D1 UDyUDs).
So, it suffices to show that
W(e) <0, VY(z,e)e Ci N (DU, D2UD;), e#0.

Let 7 andwy be the projection defined as follow; : R™ x R™ — IR™ such
thatmi(z,e) = x andmy : R" x R™ — IR" such thatry(z,e) = e. Denote by
m(CL) = Q;, i = 1,2, theC{ -projections onR". SinceC. is a compact set
and; are continuous function§); andQ, are compacts sets. Froff(1), (Hs2)
and taking into account the form &F andU, whereU is the second part of the
Lyapunov functioni¥’, we can deduce that for alle Ker C'\ {0}, we obtain

VW (f(z +e) = f(z)) = VU(e)(f(z +e) — f(z))
=VV(e)(f(z+e)— f(z)) <O.

This implies that

R" x KerC Cc C_NR" x {0}.
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SinceC_ N Cy = 0, we have
Q2 NKer C = {0}. (7)
On the other hand, It be the function defined frolR"™ x IR™ into IR by
F(z,e) = VW(e)(f(z +¢) - f()).
ForallA € Rand(z,e) € R" x R", we have
F(M\z,e))=F(A\z, Ae) =21V W(e) (f(z+e)— f(z)) =AM 1E(2,e),

which implies thatF' is homogeneous oR" x IR". It follows that@), is a cone.
Indeed, lete € Q- it implies that, there exists € IR" such thatx, e¢) € C. So,
F(z,e) > 0.

Now, becausé@d + k — 1 is even then for alA € IR, we have

F(\z, Me) = A2HE=1p(z ¢) > 0

This implies that(\z, Ae) € C+ and sole € Q2. Next, sinceQ): is a cone, it
follows that

{e/||e|| :r}ﬂngr{e/HeH zl}ﬂQg, vr € R. (8)

Since @, is a compact set thefie / [le[ = 1} N Q2 is also a compact set.
Hence, the minimum of the quadratic forfhC'Ce||**!(*e!CCe)4~1, which is
a continuous function, exists and positive. Taking into account the equ@)ity
the minimum is strictly positive. Letting

min  [!CCe|[* ! (te!CCe)? ™t = h > 0.
{e/llell=13nQ2

Then by (8), we have

min  ['CCe|[*1(te!CCe)?t = ¢2d+k=1p > 0.
{e/llell=r}nQ2

Let

n= max VW (e)(f(z+e) — f(z))].
(m,e)ECiﬂ(DlLJDQUD;g)

202



Global Observer for Homogeneous Vector Fields

We will study the sign o#¥ (e) separately ofD; N CL, Dy N CL andD; N C}.
OonD; N CL, we have

Wi(e) <n—a min toCe||FH (tetCCe)d!
(e)<n te/letngs | 177 ( )
which gives

Wi(e) <n—ah <0 for a>%.

OnD, N CL and|e| = r > 0, we have

W(e) = VW(e)(f(x +e) — f(x))
—a(llz+ el + ['CCe|* ) (fefCCe) [ CCe|?
< VW (e)(f(z+e) — f(x))
—a((lz] = llel)* " + 'CCe|* 1) (fe'CCe) ' Ce|?
<VW®M($+@—f@D
—a((l = [le)t+ [[fCCe|FY) (fefCCe)H[FCCe| 2.

1
If [le|| = > 3, then

W(e) <n—al'CCe|(tetCCe)?t

<n-—« min |t‘CCe| 1 (tetCCe)? !
{e/llel=1}nQ2
<p— qr2dtk=1p

1
<n-— a(§)2d+k_1h.

This last quantity is negative definite if we choose

7722d+k;— 1

o> h

If |le]| = r < 3, then with the fact thae|| < 1 and|z|| > 1, we have

VWV (e \<51\| 242,

£t e) = F@) = |3 an gt gl e
al7ﬂl
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witha! =af +...+a, 3 =B +... + 8., ' + 3 = kands’ > 1 for all i.
Sincelle|| < 1, ||lz|| > 1,a' + 8" = k andB? > 1 for all i, we have

|1z +e) = f(@)|| < Sallefllz]**.
So, one gets
£z +€) = f(@)]| < Aur®lz|*
and
Wie) < \r||z]f =1 — a(1 — r)FLltetCCe)? Yt CCe| 2.

Using the fact that: € D, we obtain

W(e) < r (VD — a5

k-1
min tetCCce) 1 tCCe|?.
2> {e/||e||:1}mQ2( " |

Thus
. 1\ k-1
Wi(e) < >\17‘2d(\/§)k_1 — a(§> Aor2?.
This last quantity is negative definite if we choose
k—1
0 s MV
A2

OnDs; N CL and|le|| =r > 1, we have

Wie) < n—al'CCe|*+2(tetCCe)?1

< n—a ”tcceulﬁr?(tetcce)dfl

min
{e/llel=r}nQ2
<n- ar?dtk=lp

<n-—ah.
It follows that in this case one gets

Wi(e) <0 for a> %

Therefore, ifa satisfies the three conditions given above, it means that

nop2XL N\ (2y/2)R ! )
h’ h 7 A2 ’

a>sup<
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we obtain
Wi(e) <0, Y(z,e)eCrn(DUDy,UDs) with e 0.

The last expression in conjunction with the fact that

Wi(e) <0, VY(zr,e)eC_N(D1UDyUD3) with e#0
yields
Wi(e) <0, Y(z,e)e (DUDyUDs) withe#0.

Thus, the time-derivative dfi” along the trajectories of the error equation given
in (6) is negative definite on the sphe¥eand by homogeneity olR"™. We have

W(e) <0, VeeR"™\{0}.
It follows that, the system (4) is a global asymptotic observer for (1). O

Suppose now, that the assumpti@t,) hold and the following condition
which can replac€H,) for the construction of the observer.
(Hz) (VV(e),!CCe) >0, Ve € R".

Theorem 2. If there exists a positive definite and homogeneous fundticof
degree2d which satisfies assumptioli®(;) and (H3), then for a certainx > 0
the systenf4) is a global asymptotic observer f¢t).
Proof. If (1) and(H3) hold then by the same argument as in the proof of the
Theorem 1, we can show using the Lyapunov function
1

Wie) = Q—d(tetCCe)d +Vi(e)
that the following estimation holds.

W(e) = VW(e)(f(z +e) — f(z))

—a(|lz + e|]k_1—|—||tC'Cer_1) ((tetC'Ce)d_1\|tCC'eH2+(VV(e),t CCe)).

This inequality implies that

W(e) < VW(e)(f(z +e) = f(2))
—a(llz + et +[[fCCe|* ) (et CCe) T CCe 2.
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It follows, as in the proof of the Theorem 1, that an estimation of the form

W(e) <0, Ve € R"\ {0}

can be obtained, and therefore an observer of the fdjrnan be designed for the
system (1).

Next we give an example dR? to illustrate the applicability of the result of
this paper.

Example. Consider the following system,

i;l - fl(x17$27$3) = ':U% +$§’

io = fo(x1, 19, 73) = 23, ©)
i3 = f3(x1, 22, 23) = —x3 + 1123 + 52} + U,
y - (x17w2)7

which has the form of (1) withk € IR, y; = 21 andys = x5. The matrixC' which
is a(2 x 3) constant matrix is given by

100
C‘<01 0'

A simple computation gives
1 0 0
tcc=10 1 0] =diag(A,X2,0), XN =1, i=1,2.
0 00

Notice that the system (1) and (2) are equivalent by using a changeafinates.

Let
1
V(21 x2,23) = 5(55% + a5 + 23)

be a Lyapunov function candidate for the above system which is defirsiéveo
proper and homogeneous function which satisfies assumptignsand (Hs).
Indeed, in this case

KerC = {e €R3/e; = ey = 0}.
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We can verify that
oV _ov _
661 a 662 -

and using a simple computation we obtain

Ve ="' (e1,e9,e3) € Ker C

VV(e)(f(z+e) — f(x)) = —e3(e} + 3rzes + 323) <0,
Vz € R®, VeeKerC\ {0}.

According to Theorem 1, the following system
& = f(&) + Bu—a(2]” + ['C(CE - y)|IP) C(CE —y)

is an observer for system (9) for a suitable valuexafith

fl(xl,xg,l'g) 0
f(x) = | fo(w1, 22, 23) and B= |0
f3(w1, 22, 23) 1

This system can be written as

@1 = &3 + 23 — a(@? + 23 + 23 + ] + e3)e,
To =33 — a2} + 23 + 25 + e} + €3)e,
T3 = —25 + 2122+ 533 +u
with e(t) = &(t) —z(t) which tends to zero globally and asymptotically for> 0
taken large enough.
Note that for linear system

t=A B
{x T + Dbu, (10)

y = Cx.

The system is said detectable if there exists a malkriguch that the matrix
(A — LC) is globally asymptotically stable. A sufficient condition for (10) to
be detectable is that if it is observable or simply the pdirC) is observable i.e.,
its observability matrix has full rank,

C
CA

I
S

CAn—l
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In this case for this kind of systems a Luenberger observer can benddsigcan
be taken as

& = Ai 4 Bu— L(Ci — y),

whereL is the gain matrix which is chosen in such aV\la@/(A(A — LC’)) <0
and a Lyapunov function candidate for the error equation

é(t) = 2(t) — x(t)

can be taken as
V(e) = ePe

with P is positive definite symmetric matrix satisfying the Lyapunov equation
P(A-LC)+ Y(A-LC)P =-Q

with @ is positive definite symmetric matrix. By taking the time-derivativé/of
along the trajectories of

é(t) = (A— LC)e(t)
one can obtain the following estimation
V(e) = —teQe

which is negative definite.

It turns out that the condition stated (fi;) is necessary for the conception
of an observer of the form (4) for systems of the form (10). Indéezlsystem (4)
becomes withy (z) = Az andk = 1,

& = Ai 4 Bu — o!C(Ci —y).
The error equation is given by
¢ = Ae —a'CCe = (A —a'CO)e.

If we consider the Lyapunov functiori(e) =! ePe, the time-derivative along the
trajectories of the error equation is given by

V(e) = 2'ePAe — 2a'eP!CCe < 0, Ve # 0.

Let nowe € KerC. The previous expression reducesd® Ae < 0 this yields
(H1). O

208



Global Observer for Homogeneous Vector Fields

3 Conclusion

Consider a homogeneous system of the form (1) having some statesaitablkey

for direct measurement. It is shown, in this paper, that an asymptoticvasan

be designed under some sufficient conditions based on the stabilizingafded
law given by [18]. Moreover, an numerical example is given to illustrate the
applicability of the main result.
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