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Abstract. In the paper a limit theorem in the sense of weak convergehce o
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1 Introduction

Let s = o + it be a complex variable, and Bt R andC denote the sets of all
positive integers, real and complex numbers, respectively. The séties form

[e.9]
Z ame ™ m, (1)
m=1

wherea,, € C,and{)\,,} is an increasing sequence of real numbdis; )\, =
m—0o0

400, is called a general Dirichlet series. X,, = logm, then we obtain an

ordinary Dirichlet series

oo
>
ms’
m=1

Suppose that series (1) converges absolutelyfor o, and has the sunf(s).
Thenf(s) is an analytic function in the regiofs € C: 0 > 0,}.
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In [1] limit theorems on the complex plane for the functiffs) were ob-
tained. Suppose thaf(s) is meromorphically continuable to the half-plane
{s € C: 0 > 01}, 01 < 04, and that all poles of (s) in this region are included
in a compact set. Moreover, we require that, for- o1, the estimates

fls)=0(t]*), [t|>to>0, a>0 2
and

T

/‘f(a—i—it)‘th:O(T), T — o0, 3

0

should be satisfied. Denote BY.S) the class of Borel sets of the spageand let,
for 7" > 0,

vp(...) = %meas {telo,1]: ...},

wheremeas { A} is the Lebesgue measure of a measurabledset R, and in
place of dots a condition satisfied bys to be written. Or(C, B((C)) define the
probability measurér(A) by

Pro(A) =vp(f(o +it) € A).
The first result of [1] is the following theorem.

Theorem A. Suppose that for the functiofi(s) conditions (2) and (3) are sa-
tisfied. Then on((C, B(C)) there exists a probability measufg such that the
measurePr , converges weakly té; asT — oo.

For the identification of the limit measuf®, in Theorem A some additional
conditions are necessary. Also, for the definitiorPpfwe need some topological
structure. Lety = {s € C: |s| = 1} be the unit circle on the complex plane, and
let

00
Q= H Tm
m=1

where~y,, = ~ for all m € N. With the product topology and pointwise multi-
plication the infinite-dimensional tor@&is a compact topological Abelian group.
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Therefore, on((2, B(€2)) the probability Haar measure; exists, and we obtain
a probability spac€Q, B(Q2), my). Letw(m) denote the projection af € Q to
the coordinate spacg,,. Suppose, that the exponents satisfy the inequality

Am > c(log m)‘S 4

with some positive constantsandé. Then in [1] it was proved (Lemma 3) that,
foro > oy,

flo,w) =) amw(m)e 7 (5)
m=1

is a complex-valued random variable defined on the probability space
(Q,B(), mg). Then [1] contains the following statement.

Theorem B. Suppose that the system of exponets, } is linearly independent
over the field of rational numbers, satisfies inequality (4), and for thetifum/ (s)
conditions (2) and (3) are satisfied. Then the probability meaBugeconverges
weakly to the distribution of the random varialjiér, w) asT — co.

Condition (4) restricts the choice of sequence of exponghis} for which
Theorem B is true. The aim of this note is to replace condition (4) by a certain
average condition. Suppose that, for- o1, the series

[e.9]

Z || 2”227 log? m (6)

m=1

converges. Later, it will be proved that the convergence of serjas ésufficient
condition thatf (o, w) defined by (5) should be a complex-valued random variable
for o > o.

Theorem 1. Suppose that the system of exponédnis} is linearly independent
over the field of rational numbers, serig®) converges, and for the functiofis)
conditions(2) and (3) are satisfied. Then the probability measute, converges
weakly to the distribution of the random variabfés, w) asT — oc.
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2 The random variable f(o,w)

In this section we will prove that, if series (6) converges, tifiém w),o > o1, is

a complex-valued random variable. For this, we will use Rademachesetime
on series of pairwise orthogonal random variables, for the proeffseexample,
[2]. Denote byE¢ the expectation of the random elemént

Lemma 2 [2]. Suppose thaf X, } is a sequence of palrW|se orthogonal random
variables and thatz E|X,n|?log? m < oco. Then the serlesz X, converges

m=1 m=1

almost surely.

Theorem 2. Leto > 0. Thenf(o,w) is a complex-valued random variable
defined on the probability spac(éz, B(Q),mp).

Proof. Let, foro > o1,

Em(w) = amw(m)e > mo.

Then{¢,,: m € N} is a sequence of complex-valued random variables defined
on the probability spacf?, B(2), my). We have

E(ém&s) = | &Em(w)ép(W)dmy = amage OmtA6)o / w(m)w(k)dmpy
Q
0

_ “ (7)
:{, it m £k,

lam|?e2 o if m =k,

This means thaf¢,,: m € N} is a sequence of pairwise orthogonal complex-
valued random variables. Since by (7)

E‘€m|2 |CL |2 —2Amo

and series (6) converges, we have thatgfor o1,

o
Z E|&m|? log? m < co.

m=1

Therefore, by Lemma 2 far > o; the series
o
Z amw(m)e = mo
m=1
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converges for almost all € Q) with respect to the Haar measurg;. This shows
that f(o,w), for o > o1, is a random variable off2, B(Q), mz). O

Clearly, there exists general Dirichlet series with small exponents, fahwh
series (6) converges. For example\if, = loglog?m anda,, = O(1/m),
then series (1) converges absolutely for> 1. Suppose that it is analytically
continuable to some regian > o with o1 < 1. Then we have that

20

> > log?> % m
Z | |2e= % log? m < Z g72 < 0.
m=1 m=1 m

3 Limit theorems for Dirichlet polynomials

In the sequel we suppose that the system of expor{ents is linearly indepen-
dent over the field of rational numbers. Let, foe N and fixedw € (2,

N
gNn(s) = Z amv(m,n)e Am
m=1

and

N
gNn(s,w) = Z amv(m, n)w(m)e s,
m=1

wherev(m,n) = exp{—ePm=An)o2} 5y > 0, and on(C,B(C)) define two
probability measures

Prngno(A) = vr(gnn(o +it) € A)
and
ﬁT,N,n,o(A) = vr(gnn(o +it,©) € A).

Theorem 3. On (C, B(C)) there exists a probability measuy ,, such that
the probability measure®r v , and I3T, ~,o both converge weakly t&y ,, , as
T — oo.

Proof. For the proof of Theorem 3, we introduce one more probability measure

Qr(A) = vr((€™)men € A), A€ B(Q).

239



A. LaurinCikas

The dual group of? is izomorphic to

D Zn.

meN

whereZ,, = Zforallm € N. k = {k,,: m € N} ¢ @ Z,,, where only a finite
meN
number of integer,,, are non-zero, acts dn by

o0

k— Wk = H whm(m), we .
m=1

Therefore, the linear independence {of,,} shows that the Fourier transform
gr(k) of the measur€)r is of the form

T
- 1=
L if kn=0 foral meN,
exp{iT Y Amkm}—1
a m=l . otherwise.
iT Y Amkm
m=1

Hence we find that

lim gr(k) =

T—o0

1, if k,=0 forall meN,
0, otherwise,

and a continuity theorem for probability measures on locally compact gseap,
for example, [3], implies that the probability meas@}e converges weakly to the
measureny.

Leth: Q2 — C be given by the formula

amv(m,n)e=rm?

h({w(m): m € N}) = Z

m=1 w(m)

The functionh is continuous and satisfies

h({e?mt: m € N}) = gnn(o +it).
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Therefore, Theorem 5.1 of [4] and the weak convergence of theapility mea-
sureQr show thatPr n ,, » = Qrh~! converges weakly tovyh ! asT — oo.
Now defineh; : 2 — 2 by

hi({w(m): m € N}) = ({w(m)@ ' (m): m € N}),
wherew is a fixed element of). Then we have that

o N amv(m’ n)ef/\m(o'*H;t) -
gN (o +it,0) = Z o 1(m) = h(h({"": m € N})).

m=1

Hence, similarly as above, we obtain that the probabittyy ,, » = Qr(hhy)~t
converges weakly to the measurey (hhy)™' = (mghy)h™' = mgh™,
because the Haar measung; is invariant with respect to translations by points
from Q2. The theorem is proved. O

Note that in [1] an another proof of Theorem 3 based on the study oite-fin
dimensional torus has been given.

4 Limit theorems for absolutely convergent Dirichlet series

In this section we construct a general Dirichlet series related to sejieghith
converges absolutely far > ;. We also correct some inaccuracies of [1].
We takeoy > o, — o1 > 0 and define, for > o1,

o2+100
1 dz
(o) =5 [ Hs+ )T
09 —100
where
In(s) = ir(i)e)\ns‘
o9 092
Using Mellin’s inversion formula and the definition bf(s), we find that
0o Y o2+100
ame” "8 z
n(s) =) ——— T )e Pm=Anzg
mls) = X [ r(2)e 2
m= 09 —100 (8)
= Z amexp{—eAmAn)o21 = Ams Z amv(m,n)e s,
m=1 m=1
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It remains to prove that the later series converges absoluteby forr;. Clearly,

)
= Z aman(m)e_/\"”s, (9)
m=1
where
oo+1i00
1
an(m) = — / r(i)ef(Amf/\n)sds <, e mo2,
2mio 09
09 —100

This and (9) yield the absolute convergence of series (8 foro;.
Define, forw € €,

E amw(m)v(m,n)e=*ms,

The aim of this section is to obtain limit theorems for probability measures
Prpno(A) =vr(gn(o +it) € A)

and
/PST,H,U(A) =uvr (gn(a +it,w) € A),

whereA € B(C).

Theorem 4. Leto > o1. Then on(C, B((C)) there exists a probability measure
P, » such that the probability measuréy-,, , and ﬁT,n,U both converge weakly
to P, asT — oo.

Proof. We will give a shortened proof, because it only in some details differs fro
that given in [1].

By Theorem 3 the probability measurBs v, » andﬁﬂ N.n,c DOth converge
weakly to the measur®y ,, , asT — oo. We will prove that the family of
probability measure§ Py, ,} is tight. By the Chebyshev inequality, for any
positive M,

Prnme({z€C: |2| > M}) = (\gNn(a+it)\ > M)

/|gNn (o + it)|dt.
0
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Since the series fay, (s) converges absolutely fer > o4, there exists a constant
C > 0 such that

T
1
sup lim sup — / ‘gNm(U + it)}dt <C.
NEN T—oo To

For arbitrarye > 0, let M = C'/e. Then we deduce from the last two inequalities
that

limsup Prynq({z € C: |z] > M}) <e. (10)

T—o00

The functionh: C — R, z — |z|, is continuous and so, by Theorem 3, the
probability measure

VT(|QN,n(0 + Zt)’ S A), Ae B(R),

converges weakly td?]\;,n,c,h‘1 asT — oo. This, the properties of the weak
convergence, and (10) imply

Pnno({z €C: 2] > M}) < li%ninf Prnme({z€C: |z| > M})

< limsupPT7N7n7(,({z eC: |z > M}) <e.

T—oo

DefineK, = {z € C: |z] < M}. ThenK. is a compact set, and
PN,n,J(Ks) >1-—c¢

for all N € N. This shows the tightness of the fami{y°y ,,}. Hence by
the Prokhorov theorem, see, for example, [4], the fanilB}; ., } is relatively
compact.

Now let a random variablé; be defined on a certain probability space
(€2, B(Q),P) and uniformly distributed of0, 7. We put

X1, Nn(0) = gnn(o +i07).

Then, by Theorem 3,

Xrnn(0) —o Xnal0), (11)
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where 2 means the convergence in distribution, akig;,, (o) is a complex-
valued random variable with the distributidty ,, ,. Moreover, the relative com-
pactness implies the existence{d?y, » -} C {Pnno} such thatPy, ,, con-
verges weakly to some measufg, asN; — oo. Then

Xnn(o) = P, (12)

Ni—o00

This, (11), the relation

lim limsup vy (|gnn(o +it) — gn(o +it)| > ) =0

N—oo 7o

and Theorem 4.2 of [4] show that

Xrp(0) ;o Pag, (13)

where
XT,n(U) = gn(a + iGT).
Hence the measurBr,, , converges weakly td&, , asT — oo. By (13) the
measureP, , does not depends on the choice’df, and we have that
D
Xnn(o) N P, .. (14)

To complete the proof of the theorem it remains to repeat the above arguiorents
random variables

X nn(0) = gnn(o + 07, w)
and
Xrn(o) = gn(o+ibr,w),

and to use (14). O

5 Proof of Theorem 1

First we observe that the method of the contour integration shows thatrttkgoio
f(s) is approximated in the mean by the functigs{s). More precisely, we have,
foro > o,

nooo pond T

T
lim lim sup 1 / ‘f(o’ +it) — fulo + it)’dt =0. (15)
0
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An analogous assertion is also valid for the functjdn, w), namely, foro > o4,

T
1
lim lim sup T / ‘f(a +it,w) — fn(o + it,w)‘dt =0. (16)
T—o0 0
The details of the proof of (15) and (16) can be found in [1].
We introduce one more probability measure(@h B(C)). Let

Pr,(A) = vr(f(o +it,w) € A), A€ B(C).

Theorem 5. Leto > 1. Then on(C, B(C)) there exists a probability measure
P, asT — oo.

Proof. We argue similarly to the proof of Theorem 4. Repeating the proof of
Theorem 4 withf,, (o +it) and f,, (o +it,w) in place offx ,,(c+it) and fy n (o +
it,w), respectively, and wittf (o + it) and f (o + it,w) in place of f,,(c + it)
and f, (o + it,w), respectively, and using (15), (16) and Theorem 4.2 of [4], we
obtain the theorem. O

Proof of Theorem 1Define the one parameter grofip, : ¢t € R} of measurable
measure preserving transformations@my ¢, (w) = qw,w € 2, wherea; =
{e=?mt: m € N}. Then the grougy;: t € R} is ergodic [1]. LetA be a
continuity set of the measui, in Theorem 5. Then by Theorem 5

Jim Pro(A) = P,(A). (17)
Taking

0(w) = 1, if f(o,w) € A,
700 i floww) £ A,

we have that is a random variable off2, B(2), m), and

E(0) = /Qde =mp(w € Q: f(o,w) € A) = Pr(A), (18)
Q
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where P; is the distribution off(c,w). Moreover, the proces®(y: (o)) is er-
godic, therefore by the classical Birkhoff-Khinchine theorem

T

E(0) = lim %/ﬁ(wT(a}))dt (19)

T—o0
0

for almost allw with respect to the measurey . On the other hand,

T

T [ ol = Proa).
0

This, (18) and (19) show that
im Pro(A) = Pr(A),

and in view of (17) we conclude th#,(A) = Py (A) for all continuity setsA of
P,. HenceF; coincides withP;, and the theorem is proved. O
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