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Abstract. We describe financial systems as condensates, similar to
Bose-Einstein condensates, and calculate equilibrium statistical distributions
following from the model. The calculated distribution of investments into
speculated financial asset is exponentially truncated Pareto distribution, and
the calculated distribution of the price moves is exponentially truncated Levy
distribution. The calculated from the model distributionscorrespond well to the
empirically observed distributions.
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One indication that financial markets are related with Bose-Einstein condensates

(BECs) is the similarity of statistical distributions in both systems. It is generally

accepted that the statistical distributions of variations of prices of financialassets

(shares, indices, commodities, exchange rates) are power laws [1], and (exponen-

tially) truncated power laws [2]. The Bose-Einstein distribution for the occupa-

tion of energy states is also an exponentially truncated power law: the average

occupation of energy states in BECsn(E)=1/
(

exp
(

(E−µ)/kT
)

−1
)

shows

the asymptotics:n(E) ∝ exp(E/kT )−1 for small energies (for the conden-

sed part of BEC) andn(E) ∝ exp(−E/kT ) for large energies (noncondensed

part). The power law exponents in finance markets are however different from

∗The work was financially supported by project FIS2004-02587 of the Spanish Ministry of
Science and Technology.
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those in BECs: the distribution of wealth follows the Pareto law:n(w) ∝ w−1−α

[3], where the Pareto exponent in empirical studies is found in region1 < α < 2

[4]. The distributions of price moves for most financial assets follow a truncated

Levy distribution [2], with the asymptotics for small and moderate price variations

∆x given by a power law:p(∆x) ∝ ∆x−1−γ , and for large variations most

likely given by an exponential tail:p(∆x) ∝ exp(−∆x). (Note however that

some empirical studies lead Levy distribution truncated by power law with large

power exponent:γtruncation ≥ 3 [5]). The Levy exponent is empirically found

in range1.3 < γ < 1.8 [5, 6]. Despite of the significant differences in power

law exponents (the power law exponents for Bose-Einstein distributions are α =

γ = 0), the fact that the distributions both in financial markets and BECs follow

an exponentially truncated power law is remarkable.

Another indication that the financial markets are related with BECs is that

both systems are partially random, and partially coherent. The atom collisions

in classical gases are completely random (constrains being just the energy and

momentum conservation), which leads to Maxwell-Boltzman distributions. The

particle collisions in bosonic gases are selective, in that the atoms after collisions

prefer to choose occupied states, due to the bosonic enhancement effect. Evidently

processes in finance market are also on one hand chaotic and unpredictable, like

chaotic collisions of atoms in classical gases. On the other hand the events in

finance markets are somehow motivated. The motivation in general brings order

and coherence into a system. This simultaneous presence of randomness and of

coherence hints on deeper relations between the finance and BEC systems.

A common physics in BECs and finance systems bases on a similar mecha-

nism of the coherence in both systems. As noted above, the bosonic enhance-

ment is responsible for the coherence in atomic (or photonic) condensates, in that

the (quantum) particles tend to choose occupied states. In finance, one obvious

behavior scenario is that most market participants tend to invest like the others

participants, i.e., to occupy more “attractive”, more “popular”, in generalalready

occupied, states. This is due to a choice of investing strategies according to

the opinion of majorities. This is also due to a “condensation” of investors into

investment groups, with common investment strategies. In overall the so called

herding effect in economy and finance is plausible [7]. Evidently the finance
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markets are somewhat more complicated than bosonic gas, and other motivations

than herding play a role here. For instance every market participant is motivated

to maximize his wealth, i.e., to optimize the outcomes of his financial deals.

One of first models for finance markets, that of Bachelier [8] compares the

stochastic diffusion of the market prices with stochastic diffusion of a Brownian

particle. The Brownian particle is in a thermal equilibrium with the atoms of the

environment, like the price is in an equilibrium with the kinetics of the market

participants. The Bachelier approach leads to Gaussian distributions for price

moves, in analogy with the Maxwell distribution of atom velocities in classical

gases. However, if one draws an analogy between finance markets andpartially

coherent gases, then the price, being in thermal equilibrium with partially con-

densed Bose particles would not obey Gaussian distributions, but ratherthe Bose-

Einstein distributions, i.e., would show the power laws.

In this letter we substantiate the idea that the finance markets are analogous to

Bose gases. We consider two main motivations discussed above for the behaviour

of market participants: 1) herding (also present in Bose gases); 2) optimization

of the outcomes of deals (absent in Bose gases). We assume that these twomain

motivations are common to all (or most) participants of the market. Evidently

different participants may have different motivations, i.e., perhaps some part of

participants follow “anti-herding” behaviour, i.e., invest opposite to opinionof

majority. We attribute, however, possible different motivations of market partici-

pants to randomness in the market. I.e., apart from these two global motivations

we consider the financial deals as completely stochastic (or driven by a variety of

different individual motivations), not possible to be incorporated in a macroscopic

description. We derive equilibrium statistical distributions in ensemble of “profit

seeking bosons” based on these two global assumptions. The derived distributions

correspond well with the distributions observed in finance markets, i.e., with the

exponentially truncated Pareto distributions of wealth, and with the exponentially

truncated Levy distributions of price moves.

We simplify maximally the model by assuming that each (i-th) market par-

ticipant occupies states in a two dimensional spaceXi = (mi, si), wheremi

is the amount of “money”, andsi is the amount of “shares” in possession. In

general “money”m is some exogeneous asset, in the sense that the investors
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can buy from it as much as they wish, and the “stock”s is some “risky” asset

subjected to speculation. The generalization to the systems of many sorts of

shares is possible. The considered one share system is illustrated in Fig. 1. An

elementary deal involving two market participants means a buying or selling of a

particular amount of shares, i.e., a change of the states of participants, asindicated

by arrows. We assume “two particle collisions” only, i.e., the deals between

two participants. In reality more than two participants may participate in deals,

however, without losing generality we can decompose complicated deals into two

participant elementary deals.

11sm

22sm

'

2

'

2sm

'

1

'

1sm

s (shares)

m (money)

Fig. 1. Phase space of “one share” system. Market participants occupy the
states in the phase space parameterized by “money”m, and “shares”s. A
deal between to two market participantsX1 = (m1, s1) andX2 = (m2, s2)
corresponds to a jump to new statesX ′

1
= (m′

1
, s′

1
) and X ′

2
= (m′

2
, s′

2
)

conserving the total amount of money and shares.

Each deal conserves the total amount of money and of shares possessed by

both participants of the deal. (The arrows in Fig. 1 are directed oppositely,and are

of equal length. The direction of the arrows indicates an agreed price ofthe share

for a particular deal. If every deal would occur at a fixed price, the individual

wealth of investorsri = mi + si, would not vary in time, and no thermalisation

and equipartition in the ensemble would occur. However, due to randomnessin

the market, some deals can be profitable for one participant, and brings losses to

another one (in Fig. 1 the deal is profitable for participant1), therefore mixing in
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the system occurs, and the system should reach a thermal equilibrium.

We apply a textbook technique [9], to calculate the average occupations of

the states in the parameter space: assuming that two particles (two market par-

ticipants) involved in a collision (a deal) were initially in statesX1 = (m1, s1)

andX2 = (m2, s2), with the average occupationsn1 andn2, and that after colli-

sion they occupy new statesX ′

1
= (m′

1
, s′

1
) andX ′

2
= (m′

2
, s′

2
), with average oc-

cupations n′

1
and n′

2
, the probability of the above collision is:

n1n2(1+n′

1
)(1+n′

2
). Here the probability of a particular collision is proportional

to the occupation of initial states, since the colliding particles (the deal partners)

must meet one another, and depends on the occupation of the final states,due

to Bosonic enhancement (herding) effect. A detailed balance requires that the

probability of the transition in the reverse direction is equal to that of the forward

transition, i.e.,n1n2(1 + n′

1
)(1 + n′

2
) = n′

1
n′

2
(1 + n1)(1 + n2), which can be

rewritten:

n1

1 + n1

n2

1 + n2

=
n′

1

1 + n′

1

n′

2

1 + n′

2

. (1)

The solution of (1) taking into account conserved quantities leads to:

n(m, s)

1 + n(m, s)
= exp

[

β(µ − m − s)
]

, (2)

with µ having the meaning of a chemical potential, and indicating the level of

condensation in the system, andβ = 1/(kT ) having the meaning of inverse

temperature. (2) easily leads to celebrated Bose-Einstein distributionn(m, s) =
(

exp
[

β(−µ + m + s)
]

− 1
)

−1
.

The above distributions would appear in finance markets if only one moti-

vation, that of herding, would dominate, and if the deal prices were completely

random. Then the market would be equivalent to BEC of atoms. TemperaturekT

in finance markets would have a meaning of average richness of market partici-

pants. However, to adopt for financial markets we should modify (1), (2). First,

we must assume that the herding considers only the risky assets, but not money

m. It would be unrealistic to assume that a market participants finds the state

with less money more attractive because the majority is poorer than he, however

it is realistic to assume that the market participants would sell shares if everybody

else were selling. With this assumption the attractivity of a state should not be

251



K. Stali ūnas

1 + n(m, s) as in BECs, but rather1 + n(s), wheren(s) =
∫

(n(m, s)dm is the

distribution ins space, regardless of moneym. Next, the attractivity for the state

in financial markets is evidently proportional to its wealthr = m + s, therefore

the probability of the jump from the stateX = (m, s) to the stateX ′ = (m′, s′)

is proportional tor′/r = (m′ + s′)/(m + s), i.e., reads:

n(m → m′, s → s′) =
m′ + s′

m + s
n(m, s)

(

1 +

∫

n(m′, s′)dm′

)

. (3)

With this in mind the analog of (2) now reads:

n(m, s)

1 + n(s)
= (s + m)2 exp

[

β(µ − m − s)
]

. (4)

Integration of (4) with respect tom allows to calculate the distribution ins space:

n(s) =
1 + βs + (βs)2/2

exp
[

β(∆µ + s)
]

−
(

1 + βs + (βs)2/2
) , (5)

here∆µ = µ0 − µ is the normalized chemical potential:µ0 = ln(2/β3)/β. (4)

and (5) allow to calculate the full distribution:

n(m, s) =
(s + m)2 exp

[

β(µ0 − m)
]

exp
[

β(∆µ + s)
]

− (1 + βs + (βs)2/2)
. (6)

(5) and (6) are central distributions as following from our condensate model.

(6) indicates, that the condensation occurs in the space of the speculated

assets, but not in space of moneym, where the distributions are Poisson-like:

for not condensed marketsβ∆µ � 1: n(m) =
∫

n(m, s)dm ∝
(

1 + βm +

(βm)2/2
)

exp(−βm) has the maximum at zero; in the limit of strong conden-

sationβ∆µ � 1: n(m) ∝ (βm)2 exp(−βm), has the maximum atβm0 = 2.

The distribution ins space (5) leads to the following asymptotics: for highly

condensed markets (5) leads ton(s) =
(

β∆µ + (βm)3/6
)

−1
, which saturates

to n0 = (β∆µ)−1 for βs → 0, and results in a Pareto wealth distribution

n(s) = s−1−α with the power exponentα = 2. The not condensed markets

β∆µ � 1, and/or not condensed tails of condensed marketsβs � 1 obey an

exponential lawn(s) = exp
[

−β(∆µ+ s)
]

. The distributions of occupations for

the financial systems with different condensation degrees are plotted in Fig. 2(a),
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Fig. 2. Average occupations of share states in linear-logarithmic representation
(a), and in double logarithmic representation (b) for different values of
normalized chemical potential∆µ (as indicated), as obtained from (5). (c)
shows the local slopes of double-logarithmic plot, which corresponds to local
Pareto exponents.β = 1 . The distributions in (b) are not normalized, i.e.,

displaced arbitrarily in vertical direction.

(b). One generally obtains 1) plateau (saturation) for small values ofs; 2) power

law region for intermediate values ofs. The power law region increases with

increasing condensation degree; 3) exponential decay for large values ofs.

Fig. 2(c) shows the local slopes of the double-logarithmic plot of occupation

distribution. At a condensation threshold a region of power law with Pareto

exponentα ≈ 1.4 emerges. With the increasing condensation level the Pareto

exponent increases, up to a limiting valueα = 2 for perfectly condensed markets.

The relation between the normalized chemical potential∆µ, and the integral

quantities, such as total numbers of participantsN =
∫∫

n(m, s)dmds, of money

M =
∫∫

m ·n(m, s)dmds, and of sharesS =
∫∫

s ·n(m, s)dmds is not analytic.

In a limit of high condensation:N ∝ β−5/3∆µ−2/3, M ∝ β−8/3∆µ−2/3, and
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S ∝ β−7/3∆µ−1/3. The number of particles is in units of a critical (visible) occu-

pation number, when the state becomes visible, thus attractive for other investors.

Recall that the attractivity of the state is1+n(s). The parameters for condensation

threshold depends on its definition: if one defines the condensation threshold as

appearance of plateau in Fig. 2(c), then this occurs atβ∆µthr ≈ 0.0037, and

βNthr ≈ 105.

Next we analyze the distribution of price moves for a traded assets, based

on the distribution (6), and assuming, that the price is in equilibrium with the

microscopic dynamics of the system, i.e., that the price change is proportionalto

the difference between demand and supply. This means that the distribution of

price change is proportional to the distribution of the jumpsn(∆s) in the phase

space of the system. Using the postulated by (3) probability for a jump(m, s) →

(m′, s′) = (m − ∆m, s + ∆s), and integrating with respect to all possible initial

states:∆m < m < ∞ (one must posses at least the amount of money∆m to buy

a share), and0 < s < ∞, and with respect to all∆m, the distribution of a size

of a dealn(∆s) can be obtained, however, does not leads to analytical results (the

integration can not be done analytically). Therefore we calculated corresponding

integrals numerically, and plotted a family of distributions obtained. Fig. 3, shows

sharply peaked, and exponentially decaying distributions similar to those found

in financial data. The picture, similar to that in Fig. 2 for the distribution of

investments, is obtained: 1) the distribution of price changes saturates for small

∆s; 2) the distribution of price changes follows the power law for intermediate

∆s: n(∆s) = ∆s−1−γ , with Levy exponentγ is in the range of1.3 < γ < 1.8;

3) exponential decay for large∆s: n(∆s) = β−1 exp
[

− β(∆µ + ∆s)
]

.

Concluding, we consider financial system as a partially random partially

coherent bosonic system. We derive statistical distributions based on two global

ingredients of the behaviour of market participants: 1) that the individualmarket

participants tend to cluster, and to behave according to the opinion of majority;

2) that the market participants seek for profit. Considering the first ingredient

only, a Bose-Einstein distribution is recovered. Although the Bose-Einsteindis-

tribution is identical to exponentially truncated Pareto and Levy distributions, the

corresponding power law exponents:α = γ = 0 are significantly different from

those observed in financial systems. Accounting for the second ingredient leads
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to exponentially truncated Pareto and Levy distributions with power exponents

corresponding well to the ones observed in financial markets.
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Fig. 3. Distribution of price changes in linear-logarithmic representation (a),
and in double logarithmic representation (b), for different values of normalized
chemical potential∆µ. (c) shows the local slopes of double-logarithmic plots,
which corresponds to local Levy exponents.β = 1. The distributions in (a)

and (b) are not normalized, i.e., displaced arbitrarily in vertical direction.

These Pareto exponents are found empirically in the limits1 < α < 2. The

results from our model are compatible with these observations. The empirical

Pareto exponents are not very precise, since the statistical data on the wealth

distribution could be biased. The empirical Levy exponents for price variation are

of better confidence; they are reported mostly in the region1.3 < γ < 1.8, which

corresponds very well to those following from our model. The correspondence

between the power law exponents following from our BEC model are also com-

patible with those recently calculated from kinetic models of finance markets [10].
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