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Abstract. This paper is a review of a suite of mathematical models otiasing
complexity on particle dissolution in metallic alloys. $hivork deals with
models for multi-component particle dissolution in mutmponent alloys,
where various chemical species diffuse simultaneously,aatwo-dimensional
model incorporating interfacial reactions as in the modélalfi [1]. The work

is mathematically rigorous where asymptotic solutions aotlition bounds
are derived but is also of a practical nature as particleotliien kinetics is
modelled for industrially relevant conditions.
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1 Introduction

1.1 Technological background

In the thermal processing of both ferrous and non-ferrous alloysiolgeniza-

tion of the existing microstructure by annealing at such a high temperature that
unwanted precipitates are fully dissolved, is required to obtain a microsteuctu
suited to undergo heavy plastic deformation as well as providing an optimal sta
ting condition for a subsequent precipitation hardening treatment. Such a ho
mogenization treatment is for example applied prior to hot-rolling of Al killed
construction steels, HSLA steels, all engineering steels, as well as iegsroc
sing aluminium extrusion alloys. Although precipitate dissolution is not the only
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metallurgical process taking place during homogenization, it is often the most
critical of the processes occurring. The minimum temperature at which the an
nealing should take place can be determined from thermodynamic analysés of th
phases present. However, the minimum annealing time at this temperature is not
a constant but depends on particle size, particle geometry, particlentatam,
overall composition etc. To make the homogenization treatment more efficient,
it is highly desirable to have robust physical models for the kinetics of pertic
dissolution as a function of thermodynamics and thermokinetics data as well as
particle morphology and microstructural dimensions. Using such models the
minimum annealing times and optimum heating strategics can be calculated a
priori, rather than be determined experimentally, and at great cost.

Apart from their technological relevance, accurate physical mode|safidi-
cle dissolution are, due to the complexity of the processes, also of greatific
and mathematical interest in themselves.

1.2 Existing models for particle dissolution

To describe particle dissolution several older mathematical models haveléeen
veloped, which incorporate long-range diffusion [2—4] and noniligiwm con-
ditions at the interface [1,5]. In general, the dissolution of particlesqads
via decomposition of the chemical compound, the crossing of the atoms of the
interface and long-range diffusion in the matrix. The first two processes
referred to as the interfacial processes. The long-range diffusidelsiare based
on the assumption that the interfacial processes are infinitely fast. Hiese,
models provide an upper boundary for the dissolution kinetics.

The first models were based on analytical solutions for the interfacidlgos
as a function of time (see for instance Whelan [2] and Crank [6]). Hewer
these solutions the volume in which dissolution takes place is infinite. As far as we
know, Baty, Tanzilliand Heckel were the first authors in the metallurgicadrou-
nity to applied a Finite Difference Model [3] where the volume is boundeddau
and Ryum [4] also applied a Finite Difference Model in which a lognormal pa
ticle size distribution is included. They showed that the macroscopic dissolution
rates depend strongly on the patrticle size and possible interactions betwizen
sequent particles. Nolfi's [1] model was, as far as known, the firstatiadvhich
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non-equilibrium conditions at the particle-matrix interface were includedvé4do
ver, the interface migration was not included. The non-equilibrium condision
modelled by a Robin-condition at the interface. Their solution is in terms of a
Fourier series. Aaron and Kotler [5] combine Whelan’s solution with therprao
ration of the Gibbs-Thomson effect to deal with the influence of curvainrine
interface motion. Further, they transform the Robin-boundary condifiblolfi's
model into a Dirichlet boundary condition. Recently, Svobedaal [7] ana-
lyzed the kinetics of diffusional transformations where mechanical aathifal
forces exerted on interfaces between subsequent phases appmted. Their
approach is based on thermodynamical concepts that can be found in [Biller
They obtain a thermodynamically based procedure to predict non-equitibriu
interface kinetics by using both analytical and numerical techniques.

However, all these mentioned models did not consider the technologically
important dissolution of multi-component particles in multi-component alloys.
As far as we know Agrert al [9] was the first to extend the models to multi-
component alloys. His formalism was based on a thermodynamic treatment of
diffusion in terms of chemical potentials and an interface motion from a material
balance. The numerical methods that were used by Agren were imprgved b
Crusiuset al[10] and the diffusion model was improved in [11], which forms the
backbone of the software-package DICTRA suitable for dissolutiongamath
problems with one spatial dimension. The thermodynamic relation, which defined
the boundary conditions at the moving interface, was simplified to a hyperbolic
relationship. This has been done for iron-based alloys by \éte&l [12] and
Hubert [13]. Furthermore, Reisat al [14] investigated the dissolution of M§i
alloys in aluminium alloys by the use of the same principles.

The above mentioned authors viewed patrticle dissolution as a Stefan prob-
lem: a diffusion equation with a sharp moving interface. A recent apprzach
the phase-field approach, which is derived from a minimization of the gnerg
functional and based on a diffuse interface between the consechtigep This
approach has, among others, been used by Kobagasihi15] and Burmaret
al [16] to simulate dendritic growth. An extension to multi-component phase-
field computation is done by Graé al[17], where solidification and solid-state
transformation is modelled. For the one-dimensional case they obtain &tperfe
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agreement between the phase-field approach and the software @a&ikaRA,
which is based on a sharp interface between the consecutive phagberifore,
some recent comparison studies of phase-field with a Stefan problent bglee
moving mesh method or a level-set method or a mesh-free method, were done by
Javierreet al[18] and Kovacevic and Sarler [19] respectively. Some disadvastage
of the phase-field approach are that (1) no simple quick estimation of thiosolu
is available, and that (2) physically justifiable parameters in the energtidnat
are not easy to obtain. Generally those parameters are to be obtainefittiram
procedures that link experiment, thermodynamic data-bases and nuncerital
putation. An other disadvantage of the phase-field is the requirement ¢ a fi
grid resolution in the diffuse interface region in order to have agreemimtie
solution of the “sharp interface problem”. This poses a severe time-stepam
and hence time consuming computations. This was observed by BetraHth6]
and Javierreet al [18]. Therefore, we limit ourselves here to viewing particle
dissolution as a (vector) Stefan problem. We remark that Thorataad [20]
wrote a nice review paper on simulating diffusional phase transformatiing u
several physical model approaches as the updated thermodynamic sbthod
Agren, used in the package DICTRA, and the diffuse interface pfielseand
(Allen)-Cahn-(Hilliard) approach. Thorntaet al[20] also describe several two-
dimensional applications of phase coarsening with Ostwald Ripening using the
diffuse interface approach. The present review paper will focuheromputa-
tional aspects of solving Stefan problems with a sharp interface appliedticigpa
dissolution in (multi-component) alloys. Furthermore, some mathematical issues
will be summarized.

Although much work on the mathematical modeling of dissolution of parti-
cles had been done, some major limitations remained (until recently):

1. No fast and efficient numerical method for the simultaneous dissolution of
a particle and a segregation at the grain boundary was available. Further
more, no quick and well motivated self-similar solution for the dissolution of
particles in multi-component has been reported.

2. Some particles may be disk-shaped, hence a two-dimensional modeds$s nec
sary to compute the dissolution of the particle. With the classical literature
of Finite Elements the computation of the interface movement with a sharp
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angle within the boundary is impossible. Furthermore, the case where two
particles dissolve in one cell needs to be discussed.

3. No numerical model, be it 2D or quasi 3D, that treats the interface motemen
while the interfacial reactions take place exists.

4. Metallurgical experiments on alloys indicate that dissolving particles or pha
ses may break up into smaller particles or phases in some circumstances. No
metallurgically sound model in three spatial dimensions, based on the sharp
interface approach, exists to deal with these topological changes.

These limitations where lifted in a suite of mathematical models of increasing
complexity. This paper presents a coherent total picture of the basiepisrend
equations in these models and illustrates their potential.

Furthermore, an experimental validation of the above mentioned models can
be found in [21] and [22]. In the first paper the activation energyp@article
dissolution has been analyzed. In the second paper the experimentativalid
was carried out using DSC-measurements. New work concerns thesianafly
particle dissolution where cross-diffusion aspects and a relaxation whdlay-
namic equilibrium, are incorporated. Further, the level-set method and moving
grid method are analyzed as candidates to model particle growth. In thisyape
only consider the moving grid method and a presentation of the level-set method

1.3 Organization of the paper

The current paper does not aim at being mathematically rigorous but naemedy

at being descriptive about the implications of the developed mathematics ef thes
more complex models. First we formulate the mathematical models for particle
dissolution in Section 2. Here a one-dimensional multi-component model and
two-dimensional model is formulated. Section 2 ends with a brief description of
the mathematical implications of the models. Section 3 starts with available self-
similar solutions for the one-dimensional (multi-component) models. Next, the
numerical methods to solve the one- and two-dimensional models are ddscribe
Section 4 deals with applications of the models to experimental and industrial
set-ups. Finally, some concluding remarks about the work are giveoragang
research is indicated.
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2 Models

2.1 Models for multi-component alloys

We consider a particle of a multi-componeghphase surrounded by a “matrix” of
phasex, of either uniform or non-uniform composition. The boundary between
the -particle anda-matrix is referred to as the interface. The metal is divided
into representative cells in which a single particle of phaséissolves in arn-
matrix. Particle dissolution is assumed to proceed by a number of subsequent
steps [1, 23]: decomposition of the chemical bonds in the particle, croskthg
interface by atoms from the particle and long-distance diffusion iavtpease. In

the models of thermodynamic equilibrium, we assume in this section that the first
two mechanisms proceed sufficiently fast with respect to long-distanaesidiff

and do not affect the dissolution kinetics. Hence, the interfacial caorateams are
those as predicted by thermodynamics (local equilibrium). In [24] we cereid

the dissolution of a stoichiometric particle in a ternary alloy. The hyperbolic
relationship between the interfacial concentrations for ternary alloysrigede
using a three-dimensional Gibbs space. For the case that the partidlet£oifis
chemical elements apart from the atoms that form the bulk gftpkase, a gener-
alization to an-dimensional Gibbs hyperspace has to be made. The Gibbs surfaces
become hypersurfaces. We expect that similar consequences agphaahence

the hyperbolic relation between the interfacial concentrations remains walid f
the general stoichiometric particle in a multi-component alloy. We denote the
chemical species byp;, i € {1,...,n + 1}. We denote the stoichiometry of the
particle by (Sp1)m, (Sp2)ms (SP3)ms (- - ) (SPn)m,- The numbersni,ma, ...

are stoichiometric constants. We denote the interfacial concentration céspe

1 by cfo' and we use the following hyperbolic relationship for the interfacial con-
centrations:

F(A3% %) = (@)™ ()72 () (@)™ = Kol = 0, )
Where Kso| - Kso|(T)

The factorK is referred to as the solubility product. It depends on temperature
T according to an Arrhenius relationship. In principle, the model can hagle
form of temperature dependence for the solubility product.
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We denote the position of the moving interface betweerstparticle ancd-
phase byS(¢). Consider a one-dimensional domain, i.e. there is one spatial vari-
able, which extends frohup to M. Since particles dissolve simultaneously in the
metal, the concentration profiles between consecutive particles may irdecdhct
hence soft-impingement occurs. This motivates the introduction of finiteld size
cells over whose boundary there is no flux. For cases of low ovenratierdrations
in the alloy, the cell sizé/ may be large and the solution resembles the case where
M is infinite. The latter case can be treated easily with (semi) explicit expressions
The spatial co-ordinate is denotedhy < S(t) < r < M. Thea-matrix where
diffusion takes place is given l9(t) := {r € R: 0 < S(¢) < r < M}. The
(-particle is represented by the domair< » < S(t). Hence for each alloying
element, we have far € Q(¢) andt > 0 (wheret denotes time)

8ci -~ Dij 0 Ocj .
= —qrf— f 1,... : 2
ot ;w oo for i€ {lin) @)

Here D;; and ¢; respectively denote the (cross-)diffusion coefficients and the
concentration of the speciés thea-rich phase. I1fD;; < 0 for somei # j, then,

the transport of elemeritis delayed by the presence of elemgnfor D;; > 0,

the opposite holds. Experiments with Differential Scanning Calorimetry bynChe
et al [22] for Al-Si-Mg alloys indicate that disregarding cross-diffusion terms
gives a good approximation. However, for some other alloys the full sldfu
matrix should be taken into account. A physical motivation of the above partial
differential equation is given by Kirkaldy and Young [25]. The geomé&tilanar,
cylindrical and spherical for respectively= 0, 1 and2. Let ¢} denote the initial
concentration of each element in thephase, i.e. we take as initial conditions
(IC) for r € ©(0)

ci(r,0) =c(r), for ie{l,...,n},
(1C)
S(0) = So.

At a boundary not being an interface, i.e.Mdtor whenS(t) = 0, we assume no
flux through it, i.e.

8 C;

E:O, for ie{1,...,n}. 3)
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Furthermore at the moving interfadgt) we have the “Dirichlet boundary condi-
tion” ¢3° for each alloying element. The concentration of eleniémthe particle
is denoted byc”®", this concentration is fixed at all stages. This assumption
follows from the constraint that the stoichiometry of the particle is maintained
during dissolution in line with Reiso et al [14]. The dissolution rate (int2aia
velocity) is obtained from a mass-balance. Summarized, we obtain at thaagerf

fort > 0andi,j € {1,...,n}:

ci(S(t),t) = O,

dS n Dij 3Cj
Sp— .V ——h t
dt ng Cfart_ C?OI 87‘ ( ( )7 )
- Dik 6ck " Djk 8ck
=D g, © D P i gy @
k=1 [ k=1 "J J

The right part of the above equations, which holds<in), follows from local
mass-conservation of the components. Above formulated problem falls within
the class of Stefan-problems, i.e. diffusion with a moving boundary. Sirce w
consider simultaneous diffusion of several chemical elements, it is eefeor
as a “vector-valued Stefan problem”. The unknowns in above equaienthe
concentrations;, interfacial concentrationﬁOI and the interfacial positiof§(t).
All concentrations are non-negative. The model was analyzed in §16-2

In the above formulation, it was assumed that the interface concentrations
satisfy thermodynamic equilibrium. In the next section we will abandon this
assumption, i.e. the interface reactions will be taken into account.

The influence of cross-diffusion is investigated in terms of a parametey stud
in [29] and in terms of self-similar solutions as exact solutions for the untedin
domain in [26]. An numerical analysis of cross-diffusion controlled plertilis-
solution is presented in [27]. An application to Al-Cu-Mg alloys of this type of
model was presented by Vusanovic and Krane [30]. Furthermore, swdels
for multi-component solid-state phase transformations, based on more thermo
namic considerations, have been presented in [9, 11, 20, 31].

For a mathematical overview of Stefan problems we refer to the textbooks of
Crank [6], Chadam and Rasmussen [32] and Visintin [33].
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2.2 Two dimensional models for binary alloys

In this section we consider a particle in a binary alloy in two spatial dimensions.
Further, we take interfacial reactions as additional rate determining ggese
into account. To highlight the effect of the geometry and the interfaciaticea
on dissolution kinetics we drop the multi-component approach and consgler th
simple case of a binary-5 alloy with a3 particle. The initial concentration ¢f
in thea-rich phase is equal td (mol/m?), whereag”2" denotes the concentration
of 3 in the particle. The equilibriun® concentration in the alloy ie*® (P2t >
' > ). When the temperature is increased, dissolution of#particle sets
in.

In the 2D-model we use the geometry as given in Fig. 1. The domain filled

Al-Cu AlCu

Q)

r Al-Cu At

w 1

S(t)

AlCu

i §(f) S(t+At) X

Fig. 1. Geometry of arg Fig. 2. The control volume.
particle in Aluminum.

with the a-rich phase is denoted Ky(¢). The boundary of this domain consists
of the interfaceS(¢) and the outer boundarids, i € {1,2,3,4}. The outer
boundaries are fixed in time, except the intersectioris,andI’y with S(t). In
thea-rich phase(t), the s concentration(x, y, t) satisfies the (linear) diffusion
equation

Jc

i DAe, (z,y) € Qt), te (0,T]. (%)

The diffusion coefficien (m?/s) is supposed to be independent of concentration.
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As the initial condition we use

c(z,y,0) = (z,y), (z,y) € Q(0), (6)

where ©(0) is prescribed. We assume no flux gfatoms through the outer
boundaries, so

dc .

%(x,y, t)=0, (z,y)ely, ie{l1,2,3,4}, te€][0,T). 7)
To determine the position of the interface two conditions are necessargrive d
these conditions for a spatially three dimensional problem, we consider a small
part of the interface. Suppose that the interface is smooth, which medris tha
can locally be described by differentiable functions. For a small time Atep
the interface moves in the direction perpendicular to the interface.x¥dés is
chosen along the normal. With this choice the position of the interface is locally
described by the relation = S(¢). We consider a control volume of widthy
andAz. The intersection of the control volume with the surfgce 0,z = 0 is
shown in Fig. 2. The balance gfatoms leads to the following equation (Stefan
condition):

(S(t+ At) — S(t)) AyAz - Pt

(8)
_ D%AyAzAt (St + At) - S(B) AyAz - 5,

wherec® is the limit of the concentration if2(¢) in the neighborhood of the
interface. The left-hand side of (8) is equal to the amount of atoms tragdfe
from the particle to the alloy. Assuming a first order reaction at the intetfeece
second equation is (Robbins condition):

Kint (¢ — %) AyAzAL

()]
_ D%AyAzAt (St + At) - S(B) AyAz - 5,

whereK;,; (m/s) is a measure of the rate of the interface reaction A;gr large

the problem is diffusion controlled, whereas #6y,,; small the problem is reaction
controlled. Dividing (8) and (9) byAyAzAt and taking the limitA¢t — 0 one
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obtains

P, (2, y, t)

0
= Da_rcl($,y’t) + CS’Un(CE,y, t)v (l',y) € S(t)’ te (O’T]a (10)
Kim(csol _ CS)
0
= Da—z(m,y,t) +Sv(,y,t), (z,y)€S@), te (0T (11)

wheren is the unit normal vector on the interface pointing outward with respect
to 2(¢) andwv,, is the normal velocity of the interface.

In the references [1], [23] and [34] comparable boundary condittza used.
We remark that in the thermodynamic models, merely based on chemical po-
tentials, due to Svobodet al [7] and Sietsma and van der Zwaag [35], non-
equilibrium interface conditions have been used too. Though, the last-medtio
approaches are built on different equations to solve.

2.3 Consistency checks for the models

We require that the total mass of all chemical elements is constant in the whole
dissolution cell, i.e. oved < r < M. Further, Ietc? be constant ove®(0), then
for the case of one spatial co-ordinate, we have

M

/cz-(r, tyrtdr = c?art

0

Sg+l CQ Ma+1 _ S[()H-l
a+1 a+1

M
Subtraction of[ 2r*dr = 222 from both sides of above equation gives
0

1 a+1

M

/ (cir,t) — )rodr = (P = )

0

S(L)H-l
—- . 12

a-+1 (12)

All solutions of the Stefan-problem have to satisfy this condition. A mathematical
theorem is rigorously proven in [36] also for multi-dimensional cases. ¥gcan
intuitive argument to show that some Stefan-problems do not have solutiins th
satisfy mass-conservation and henceilky@osed
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Suppose that? < P < ¢, this situation is sketched in Fig. 3. Since from

the maximum principle of the diffusion equation, it follows that extremes occur

only at boundaries or at= 0, the gradient must be negative, i%%(S(t), t) < 0.
Since alloying elements diffuse from high concentration areas to low cencen
tration areas, the alloying elements diffuse from the interface intaxtbbase.
Combination of™®" — ¢3! < 0 and the rate-equation for the interface gives
% > 0, i.e. thep-phase grows in the-phase. This gives an increase of the
concentration in the matrix of the alloying elements due to both grov?ﬁ‘it &

?) and to inward diffusion. This implies that the integral of the concentration,
e.g. the total mass, is not constant. Hence a contradiction follows. Thisvisisho
in Fig. 3 where both the initial profile and a profile after a certain amount of time
have been sketched.

t=0 t>0
Cpiart C?art Csiol
0
Ci CIO
S(0) S

(a) (b)

Fig. 3. The hypothetical casé < **" < ¢ which gives growth of ther-
phase and violation of the mass-balance. Left (a) showsitial isituation and
right (b) shows a hypothetical (but impossible) situatiba@ne timet > 0.

The following second argument also supports the above mentioned contra-
diction. Suppose thaf < " < (59 i.e. the interfacial concentration exceeds
the initial concentration (see Fig. 3). Fram= 0 the interfacial concentration can
increase (build up) only due to transport of atoms from the particle to théaneer

and matrix (since concentration gradients and reactions are absent inifldlly)
implies that the total number of atoms of the alloying elements in the particle
must decrease. Since the concentration of the alloying elements in the patrticle is

assumed to be constant, the particle must dissolve since alloying elements diffus
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from the particle into the matrix.

On the other hand from the maximum principle of the diffusion equation
follows that %C; (S(t),t) < 0. Hence, the total number of atoms of the alloying
element in the matrix increases. Furthermore, we & — ¢5° < 0, which
impIies% > 0, hence the total number of atoms of the alloying elements in the
particle increases. This gives a contradiction with the remarks in the peeviou
paragraph. Both the interfacial movement due to growth and the incréése o
total number of atoms of the alloying element are sketched in Fig. 3. Mass can
not be conserved for this case.

Similar arguments can be used to show that the other€8se **" < ¢?

also violates mass-conservation (see Fig. 4). This statement can balgeen

t=0 t>0

cio Y

art art
& 4 &

S(0) S(H
() (b)

Fig. 4. The hypothetical casé® < " < ¢ which gives growth of ther-
phase and violation of the mass-balance. Left (a) showsitial isituation and
right (b) shows a hypothetical (but impossible) situatibe@me timet > 0.

the following result:

Theorem. Let all concentrations be non-negative, then the following combina-
tions give non-conserving solutions in the sense of equétian

(i) < P,

part
7

(i) ¥ < P < ¢ (seeFigs. 3, 4for both cases).

This result is used to reject possible (numerical) unphysical solutions that
result from the vector-valued Stefan problem. The theorem is proventimema-
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tically rigorous way in [36]. Furthermore, negative concentrations aphysical
and hence rejected.

3 Solution procedures

3.1 Self-similar solutions and asymptotic approximations

We start this section by giving the self-similarity solution for the one-compo-
nent problem. Subsequently, we give the self-similarity solution for the multi-
component problem.

3.1.1 The binary alloy problem

Suppose that the interface concentration of a certain component is kisayn
c(S(t),t) = ¢*°. Then, we have to solve the following problem (we refer to this
problem as (P1)):

oo _ o
ot or?’
@_ D Jc

Py L@ = man gl g (S(0:1).
C(S(t),t) — ¢sol

L c(r,0) = A = c(o0,t), S(0) = Sp.

As in [36] we search a self-similar solution for the function= c(r,t) and for
S = S(t). Trial of ¢ = ¢(Z=2%) shows that these expressions satisfy the differen-

2v/Dt
tial equations in (P1). Setting := ;‘\‘/%(; gives an ordinary differential equation

for ¢ = ¢(n). Substitution of:(S(t), t) = ¢5°, solution of the ordinary differential
equation and use of the initial condition gives

O_Csol T—SO
t) = f 0.
c(r,t) erfc(Qi\/z) erc(2 Dt) +c

The procedure to obtain the above result can be found in [36] or #]the in-
terface rate constahtone substitutes the relatich= S, + k+/t into equation (4).

A — S0l | D 67% k (13)
cpart _ sol T erfc(%) 9

270



Review on some Stefan Problems

above equation is solved férusing a standard zero-point iteration method.

3.1.2 A self-similar solution for the multi-component problem

In this section we only treat the case without cross-diffusion, 1); = 0 for

1 # j and we defineD;; =: D,;. The solutions that are presented here can
be extended for cross-diffusion using a diagonalization or Jordan for the
diffusion matrix. This is done in [26]. As a trial solution for the planar case in
a semi-unbounded region, we take the interfacial concentrations to lséanbn
(these concentrations are not constant in time for other cases). Eq{4Btias to

be fullfilled, hence combined with equation (13) one obtains the following syste

of non-linear equations to be solved foandc® for i € {1,...,n}:
0 | _ k2
c; — C?o Dz e 4Di k .
Ly === for ‘€{l,...,n},
C?art_ C?OI T erfc(2 kD‘) 2 { } (14)

() ()2 (™) = Kon

. . cSOI—cQ
Using the assumptiopgin—z;
K 1
be solved irk, 5%, 5!, . . .| ¢SOk

ren

< 1, This gives the following set of equations to

0 _ .sol D
k:2% —Z, for 26{1,,71,}7
G —C ™ (15)

()™ ()™ ()7 () = Kson

sol__
The solution of (15) approximates the solution of (14) \fcéfﬁ%:m < 1.

The dilute case We consider the case that the particle concentration is much
larger than the interface concentration. Furthermore, we assume thattidle in
concentration in the matrix is almost equal to zero, 8" > ¢° > & ~ 0.
From the upper and lower bounds in the above expression, it followshbat
interface velocity can be approximated by

ds & ID;

i XVt for ie€{l,...,n}. (16)
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Since this has to hold for alle {1, ..., n} it follows that all interfacial concen-
trations can be expressed in terms of, for instance, the interfacial waten
corresponding to the first element, i.e.

SOl C?OI | Cpart Dy |
4 / sol _ & Y1 so
~ “part D; = part Dy =" = part\/ . 1
c; c c
i 1 1 ¢

We substitute all these expressions t@‘?‘ into the hyperbolic relation for the
interfacial concentrations (equation (1)) to obtain a simple exponentialtiequ
for ¢$° whose non-negative real-valued solution gives

( SOI)M C[Q)al’t Dl mo Czart D1 ma cq[’)bal’t D1 mMn K
c |\ Sart/ = N —=amt = ol B = =
1 crl)art Dy CglJart Dy Cgl)art D, sol
part  n YD\ ™ 1
C 1
— C§OI =1 [ < l) ‘Ksol} (€ RJr)a
/Dl H C?art
where[ [, fi :== fifa... fn @andy := m; +mso +...+m,. Note again that we
consider only non-negative and real-valued concentrations. Theasofar c$°
is substituted into (16) to obtain the interface velocity:
s cg‘f’f' Do
e BNV

17)

1

n n
1 nim .
&= Koo, = [TTEY™ ] Deni= [ [T0)™]

=1 =1
We see that for this case particle dissolution in a multi-component alloy is ma-
thematically reduced to particle dissolution in a binary alloy. The effective pa-
rameters (particle concentration and diffusion coefficient) are equadmgtric
averages with weights according to stoichiometry. For the details on thatieniv
as well as the solution for the solution for the dissolution of a spherical fgartic
we refer to [29]. The case where equation (2) is extended with ciiffssidn
terms is analyzed in [29] and [26]. In these papers a solution of the samme na
has been obtained and applied.

=

3.2 Numerical procedures

In the literature one can find various numerical methods to solve Stefalepreb
These methods can be distinguished in the following categories: fronirgack
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front-fixing and fixed-domain methods. In a front-fixing method a tramsétion

to body fitted curvilinear coordinates is used (a special case is the Isotfier
gration Method (IMM) [6]). A drawback is that such a transformation caly be

used for a relatively simple geometry. Fixed-domain methods are the enthalpy
method (EM), and the variational inequality method (VI). In these methods a
new unknown is introduced, which is the integral of the primitive variablee Th
free boundary is implicitly defined by this unknown. Since in our approaeh th
equations hold for the concentration and there are no energies involvtbe in
model, the enthalpy method and phase-field method are not used. We [&f@r to
and [38] among others where the phase-field method is used to compute the
solution of the moving boundary problem. An other recent method where the
free boundary is implicitly defined is the level-set method as described by Che
et al[39] for Stefan problems. Here the interface is identified by the zero ksiel-

of a marker function. The advantages of this method is that topologicageban
such as breaking up, of the dissolving or growing phases are dealtasily.eOn

the other hand, since both the interfacial velocity and interfacial coratéoris are

here determined by the concentration gradient, a grid grid-refinemeantedace
boundary can be attractive. This implies that the grid moves anyway ar@ hen
the benefits for the level-set method due to a fixed grid no longer apphugho

the level-set method remains the best candidate due to the ability of dealing with
changing topologies and because remeshing steps are not needéMN hed

VI methods are only applicable when the interface is an equi-concentrat@&n lin
However, in our application where either multi-component particles or irtiaifa
reactions are taken into account, the interface is not an equi-concemtliago
Hence, (IMM) and (VI) methods are no suitable candidates. ThereVerese

a front-tracking method which has the added benefit that a first ordetioa at

the interface can be incorporated in the model. The moving grid method solves
one partial differential equation only. The mesh is moved using an arbiteary
grangian Eulerian method. Here, the method is relatively cheap comparesl to th
level-set method, where also a first order hyperbolic partial differeatjaation

for the level set function has to be solved with a continuous extension of the
interface velocity at each time-step. However, it is sometimes necessaiytgech

the topology of the elements, then, the moving grid method requires a remeshing
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step, which involves an expensive two dimensional interpolation step. This is
a very expensive step in the moving grid method. Further, topologicalgelsan

of growing and dissolving (for instance the dissappearrance) plaasdsard to
implement into moving mesh methods. For these cases the level-set method
becomes more attractive. First some numerical methods for multi-component
alloys are presented. These methods are given for one spatial ioaterdnly.

Then, the moving grid method for 2D problems is presented and finally the level-
set method is described for 2D and 2D cases. We refer to [27, 40pdhidre
details.

3.2.1 Numerical methods for multi-component alloys

In this work we only treat the case without cross-diffusion. For the nigaler
treatment of cross-diffusion, we refer to [27]. We start with a discrétimaof

the one-dimensional multi-component model. Our main interest is to give an
accurate discretization of the boundary conditions for this Stefan probiigm

one spatial co-ordinate. Here we use the classical moving grid methodrodyu
and Landis [42] to discretize the diffusion equations. In this paper wdlyorie
describe the method, for more details we refer to [36].

Discretization of the interior region. We use an implicit finite difference method

to solve the diffusion equation in the inner region. An explicitly treated cdinec
term due to grid-movement is included. Since the magnitude of the gradient
is maximal near the moving interface we use a geometrically distributed grid
such that the discretization near the interface is fine and coarse fanthgfram

the moving interface. Furthermore, we use a virtual grid-point near thengpov
boundary. The distance between the virtual node and the interfacesisrcequal

to the distance between the interface and the first grid-node. The resdting
linear equations is solved using a tridiagonal matrix solver.

Discrete boundary conditions at the interface for local equilibrium. We de-
fine the discrete approximation of the concentratiorbf%s wherej, ¢ and k
respectively denote the time-step, the index of the chemical (alloying) element
and gridnode. The virtual gridnode behind the moving interface and itieagte
at the interface respectively have indides= —1 andk = 0. At the moving
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interface, we obtain from discretization of (4)

i+l 1 i+1 i+1
D; 03,1 - C’Z’,—1 _ Dip Cz?+1,1 - Cg+1,—1 for j € {1 n—1}

part _ sol — part sol ) AR A
G =G 24r Cit1 ~ Cit1 24r

Note that the concentration profile of each element is determined by the value
of the interfacial concentration. Above equation can be re-arrangedinero-
point equation for all chemical elements. All interfacial concentrationsfgakie
hyperbolic relation (1). Combination of all this, gives fo€ {1,...,n — 1}
i+1 7§ j+1 j+1 art |
fi(cg,o 7CZ+1,0> = Di(CZJ - 02,71)(6?!1 — 1)
j +1 t
- D¢+1(0§Ll,1 - cz?j:l,—ﬂ(cfar - 0150') =0,

fn(CTOI, o CSOI) — (C?O|)m1 (C§0|>mz(_ . '>(Csol)mn _ Ksol =0.

)N n

To approximate a root for the “vector-functiofi'we use Newton’s method com-
bined with discrete approximations for the non-zero entries in thefirst rows

of the Jacobian matrix. The iteration is terminated when sufficient accuracy is
reached. This procedure is explained in more detail in [36].

Adaptation of the moving boundary. The moving interface is adapted accor-
ding to equation (4). In [43] the forward (explicit) Euler and Trapezbtoae
integration methods are described and compared. It was found that tHeifimp
Trapezoidal method was superior in accuracy. Furthermore, the iteséprto
determine the interfacial concentrations is included in each Trapezoigatcste
determine the interfacial position. Hence, the work per time-iteration remains the
same for both time-integration methods. Therefore, the Trapezoidal ridedso
determine the interfacial position as a function of time. We terminate the iteration
when sufficient accuracy is reached, i.e.ddde the inaccuracy, then we stop the
iteration when the inequality

n Sitl(p41) — Gitd
5[+ 1) - o) + D S0
=1

holds. HereS’ denotes the discrete approximation of the interfacial position at
time-stepj. The integemp represents the iteration number during the determina-
tion of the interfacial concentrations and position.
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3.2.2 Moving Finite Element Method with conservative boundary displae-
ment

The mesh on which the diffusion equation is solved is adapted according to the
movement of the interface. The algorithm for an infinite rate of reaction, i.e.
the interface concentration equals the concentrafi®nwhich is determined by
Thermodynamics, can be described as follows. In each time-step we selve th
ALE (Arbitrary Lagrangian Eulerian) convection-diffusion equation

Dc
i DAc — Upesh - Ve =0, (18)
with % the so-called material derivative ang,,.,;, = w the mesh
velocity.
After that, the boundary is updated according to
D 0
x(t + At) = x(t) + v, At n = x(t) + ‘At n. (19)

chart _ ~sol o

The straight-forward way to update the free boundary is to compute tbhegtaf
the concentration in the elements connected to the free boundary (norioaityve
method). Using an averaging procedure for the gradient as well ageaaging
procedure to compute the normals in the vertices of the boundary, equi®ipn (
can be evaluated.

However, in case of sharp corners this may lead to a strange behavsor as
shown in Fig. 5. In order to get rid of this phenomenon we developed anithg
based on the integral representation of the Stefan boundary conditi@nfluk
through the elemenk{_1, x;) (Fig. 7) is approximately equal to:

D?(xi%)lim, (20)

n

with [; the length of the line elemenk( 1,x;). Hence the amount of diffused
material through the boundar;ti(_%,xi+%) is equal to

At s Oc Oc
7<Da—n(xl_%)ll +D8_n(xl+%)ll+l) (21)

The amount)/, of material dissolved, is approximately equal(t82* — ¢5°O,
where O is the area defined in Fig. 7. Due to the balance of atdmysmust
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Fig. 5. Position of free boundary at firstrig. 6. Position of free boundary at first
10 time-steps using the normal velocitylO time-steps using the Stefan method for
method for infinite rate of reaction. infinite rate of reaction.

X
i+1

Fig. 7. Area occupied by the region defined by the displacéwiche vertex.

be equal to the amount of diffused material given in equation (21). Censid
two adjacent line element;_1,x;), and (x;,x;+1), with length; and ;1
respectively (Fig. 7). The mid-side points of these elements are denobezqu

and Xy 1 Let the from formula (19) computed displacement in the mid-side
points, be equal téxi_% andéxH%. The new position of vertex; is denoted

by %;. The vectorx; — x; is parallel to the average of the normal vectors on the
line elementsx;_1,x;) and(x;,x;+1). The length of the displacement given by
Az; = ||%; — x;|| is such thatM, = (P2 — ¢5°)O. Once the displacement in

the vertices is computed, also the displacements in the mid-side points change.
In order to get both a local and global equilibrium in the amount of dissolved
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material, it is necessary, that the new area is equalip(cP2" — ¢5°). The area
O depends om\z;, Axi_% and sz‘+§’ WhereAxi_% is the adapted length of
the displacement ilxi_%. SinceAmi_% andAxH% depend omM\z; 1, Ax; and
Ax; 11 the relation is non-linear.

To solve this non-linear system we had to use an under-relaxation paramete
Choosing this parameter equal to 0.5 gives a fast convergence. Jiits ref the
Stefan algorithm are shown in Fig. 6. The results in Fig. 6 are more relialsie tha
those in Fig. 5 since from physical point of view we expect a large ddfuef the
atoms at the angular free boundary point. This gives locally larger fsraadary
velocities. For more details we refer to [40]. For the implementation of a finite
rate of the interface reactions, more details can be found in [44].

3.2.3 Level-Set method for Stefan problem

In this section we summarize the main principles of the Level-Set method for the
dissolution or growth of particles applied to the problem in the previous section
The method was introduced by Osher and Sethian [45] and the method has a
wide applicability in problems with moving interfaces, see Sethian [46]. Some of
these problems, among others, are bubbly flows [47], phase transimmm{B9]

and particle dissolution [18]. A recent book on the topic is due to Osher and
Fedkiw [48].

The main principle is that the Level-Set method captures the zero level of a
continuous functio = ¢(x, t), which is initialized as a signed distance function.
This function, commonly referred to as the Level-Set function, is chosdre to
positive in the diffusive phase and negative in the particle domain:

+dist(x, 5(0)), if x e Q(0),
o(x,y,0) =<0, if xe 5(0), (22)
+dist(x, S(0)), if x¢ Q(0)US(0).
The movement of the interface is represented by using the Level-Seioiutgy
means of

o¢

=+, =0. 23

o T unl[ Vol =0 (23)
Herev,, denotes the normal velocity at the interface, which is computed by the

use of the Stefan condition. This equation is valid at the interface only. The
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above equation is extended over the entire domain of computation if the irgerfac
velocity is also extended continuously, to obtain

¢

ot
In general after advecting the interface using equation (24), the 1Satdiinction
is no longer a distance function, which may lead to very small or large gradien
of ¢. This is not desirable for the computation of the curvature givem: by
V -n needed for the incorporation of the Gibbs-Thomson effect. Furtherrimre
Level-Set function needs to be a continuous function since it is used tottrac
interface. Therefore, the Level-Set function is re-initialized by solving

oY

5. = Sian(é(z, 1) (1 - [IV¥]) (25)

in pseudo-timer with initial condition(x,0) = ¢(x,t). This procedure was
introduced by Sussmaet al [49]. After this re-initialization step the normal
vector is given byn = V¢. The front velocity is extended continuously so that
equation (24) can be solved over the entire domain of computation. Thesixten
of v is done in pseudo-time so that for each spatial co-ordinatec {x,y, z},

we have

vy . dp\ vy
or +S|gn<¢8q) dq 0

D dc
U‘I(X’ 0) = chart _ csol 6_q’

+v-Vo =0, (24)

for qe{xz,y,z}. (26)
x € S(t),

The diffusion equation for the concentration is presently solved by theofuse
Finite Elements in [41] and the Level-Set equation is solved by a finite diferen
method. The re-initialization step is done by the Godunov’s scheme, use of a
Runge-Kutta time integration and a WENO scheme for the spatial derivatives.
The combination of these methods gives a TVD scheme. Details on the numerical
solution of these equations can be found in, among others, [39] (fully Fixfite
ferences) and [41] (combined Finite Differences and Finite Elementsiyni out

that the Level-Set method handles three dimensional geometries and topljogic
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changing geometries more easily than the moving grid method does. Furthermore
the additional conservation argument that was necessary for the 2D grfonvite
element method (see the previous section and [40]), is no longer nesdix f
Level-Set method (see [41]). By Javiegtal [41] some 2D and 3D test-cases are
shown with a dissolving radially perturbed cylinder, which breaks up inters¢
rounded particles dissolving at different paces due the preseneelvbher.

4 Applications

4.1 Particle dissolution in multi-component alloys

In this section we consider particle dissolution in a multi-component alloy mod-
elled with a one-dimensional model. First, we show a comparison between a full
multi-component model and the quasi-binary model (see equation (13)seSu
quently, we compute dissolution of a particle in competition with a segregation at
a grain boundary under a temperature-time profile. The latter case camearir
industrial application. All examples given here are hypothetic.

4.1.1 Comparison between multi-component computation and the qu
binary solution for a planar case

The one-dimensional model of Section 2 is applied here for the dissolutian of
particle in a multi-component alloy. The example concerns a planar geometry
with three alloying elements wit®" = 100, & = 0 andD; = i - 10~ for i €
{1,2,3}. Further, the solubility produdks,; = 1 and initial interfacial position
S(0) = 0.1-1075. Fig. 8 shows the interface position as a function of time.
The curves have been obtained using the analytical approach (se therve

of the analytical approaches in Fig. 8). From Fig. 8 it is clear that the acally
(multi-component and quasi-binary) approaches co-incide well at all tiAktebe

early stages the analytical approaches co-incide well with the numerloéibso

As time proceeds the numerical solution starts to deviate due to the finite size
of the cell in which the particle dissolves (soft-impingement). For the same set
of parameters we show concentration profiles of the three alloying elements in
Fig. 9. The profiles were obtained using the numerical method from Section 3
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0 I I I I I I I

numerical solution

analytical approaches

I
400

I
450

0 50 100 150 200 250

time (s)

300 350 500

Fig. 8. The interface position as a function of time during thssolution of
a planar phase. The top curve represents the solution eldtéiy the Finite
Difference method with an finite volume of the cell. The otberves represent
the analytical approaches for the infinite volume of the, aeliere the lowest
curve represents the quasi-binary approach and the othex cepresents the
full multi-component “analytical” solution where a zeroipt method is used.

14 T T T

concentration

Fig. 9.

0 I I I I I I I

concentration profiles at t= 50

slow element

fast element

fast element

slow element

0 1 2 3 4 5 6 7 8 9 10
position (1 m)

Concentration profiles of the alloying elementsragtt = 50.
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4.1.2 Comparison between multi-component computation and the qusi
binary solution for a spherical case

Finally we show the dissolution of a spherical particle in a multi-component alloy
with three alloying elements. The initial particle siggand cell sizeM/ are10~°
m and10~° respectively. The other input-data are listed in Table 1.

Table 1. Input data

Physical quantity Value Si-Unit

D, 10~ 13 m?/s
D5 2.1078  ms
Ksol 1 -
c?art 33 _
Cgart 33 _
9 0 -
mi 1 -
meo 2 -

In [29] we developed a quasi-binary approach for spherical getsaeffhe
results for the quasi-binary approach, as derived in [29], are cardpa the
“exact” full multi-component solution, which has also been derived th&ke.
distinguish various cases when%art and D3 are varied and all other parameters
are fixed as in Table 1. The following cases are shown in Fig. 10:

o HM=33=cP"= B Dy =0.1-10"" < Dy, Dy (curve l;
o KM =3 < M B D3 =0.1-10713 « Dy, Dy (curve ll);

o =33 =7"=P" D;=10.10"13 > Dy, Dy (curve lll);
o $M=3 < M= D3y =10-10"13 > Dy, Dy (curve IV).

From Fig. 10 itis clear that the quasi-binary approach co-incides welltingtfull
multi-component approach, especially when the third alloying element diffuse
fast. So the quasi-binary approach is a handy tool to give a fast estiorateef
order of magnitude of the dissolution time.
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Fig. 10. The interfacial position as a function of time. Allrges correspond
to the configuration as listed in Table 1. The bold and orginaurves

respectively reflect the quasi-binary and full multi-compnt solution. Curves

| corresponds te™" = 33 and D5 = 0.1 - 103, Curve Il reflects the case

that™" = 3 and D3 = 0.1 - 10~ '3, Curve Ill displays the situation in which
¥ = 33 and D3 = 10 - 1073, whereas curve IV shows the configuration
A =3andD3; =10-10"13.

4.1.3 A simultaneously dissolving particle at the center and a segregah at
the grain boundary

We consider a hypothetical industrial application where simultaneous dissolu

of a Si-particle and MgSi-segregation at the grain boundary is modelled under a
temperature that depends on time. The initial temperature is set at 300K, heat-
up rate 0.05 K/s and the homogenization temperature is set at 833 K. Further,
the initial concentrations arej; = 0.04, ¢g; = 0 with particle concentrations

2 = 35, c,'i’,fgt = 65 in the segregation at the grain boundary. The geometry
is shown in Fig 11. The size of the Si-particle and J8gsegregation is shown

in Fig. 12. In the example the dimensions were chosen such that th&iMg
segregation dissolves completely and the Si-particle only partly due to Si-accu

mulation in the matrix.
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Segregation

Particle

Fig. 11. The geometry of a grain with a Si-patrticle in the eemtnd a MgSi-
segregation at the grain boundary.
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Fig. 12. The evolution of the particle and size of the segiegaduring the
homogenization process.
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4.2 Numerical experiments with the interface reaction for o di-
mensions

An algorithm has been developed to investigate the dissolution kinetics fora two
dimensional case with a first order reaction at the interface. This algohitsm
been implemented in our finite element code SEPRAN [50]. As an example we
consider the dissolution of a needle shaped particle in a bar. Due to the symmetr
of this two-dimensional problem, we restrict the simulation to one quarter of
the real geometry. First we investigate the influence of the rate of the icgerfa
reaction {<;,;) on the shape of the dissolving particle. Thereafter we compare the
influence of the extra terms used in (10) and (11). In all our examplesawe h
chosen the following parameters:

diffusion coefficient D = 0.04858,
concentration in the particle Pt = 54,
initial concentration A =0.0011.

4.2.1 The influence of the interface reaction

We consider a square dissolving in a square for various choicés;,gf The
Figs. 13, 14 contain the results féf;,; = 1000, and 0.1. ForKj;,; large we
expect that the solution converges to the solution of the Dirichlet problenenwWh
the grid is refined we observe that the Dirichlet solution converges to theso

=

Fig. 13. Free boundary of a bar disFig. 14. Free boundary of a bar dis-
solving in a bar withK;,,;, = 1000 and solving in a bar withK,,, = 0.1 and
>0 = 3.88. o = 3.88.
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as given in Fig 13.

For small values off(;,,; the evolution of the position of the interface is
completely determined by the rate of the interface reaction. Thereforexpeets
that the particle remains square-like. This is in accordance with the results as
given in Fig. 14. For more details and experiments, we refer to [44]. Also th
velocity of the interface decreases whigp,; decreases.

4.2.2 Theinfluence of the term°v,,

In the derivation of the model we have already noted that in some refs¢he
termcSv, is deleted from equation (11). For the problem as considered in Section
4.2.1 we have compared the solution with and without this term and it appears
that its influence is negligible. On the other hand wh#his closer tocP2 the
differences may be large. Therefore we consider an academic protihene

% is 10 times as large (see Fig. 15, 16). The results of the correct bgundar
conditions are given in Fig. 15. Sineé&® is much larger the velocity of the

— \jﬂj

Fig. 15. Free boundary of a bar disFig. 16. Free boundary of a bar dis-
solving in a bar withKX' = 0.1 and solving in a bar withKX = 0.1 and
5o = 38.8 59 = 38.8 without the term-°v,,

interface is much higher. Therefore the time-steps used in these problems ar
equal to the time-steps of the previous problem divided by 10. The resudts g

in Fig. 16 are obtained when the terrtfw,, is deleted from equation (11). There
are considerable differences between both results. Negleelingleads to an
overestimate of the position of the free boundary.
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4.3 3D topological changes by the Level-Set method

To illustrate the power of the Level-Set method for three spatial dimensians, w
consider a hypothetic dissolving particle that was dumbbell-shaped initialy (se
Fig. 17). The dumbbell is placed in a cubic domain of [-5&]th 33 gridpoints

in each spatial direction. The interface concentration is giversBy= 0.35,
particle concentratiorP2® = 0.53 and initial concentration® = 0.3. The
diffusivity is takenD = 1. These numbers are fully hypothetic and can be scaled
in micrometers, which is the physical size of the problem that we consider Imer
the early stages the topology does not change (see Fig. 18). As timegsotee
dumbbell splits up into two parts (see Fig. 19), which will dissolve entirely in this
configuration. If the moving mesh method were used, then, the computer code
should contain various if-statements to deal with the splitting into two particles
and with dissolving of either of the particles. The Level-Set method handkes th
in a more natural way.

Fig. 17. Initial dumbbell shape of aFig. 18. Dumbbell shape of a hypothetic
hypothetic dissolving particle. dissolving particle after some short
time.

o

Fig. 19. Dissolving particles resulting
due to splitting of the dumbbell at a later
stage.
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5 Conclusion and current work

Summarized, recently the following improvements have been achieved in model-
ing particle dissolution in alloys:

e Mathematical insight into the qualitative behavior of solutions of moving
boundary problems associated with particle dissolution has been obtained.
This insight provides quick analytical solutions and solution bounds, which
are motivated by rigorous mathematical arguments. Further, approximate
solutions have been obtained for modeling dissolution of particles in multi-
component alloys.

e Numerical solution techniques to accomplish particle dissolution in multi-
component alloys have been obtained.

e Further, a two-dimensional Finite Element method, based on a moving grid
method, has been developed where the Stefan condition is discretized such
that mass is conserved.

¢ Recently, the one-dimensional multi-component model has been extended to
include effects from cross-diffusion. Metallurgical implications havenbee
described in [29]. A mathematically rigorous analysis has been given in
[26-28].

e Recently, the Level-Set method is successfully applied to the dissolution
problem with 2 and 3 spatial dimensions. The Level-Set method enables
us to deal with splitting of dissolving phases. This method will be extended
to multi-component alloys, i.e. vector-valued Stefan problems.
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