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Abstract. In this work, a neural networks is developed for modellingl an
controlling a chaotic system based on measured input-bdgta pairs. In the
chaos modelling phase, a neural network is trained on the@awk system.
Then, a predictive control mechanism has been implementddtiae neural
networks to reach the close neighborhood of the chosen hlastiaed point
embedded in the chaotic systems. Effectiveness of the peabmethod for
both modelling and prediction-based control on the chdotjistic equation and
Hénon map has been demonstrated.
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1 Introduction

Due to the structural complexity of the chaotic systems and due to their ex-
treme sensitivity to initials conditions, the problem of controlling or ordering
such systems has received increasing attention in recent years. [gpEci@tt,
C. Grebogi and J. Yorke [1] introduced a control method of chaotieays known
as OGY method, according to which the unstable fixed point can be stabilized
by applying only small variations to a control parameter. Since that, sigrtifican
attention has been focused on developing techniques for the contrbbofic
systems [2-9].

In the efforts of identifying and controlling chaos, there are difficulties in
modelling chaotic systems represented only by the input-output data pairs pro
vided by the underlying system. Moreover, there is no effective methoesigal
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controllers to ensure good tracking performance. Therefore, it isssecy to
develop an approach that solve such problems.

Recently, neural networks have found success as a promising waWwéo so
highly nonlinear control problem [10-13]. Application of neural netkgofor
chaos control have been successfully applied [14-17]. In [1&jiaheetworks
have been used for controlling chaotic dynamical systems trained in the OGY
method and the Pyragas method. In these techniques, emphasis is placed on
control of a chaotic system to a desired target. Bteal.[17] proposed a dynamic
neural network control method for unknown continuous nonlinear Byst& he
control structure includes a dynamic neural network identifier and a nizdld
neural network controller.

In this paper, we are looking into the possibility of developing a simple
neural network model for both modelling and controlling discrete chaotiesys
given only by input-output data pairs. This is done by combining the neural
networks for modelling and the predictive controller is directly designeddasn
the online network model for the control of the unknown chaotic systermerob
its unstable fixed point. Moreover, we give very simple necessary dfidient
conditions for local stabilization of unstable fixed points by the proposedadeth

The paper is organized as follows. In Section 2, we introduce the neetral
works modelling incorporating with feed-forward backpropagation fions and
a Levenberg-Marquardt computational algorithm is used for calculaBased on
this modelling approach, a neural predictive controller is developed erzaied
in Section 3. The chaotic logistic equation and the Hénon system are then used
as examples to illustrate the advantages and control performance of fusedo
approach in Section 4. Finally, conclusion is given in Section 5.

2 Neural network

For a neural networks Witlﬁx(i),y(i)) input output data pairg, = 1,2,...,n
number of iterations and one hidden layerjet 1,2, ..., m neurons.

For a such network, the input §&" units of the hidden layer denoted Byis
the weighed sum of all the inputs added to the bias

I; = Z wjiz (1) + bji, (1)
=1

96



Neural Predictive Control of Unknown Chaotic Systems

wherew;; are the interconnection weights from t}& function and the* input
to the output and thé bias. The inputl; is then passed through an activation
function to produce an outp@; as shown in Fig. 1.

Input Hidden Layer
I o

Layer

Output
Layer

Fig. 1. Training of the neural network for modelling and cotiing phases.

The activation function is represented with a functién The outputO; is
given by

0; = F(I) = F( Y wyiali) +;), )
j=1
The network output is given by
y(i) = F(2(i)) =Y wop; (x(i)) + bo- €)
j=1

There are many ways to define the activation function. One that is oftehinise
neural networks is theigmoid functiorwhich is used in this network

1

2@ 0) = T T T o)

(4)

The neural network has to be trained such that it can perform both magefiich
controlling tasks. Initially, the network weights;; and biasb;; of the hidden
layer and the weightv, and biasb, of the output layer are assigned randomly.
The outputy(i) is calculated for each associated inp(t). In order to minimize
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the error between the network outpuft) and the output of the true systen(i),
weights and bias are adjusted to minimize the error vegtgr given by
lem 5, 1 . )2
€max = 5 Z €; = 5 Z (ys<l) - y(Z)) : (5)
=1 =1

Note thate,.x is a function ofw;;, b;;, w, andb,. We can use the Levenberg-
Marquardt method on,,.x to updatew;;, bj;, w, andb,. The amount of update
for each parameter is

Unew = oig — (JE Ty + N1 1 ey, (6)

where« is a vector whose elements are the different parameters of the neural
model, ] is the identity matrix, the quantity > 0 is called themomentum term
which will help to keep the updates moving in the right direction &ndepresents
Jacobian for each parameters defined by

Do (x(i)) J o (z(i)) 7 = OF (z(1)) J o= OF (z(1))

Jyp, =— gy = =
Wi 8103‘1' ’ 7 (%ﬂ W 8100 ’ ° 8[)0

- (7)

The Levenberg-Marquardt algorithm could be run many reprises to tisaio

the neural network system to much data pairs very well. The algorithm ntis u

all of the parameters stop moving or change very little over a series of update
steps. This indicates that the value of the error is minimized, so the algorithm has
found a minimum and it can be terminated. However, parameters are reinitialized
if the error is over the desired tolerance or if the maximum number of iteration is
reached.

3 Neural predictive controller design

In this section, the control objective is to suppress chaos, that is, te thées
unknown chaotic system from a chaotic regime to a regular attractor sticleds
points.

Fig. 2 shows the block diagram of the neural predictive control wheze th
plant under control is the unknown chaotic systemijs the output of the true
systemy is the neural outpug; is the modelling errory,, is the predicted output
of the neural system andis the control.
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x(i)
_‘M Unknown chaotic system

;i Neural modeling }—

Vs(i)

y@)

Prediction-based neural modeling

Fig. 2. The block diagram.

Suppose that the neural model of the unknown chaotic system hastahlens
fixed pointg, it satisfy:

y=F(z) (8)

and is currently in a chaotic state. The purpose of predictive control issiore

the system asymptotically converges towagdsth only extremely small applied
force u. In order to avoid such behavior, we design a conventional feedback
controlleru(:) added to the dynamical system (3) of the form

y(i) = F(2(i)) + u(i), (9)

u(i) € R™ is determined by the difference between the predicted states and the
current states. Itis chosen in such a way to make the trajectory of thatnoled
system converge to an unstable fixed pgint

u(i) = K (yp(i) — y(0)), (10)

whereK is an adjustable coefficient of the controllgg() is the predicted future
state of uncontrolled chaotic systems from the current gf@te

Based on the neural model established above, neural prediction tira fu
statey,, of uncontrolled unknown chaotic system is determined by

yp(i) = y(i +p) = F(z(i +p)). (11)
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Using a one step ahead-prediction, the controlled unknown chaotic sigstieem
given by:

y(i) = F(2(i)) + K(F(z(i + 1)) — F(z(:))). (12)

The simplest way to formulate an applicable control law is to make use of the
fact that the dynamics of any smooth nonlinear system is approximately linear
in a small neighborhood of a fixed point. Thus, ngawe can use the linear
approximation for the uncontrolled system by

oy (i) = ASF (x(i)), (13)
where
oy(i) =y(i) —y and 0F (z(i)) = F(z(i) — z (14)

andA is the derivatives evaluated at the fixed pajnt F(z).
The controlled system is linearized aroupty

= ASF (x(i)) + ou(i)
= ASF (x(i)) + K (y(i + 1) — dy(i))
= ASF(2(i)) + K (6F (z(i + 1)) — 0F (2(i))) (15)
= ASF (z(i)) + K (AOF (2(i)) — 0F (x(1)))
(

= (A+ K(A—-1))6F (z(3)).

The control problem is to desigr(i) to control the system stateto track the un-
stable fixed poinfy. Gain K is computed such that equation (15) is exponentially
stable. This implies that the controller gain must satisfy the following inequality:

A+ K(A-1)| < 1. (16)

Furthermore, determining unstable fixed points experimentally needs thasat le
one input-output data pair traveled on, which is not necessary satisfithis
case, we assume that if

ly()) —y(i —1)| <e 17)
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for ¢ a small positive number. Then the neural model is in the vicinity of the fixed
points.

Since there is no mathematical model of the chaotic system, valué¢sa
be determined by simulation in the vicinity of the unstable fixed point by

4o YD) —y(i) 18)

y(i) —y(i— 1)

Similar to the OGY method [1], in order to apply the proposed predictive cbntro
strategy, we have to determine the correction to apply in the vicinity of the fixed
point to adjust the next point so it falls on the fixed one. Stability is guardntee
in a neighborhood of the stabilized fixed point, and the controlled neusstisy
become as follow

J(0) = {F(x(i)) +ui), it |y) —yi-1)| <e,

F((1)), otherwise (19)

All things considered, we are now able to apply the proposed approattest
its efficiency for both modelling and controlling unknown chaotic systems which
will be the objective of the next section.

4  Simulation study

4.1 Example: logistic equation

In this example, the logistic mapping is defined by a quadratic function of the
form

ys(i) = pys(i - 1) (1 - ys(i - 1)) (20)

Whenp = 3.75, the system is chaotic without control.
The system can be rewritten by:

(21)

where (z(i),ys(i)) are the measured input and output of the unknown chaotic
systems.
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We first randomly generated 1000 data pairs using the true system, and then
used them to train the neural model.The neural network is characterizexeby
inputsz, a hidden layer of 10 neurorig» = 10) and one outpuy. Levenberg-
Marquardt algorithm is used for best search of new parametgrand the bias
b;; of the hidden layer, the weight, andb, of the output layer.

The plot of input output data pairs generated from the unknown chagic s
tem, the resulting neural model compared to the plot of the true system and the
modelling error are shown in Figs. 3(a), (b). The output data is plotted with “
marker and the corresponding neural model outputs is plotted with solid line.
They are indistinguishable.

Neural modelling of unknown "logistic equation”
T T T T

] 40 600 1000
I I

Fig. 3. Measured output data and neural model (a); modediiray (b).

Once the neural model of the unknown logistic equation is established and
in order to apply the proposed neural predictive control strategy, ave o
determine the correction to be applied in the vicinity of the fixed point to adjust
the next point so it falls on the fixed one. We have to computand gaink'.

We start simulation witly(0) = 0.7 as initial condition. Attime = 216, the
test is verified and we get(216) = 0.7294.

From equation (18), value of is obtained from simulation as follow:

y(i+1) —y(i)  0.7401 — 0.7294
_ = = —1.7258. 22
y(i) —y(i—1)  0.7294 — 0.7356 (22)

The controlled system around its fixed point is given by

y(i) = (—1.7258 — 2.7258K)S F (x(1)). (23)

102



Neural Predictive Control of Unknown Chaotic Systems

The fixed point is stabilized by the proposed method of control if

|—1.7258 — 2.7258 K| < 1. (24)
Thus, the feedback gailf is in the range of:

~1< K < —0.2663 (25)

we choosel = —0.65.

In the validation phase of the identified neural model, once inequality (17)
satisfied, control input switch on and tracks the trajectory towards the unstable
fixed point. Simulation results in Figs. 4(a), (b) show that control of thealeu
system at the fixed point works very well.

x10°

L L L L L -7 L L L L L
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Fig. 4. Neural model under predictive control (a); contrgdut (b).

At ¢ = 217, appropriate states is close to the unstable fixed point, the control
input takes a nonzero value and stabilize trajectory on unstable fixed point.

4.2 Example: Hénon system

Simulation on some higher-dimensional systems have been also carried eut. Ex
perience shows that, just like many other methods, the higher the dimension is,
the longer the simulation time will be. However, in terms of quality of control
performance, they are the same. We show a two-dimensional example. The
Hénon system is a nonlinear system with chaotic behavior for certain vafues
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parameters, which is represented by the relation:

ys (1) :a_ys(i_1)2+bys(i_2)‘ (26)
Fora = 1.4 andb = 0.3, system exhibit a chaotic regime. It can be rewritten by:

x1(1) = ys(i — 1),

x2(2) =ys(i —2), (27)

ys(i) = a — x1(1)? + bao(i).
In order to control the unknown chaotic system given only by input-dufjpta
pairs, the system is first modelized using the neural network. In the modelling

phase, neural network is characterized by two inpytandz,, a hidden layers
of 30 neurons{n = 30) and one outpuy.
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Fig. 5. Measured output data and neural model (a); modediingy (b); neural
model under predictive control (c); control input (d).
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We start simulation with:(0) = 0.01 andz(1) = 0.02 as initial condition.
At time i = 80, y(80) = 0.8856. A is obtained from simulation as follow

D ) 0.8800 — O,
y(i+1) —y(@) 0880008856 _ , .0 (28)
y(z) _ y(z — 1) 0.8856 — 0.8813

The controlled system around its fixed point is given by

oy(i) = (—1.3023 — 2.3023K)JF (x(i)). (29)
The fixed point is stabilized by the proposed method of control if
| — 1.3023 — 2.3023K]| < 1. (30)

Thisyieldto —1 < K < —0.1313 we chooseK = —0.8.
The simulation results of neural modelling and neural controlling phases of
the unknown chaotic Hénon system are summarized altogether in Fig. 5.

5 Conclusion

In this paper, a neural predictive control method has been completabynedds
analyzed and successfully applied to the control of unknown discretetich
systems, where the neural model is established using only the input-oataut d
pairs of the underlying system. Based on this neural model, the propos#dic

law ensures that the chaotic state tracks stable constant targets, whiobnfalls
fixed points. The performance of the proposed control was demortsuiaieg
logistic equation and Hénon system. We conclude that the suggested schemes
can effectively solve the control problems of unknown chaotic systesedhan

neural models.
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