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Abstract. Although the laser pulses with durations ranging from nanosds to
femtoseconds and various pulse shapes are utilized forita@ measurements,
the influence of the temporal pulse shape on the measureesiits is often
neglected. In this paper, we tried to differentiate the irfice of the temporal
pulse shape on the common Z-scan technique with a small isnagerture
in two cases: when the pulse peak intensity at the beam vealgiawn (for
relatively long pulses), or when the total pulse energy andwidth at half
maximum (FWHM) of the correlation functions or FWHM of pulserdtions
are known (for short pulses).
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1 Introduction

The Z-scan method [1-3] provides a simple technique for measuremennef n
linear properties of optical materials [4—7] and therefore it is becomingrages
popular and is also used for the measurements of nonlinear parametetsrofh
geneous media [8-11]. A strong interest has lately been shown to theaagcu
and reliability of the results obtained by means of this method, but the main
attention was paid to the influence of the finite aperture size and similar problems
[12,13]. Although the lasers with pulse durations ranging from millisecdods
femtoseconds [14, 15] are routinely used for the Z-scan measurernahtthe
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original papers [1-3], the review papers [4, 5] and a few others1Zpobvi-
ously indicate that the results must be averaged properly when the camgalar
pulses are used. The latest works dealing with the Z-scan measuremeras do
pay much attention to the temporal pulse shapes [14, 15], also in caseghehen
Z-scan method with the temporal resolution [18] is employed. In well known
handbooks [6, 7] there are only short indications that the normalizekl e
valley transmittance is linearly dependent on the induced temporally averaged
phase distortion. Without specifying explicitly how to average this phase,\it ma
cause difficulties in obtaining correct results. Therefore, the detailelysia of

the Z-scan theoretical background with emphasis on the temporal pujze déa
pendence can provide a useful insight into important aspects of thisimegueal

tool that are usually overlooked.

In this paper, the results of the numerical analysis of the Z-scan expdsimen
for thin samples with various temporal pulse shapes are presented fashef
long pulses, when the pulse peak intensity at the beam waist is knowmrathe f
case of short pulses, when only the total pulse energy and the FWHAialuof
the pulse or correlation functions are known.

2 Theoretical background of the Z-scan technique
The standard scheme for the Z-scan measurements is shown in Fig. 1alike G

Focusing

- Sample

Detector

i

Aperture
Fig. 1. Scheme of the experimental setup for the Z-scan mesasunt.

sian pump beam is focused by a lens to obtain a sufficiently small beam waist
and high intensity. The sample is placed in the beam waist region and it is
scanned along the-axis. At a sufficiently large distance from the sample, an
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aperture with an on-axis narrow opening and a detector that detectsdtgyen
changes behind the aperture are placed. When the sample is locateadnfar fr
the beam waist, where the beam intensity is low, the transmission through the
aperture is normalized to unity. As the sample is shifted closer to the waist,
the induced nonlinear absorption and nonlinear refraction index etxeriger
influence upon the beam and the normalized transmittance curve takestehara
ristic shape [1-7]. For vivid explanation of the transmission changesadtigs

scan, a presentation of the sample of nonlinear medium as a thin nonline&r lens
commonly used. However, this explanation is not good in principle, becaeise
cannot tell anything in general about the aberrated beam radius aritidimnges
during beam propagation without exact calculations [19]. The Z-sadmigue
allows determining the magnitude and sign of the nonlinear index change and
the magnitude of the nonlinear absorption of the sample. For the simplicity we
restrict ourselves only to the case of samples with Kerr nonlinearity, without
nonlinear absorption. Z-scan is performed with laser beams, which Haigéls
directional nature. This direction of propagation is usually taken to be dkmng
z-axis. Assuming a laser pulse propagating in-thedirection of the form

E(z,y,2t) = Re{&E(z,y, z,t) expli(koz — wt)]}, (1)

and employing the slowly varying envelope approximation (SVEA) the nonlinea
Schradinger equation (NSE) for slowly varying complex amplitdgie;, v, z, t)
can be obtained [4, 6, 20]:

(835 - Ug 8t)E + 78ttE + Qiko

+2p = Yy ElPE, )
2 c

whereé is the unit polarization vectoky = ng(w)w/c is the modulus of the
wave vector,w is the circular frequency of the rapidly oscillating laser wave,
no(w) is the linear refractive indexy, = (dko/dw)~! is the group velocity,
ki = O.wk is the group velocity dispersion (GVD) coefficiet, = 0, + Oyy
is the transverse Laplacian,is the linear absorption coefficientjs the velocity
of light in vacuum n, is the nonlinear refraction index and the subscripts denote
corresponding partial derivatives.

In vacuumu, = ¢, kj = 0, « = 0, ng = 1, np = 0 and the simplest solution
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of Eg. (2) is the circular Gaussian beam [4-6]:

2 12
B 2.1) = Bolt) s exp |~ i + g + 006 @

wherer = /22 + 42 is the radial coordinatefy(t) is the field amplitude at the
beam waist = 0 and contains the temporal envelope of the pulgds the radius
at the beam waisty?(z) = wi(1 + 2%/2%) is the beam radiug; = 27/ is the
wave number for the wavelengthin the free spaceR(z) = z(1 + z%/2?) is
the wavefront curvature radiusg = kw?/2 is the Rayleigh length, and the term
¥(z) = — arctan(z/zr) contains the radially uniform phase variations along the
z-axis.

We will assume that this Gaussian beam serves as a pump beam. Therefore
Eg. (2) should be solved with that beam as a boundary condition enteeiisgubh-
ple. The sample can be assumed as a thin sample if its thicknisssgnificantly
less than the Rayleigh lengttx and the dispersion lengthp = |k”|77 /2 of the
pump pulse of duratiom;, with the Gaussian transverse intensity distribution. In
this approximation second derivatives in Eq. (2) can be neglected andasis
to determine that for the thin sample, the field amplitudeat the exit plane
z + L ~ z from the sample [1-3]

E.(r,z,t) = E(r, z, t)e_o‘L/zeiAw(r’Z’t) 4

contains the nonlinear phase shift

§ AWy(t)

—, (6
1+22/212?7()

A(r, z,t) = Ag(z,t) exp [_%(,z)
where AW (t) = kAng(t)Leg is the on-axis phase shift at the beam waist,
Leg = (1—e~l) Ja, Lis the sample lengthy is the linear absorption coefficient,
Ang(t) = na|E(0,0,t)|?/2 = vIo(t) is the nonlinear change of refraction index,
In(t) = (cng/87)|E(0,0,t)|? is the on-axis intensity at the waist = 0 and
~v = 4mngy/cng is the Kerr nonlinear refraction index to be determined from the
Z-scan transmission data.

The exact complex amplitudg,(r, Z, t) at the aperture plang = z + d
(d is the distance from the sample to the aperture) can be found using differen
methods for calculations of the aberrated beam propagation [21-2d]than

] with Av(z, 1) =
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the normalized Z-scan transmittance through an aperture with radoasm be
expressed as [1-3]

}O dtf | B (r, Z, AWo(1)) | *rdr
T(z) = —=2° . (6)

a

T dt [ |Eq(r, Z, AW(t) = 0)‘2rd7"

—00 0

But the exact numerical calculation of the fielg),(r, Z, t) using the field
amplitude (4) is rather complicated and requires much computational time for the
calculation ofE,(r, Z, t) values for many space-time points used in the Z-scan
method.

Therefore for the Gaussian beam two approximate methods are widely used
In the case of nonlinear nonaberrational lens approach Fig. 2(alzdlssian
beam behind the sample, which is treated as a thin ideal temporal lens, has the
same beam radius and a different radius of curvature. Due to this, site®opaf
the beam waist and intensity distribution in the far field are changing during the
pulse.

(a) / Sample : (b) Sample
f RE)
R@) . 1 -
el o Detector T S Detector
— ! pa— : l
; 1 ‘ 1
. [ ARG I W I S5 .
aser : , N et : BN
cam . Laser ;
g Aperture bea L Aperture
1

Fig. 2. Scheme of the setup for the Z-scan measurement andiiffeoent
approaches for transmittance calculations: (a) thin meali lens and
(b) Gaussian decomposition.

The intensity distribution of the Gaussian beam is of the form

2P(t 272
1020 = g 5 |z )
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whereP(t) is the momentary power of the beam, anfiZ, t) is the beam width
in the positionZ of the aperture. If the aperture radius < w(Z,t), then
exp[—2a%/w(Z,t)] ~ 1, and the registered pulse power behind the aperture is

2P(t)ra?
PD(t) ~ —ﬂ‘wg ()27 t) .
For the calculation of the beam radiu$Z, t) at the aperture plane the well known
ABCD law [25] can be used. In this approach the Gaussian beam is charedteriz
in any positionZ by the complex beam parameter

1 1 ) A

(2.0 RZD mek(Z,0) ®)

For the given beam parametgon the initial plane: just before the sample,
the beam parameter on any other plane is calculated usirAB@GP law:
Aq+ B
Cq+ D’
The ABCD matrix for the beam propagation from the initial plane to the aper-
ture plane consists of the product of two matrices corresponding to gaitpa
through the nonlinear lens and the empty space. Transmittance of a simple linear
lens is given by [25]

7.2

Tr, = exp [—ZS—;} , (1)
while the transmittance of the nonlinear sample as follows from (4) is related to
the phase change by

Ts(t) = exp [iAY(r, z,t)]. (12)
Thus, using the parabolic approximation in (5), the focal length of thevema
rated nonlinear lens is

2

Prn(ent) = a0, (13

Therefore, the propagation matrix from the initial plangust before the
sample through the thin lens with the focal lengtl; and the empty space of
lengthd = Z — = from the sample to the aperture plane is given by

[é g] = B ﬂ ‘ [_1 /1fNL (1)] = [1:1%]{[;“ ﬂ : (14)
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The beam radius square on the platieof the aperture can be defined using
formula [25]:

wi (Z) = w?(z) [<A+%> + (%ﬂ (15)

Taking into account (8) the transmittance (6) for a small aperture canitterwr
in the form:

202 [ LWy (2, 6) P(t)dt

— w?\fL(th)
Tni(z) = = pon _ 7 (16
2 | o Pt
where
i 2 (Z, fnr, =
Tnp(z,t) = wi(Z)  wip(Z fnr =) )

w?\/L(Zﬂ t) a wJQVL(Z7 fNL(t>)

Using these formulas, the transmittance for different distaddesthe aperture
can be easily calculated. For the case> 2R (d is the distance from sample to
the aperture plane) and small phase chag&s(¢) it is easy to get, keeping only
linear terms inAW(¢), simple enough formula for momentary transmittance:

4(z/2r) AW (t
Tnp(z,t) ~1+ El/—i—i+/z§;)(2)

Now it is very clear what type of temporal averaging should be introddced
getting true normaliazed energy transmittance through the small aperture:

A(z/2r)(AW0(1))

(18)

Tnr(z) =14+ 1+ 22/212%)2 ) (29)
where
[ A1) P(t)dt
(AW (1)) = (20)
J P(t)dt

is the power-weighted time-averaged on-axial nonlinear phase chaimgeteam
waist.
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It should be noted that analogous ideal thin lens consideration was used
previously for a thermal lens [26], but it was understood clearly ehdlat such
approach is insufficiently precise and that a more elaborate approhit takes
into account aberrations of thermal lens, should be used. In spite ofribig-k
ledge, slightly different expression for a nonlinear lens transmittanceristimes
used for Z-scan measurement data processing [27, 28].

Transmittance curves calculated using formula (19) are presented i&)g. 3
It is seen that the peak in the transmission curve emerges first as the sdthple w

negativen, approaches the beam waist from the left, and then the valley appears
after the sample passes through the waist.
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Fig. 3. The Z-scan transmittance through a small apertura tbin nonlinear

medium with negativd AW, (t)) = —0.25 as calculated using the methods
of the nonaberrated nonlinear lens approximation (a) ands§€an beam
decomposition (b).

The sample nonlinearity is calculated from the difference between the highes
(peak) and the lowest (valley) transmission values denotedZas,. The view
would be opposite for the positive nonlinear refraction index becaussatingle
would act as a focusing lens in this case. Qualitatively, this dependendeeca
explained as follows. The sample acts as the negative lens, and foveegtie
enlarged beam waist is shifted towards the positiv@ordinate. Therefore, the
beam width beside the aperture becomes smaller and transmittance inchg¢ases.
the waist, the sample has almost no effect because the curvature radfirstis in
in this position. After the sample passes through the waist and moves toward the
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aperture, it increases the beam divergence and thus decreasesndmission
through the aperture.

As we will see somewhat later, qualitatively analogous transmittance curves
are obtained using the standard for Z-scan Gaussian beam decomp@SDipn
method [1-3]. Therefore, practically in all papers the explanation o$inéttance
curves is given usually in terms of an ideal (nonabberational) nonlineat le
which is not true in general.

The Gaussian beam decomposition (GD) method takes into account special
type of the abberations induced in Kerr media by Gaussian beam.The GD method
works as follows: the nonlinear phase term in (4) is decomposed into therTay
series

exp (iA(z,7m, 1) = D W P [_

m=0

2mr?
w?(2)
This means that behind the thin nonlinear sample the incoming Gaussian beam is

decomposed into the sum of Gaussian beams with the same curvature/tadius
and different radiusv,,, (z) = w(z)/v/2m + 1:

(21)

Eo(r, z,t) = e @L/2

iEo(t) wo [1A%(z,1)] exp —2r2 ikr L) @2
m=0

w(z) m! w2, (2) + 2R(z)

Using theABCD law for each Gaussian beam propagation to the aperture plane
with matrix

R

the field pattern of the aberrated beam at the aperture can be expasgsed]:

Eo(r,z,t) =E(r = 0, z,t)e /2

0o A t m . 2 o2
Z[z 7110(2" )" w oexp<_r_2+zr +i9m), (24)
= m! Win = 2R,
where
2 2 -1
2 w?(2) 2 2 o, d g
— = — |, Rpn=d|l — —"——+
1m0 = g1 Wm0 [g *da]’ [ g2+d2/da]
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kw? d d
dpy = 2 Zm0 =14+——, 0, =t [l [
2 9T T REY o {gdm}

In case of a small nonlinear phase chanbk\I(o(t)] < 1), using the far-
field conditiond > zr and keeping linear iAW (¢) terms only, the normalized
Z-scan temporal transmittance can be written as [1-3]

A(z/zR)AV(t)

(9 +22/23) (1 + 22/23)

Normalized energy transmittan@e; p(z) will be defined now by the same
formula, onlyA¥,(t) should be changed taA ¥y (t)) determined by (20)

Thus, in the Gaussian decomposition method (Fig. 2(b)), the temporal de-
pendence of the transmittance through the aperture is the result of iaterfenf
two Gaussian beams behind the sample — the slightly attenuated initial Gaussian
pump beam and the additional Gaussian beam with the same (as for pump beam)
curvature radiug(z) and smaller beam radius; (z). It should be noted that only
their amplitudes are changing in time, the positions and sizes of their waists are
unchanged during the pulse.

Z-scan curves obtained by both methods look very alike for the positions
and values of transmittance maxima and minima are different. What is more
important, the transmittance peak and valley difference given by the Gaussia
decomposition theory is a few times lower than that calculated for the nonlinear
lens (Fig. 3) because the effects of the aberrations are intrinsically edtindhe
Gaussian decomposition method. Therefore, below we will present résults
different pulse shapes calculated using the Gaussian decomposition roatirod
omitting index GD in corresponding expressions.

Tep(z, AWy(t)) ~ 1+ (25)

3 Influence of the pulse shape

Many pulse shapes encountered in the Z-scan experiments can bibekdor
super-Gaussian

f;SG)(t) = exp {—[,u,s(t - toj)/Toj]QS} s S = 1, 2,3, ey (26)

and asymmetrical pulses [29]

(A) exp(atm/10;) + exp(—bty, /T0;5)
fj t= exp [a(t + tm)/Toj} + exp [ —b(t+ tm)/Toj} ’ @7)
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_ In(b/a)
tm = S 705, @ >0, b > 0.

In case ofu; = 1.1774 andus = 1.5345, we have the Gaussian and lowest-order
super-Gaussian pulses, and in case ef b = 1.7628 — the standard symmetric
hyperbolic secant pulse with the duratiag} as the full width at half maximum
(FWHM) of the intensity profile. Several other temporal pulse shapeplatied

in Fig. 4. It should be noted that in Fig. 4, Fig. 5 and in Tablg) is the time
normalization unit that is related tg; by some expressions, different for each
pulse shape.

1 0 T T lo T T T
a) b)
=o05f Jos}
00 1 1 1 OO 1 1 1
1.0 — 0 4 1.0 — 0 4
¢) d
Sost {ost
0.0 L
4 0 4
1.0 ; ;
e)
=051 1
0.0

-4 0 4
t/T )

Fig. 4. Graphs of some typical temporal pulse shapes: (ay&an, (b) super-
Gaussian, (c) secant hyperbolic, (d) sinc, (e) Lorenttidf)-Lorentzian-II.

It has been shown [1-3] that for a small phase change and a smallr@per

the magnitude of the sample nonlinearity can be determined in a straightforward
manner by measuring the difference in the peak and valley transmittancs.value
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Fig. 5. Autocorrelation functions for various temporalsgishapes: (a) Gaus-
sian, (b) super-Gaussian, (c) secant hyperbolic, (d) ek Lorentzian-,
(f) Lorentzian-IlI.

The peak and valley transmittance values can be calculated by solving equatio
dT(z)/dz = 0 and for a given pulse shape

ATyoj = A1|(ATo;(1))], (28)

where A; = 0.406, AW;(t) = Yo, Fj(t), Yoj = vkLeglo; is the maximal
nonlinear phase changejs the nonlinearity coefficient to be determinéds the

wave number[.g is the effective sample thicknesk, is the maximal intensity

on the beam axis at the beam waiBj(t) = |fj(t)\2 is the normalized (to unity

at the peak) temporal shape of the pulse intensity. Taking into accountt(20
difference in the peak and valley values for normalized energeticahtittasce

being measured by means of experiments can be written for a given temporal
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Table 1. The correction coefficienis' > for the nonlinear index determined
by Z-scan measurements with different temporal pulse shape

(1) (2) (3)

Pulse shape (@) Kg;  Kij n; n;
Gaussian exp[—(t/7)?]  1.67 118 1.41 027 0.38
Super-Gaussian  exp[—(t/79)?] 176 154 119 026 0.29
Sinc M 3.71 278 150 032 042
(t/70)
Secant hyperbolic ~ sech (t/79) 272 176 150 028 0.43
. 1
Lorentzian-I —_— 213 129 160 029 049
1+ (t/70)?
Lorentzian-II _ 4.00 200 200 0.39 0.79
1+ (t/70)?

Asymmetricsech «=1.0,6=10 272 176 150 0.28 043
Asymmetricsech «¢=1.0,6=20 194 119 151 0.28 0.46
Asymmetricsech «=10,b=50 130 084 157 030 0.46

shape as:

Aq|y|kLegIo;
AT,y = w (29)
1y

where values of the coefﬁcienél) = [ 5@ dt’/ I 15" dt’ depend
on the temporal pulse shape and are_given in Table 1.

Therefore, the value of the nonlinear refractive index determined by the
Z-scan from the measuredT7,,_, ; is determined by the formula

1) ATpf’Uaj

30
Ak LegIoj (30)

Il = 1!

It is easy to see from formulas (29) and (30) that for given maximal irtieris;
the difference in the peak and valley transmittance values does not depeinel
duration of pulses, it depends through the coefficiéHton their shape only. The

values ofnj(.l) for different pulses are presented in Table 1.
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For short pulses only the total pulse energy

W

2 o0 )
W, = OJIOJ-TO / | )| at’ (31)

2

and the FWHM durationg; = K¢, of the autocorrelation functio@f) (1) =
o o
| L)Lt +7) dt/ [ I;(¢)I;(t) dt are often known (Fig. 5) [30]. Her&;

is the coefficient dependent on the pulse shapés the time normalization unit,
t' = t/m. Graphs of the intensity and autocorrelation function for asymmetric
secant pulses with different shapes are presented in Fig. 6.

0.0

Fig. 6. Asymmetric secant pulse (a) and its autocorrelafimetions (b) for
a = 1andb =1 (solid),b = 2 (dash) and = 5 (dot).

The following expression for the nonlinear refraction index can be written

| = @ A TG £ (32)
,7 77] AlLeﬂ W] p—v,7>
where the coefficient dependent of the pulse shape is:
@ o 2 * —1
o = [ [iswrear] are [1nera] 33)

The numerically evaluated values of coefficiem]@ for several pulse shapes
are given in Table 1.
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If the pulse duration;; = K ;7o is known, then the formula for nonlinear
refraction index can be written as

2

—U‘7 34
AyLeg W; 77 (34)

_ 3
|’Y’ =1,

where the values fonf’) can be obtained from](?) by changingKg; to K.

The values of coeﬁicients§3) are also given in Table 1. It can be seen from
Table 1 that for the same measured experimental data (pulse energyratidrdu
peak-valley transmittance difference etc.) the value of sample nonlineat inde
may differ significantly if the pulse shape is not taken into account, if, e.g., the
coeﬁicientsn§1’2’3) are taken the same as for Gaussian pulse. Then the value of
nonlinear index determined by such Z-scan measurements may differ fuem tr
one by the ratios;§1’2’3)/ng’2’3) if pulse shape is not known exactly.

4 Conclusions

We have numerically analyzed the influence of the temporal pulse shape in the
Z-scan measurements for different cases: when the pulse peak intentity
beam waist is known, and when the total pulse energy with the widths of its au-
tocorrelation function or pulse durations are known. The results of theerigal
investigation demonstrate that the temporal pulse shape has significamdeflue
on the measurement results and therefore the values of the nonlineafitgieoe
obtained by the Z-scan method can significantly differ from the real valtreeif
proper pulse shape is not taken into account. The experimental testdaftpd
results using the pulses of the SBS pulse compressor with different fndpes

and duration [31, 32] are under the preparation.
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