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Abstract. Although the laser pulses with durations ranging from nanoseconds to
femtoseconds and various pulse shapes are utilized for the Z-scan measurements,
the influence of the temporal pulse shape on the measurement results is often
neglected. In this paper, we tried to differentiate the influence of the temporal
pulse shape on the common Z-scan technique with a small on-axis aperture
in two cases: when the pulse peak intensity at the beam waist is known (for
relatively long pulses), or when the total pulse energy and full width at half
maximum (FWHM) of the correlation functions or FWHM of pulse durations
are known (for short pulses).
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1 Introduction

The Z-scan method [1–3] provides a simple technique for measurement of non-

linear properties of optical materials [4–7] and therefore it is becoming ever more

popular and is also used for the measurements of nonlinear parameters of hetero-

geneous media [8–11]. A strong interest has lately been shown to the accuracy

and reliability of the results obtained by means of this method, but the main

attention was paid to the influence of the finite aperture size and similar problems

[12, 13]. Although the lasers with pulse durations ranging from millisecondsto

femtoseconds [14, 15] are routinely used for the Z-scan measurements,only the

∗The research was supported by Lithuanian State Science and Studies Foundation, project
MODELITA, Reg. No. C-03048.
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original papers [1–3], the review papers [4, 5] and a few others [16, 17] obvi-

ously indicate that the results must be averaged properly when the non-rectangular

pulses are used. The latest works dealing with the Z-scan measurements donot

pay much attention to the temporal pulse shapes [14, 15], also in cases whenthe

Z-scan method with the temporal resolution [18] is employed. In well known

handbooks [6, 7] there are only short indications that the normalized peak and

valley transmittance is linearly dependent on the induced temporally averaged

phase distortion. Without specifying explicitly how to average this phase, it may

cause difficulties in obtaining correct results. Therefore, the detailed analysis of

the Z-scan theoretical background with emphasis on the temporal pulse shape de-

pendence can provide a useful insight into important aspects of this experimental

tool that are usually overlooked.

In this paper, the results of the numerical analysis of the Z-scan experiments

for thin samples with various temporal pulse shapes are presented for the case of

long pulses, when the pulse peak intensity at the beam waist is known, and for the

case of short pulses, when only the total pulse energy and the FWHM duration of

the pulse or correlation functions are known.

2 Theoretical background of the Z-scan technique

The standard scheme for the Z-scan measurements is shown in Fig. 1. The Gaus-

Sample
Focusing
lens

Aperture

Detector

Laser
beam

z = 0

Fig. 1. Scheme of the experimental setup for the Z-scan measurement.

sian pump beam is focused by a lens to obtain a sufficiently small beam waist

and high intensity. The sample is placed in the beam waist region and it is

scanned along thez-axis. At a sufficiently large distance from the sample, an
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aperture with an on-axis narrow opening and a detector that detects the energy

changes behind the aperture are placed. When the sample is located far from

the beam waist, where the beam intensity is low, the transmission through the

aperture is normalized to unity. As the sample is shifted closer to the waist,

the induced nonlinear absorption and nonlinear refraction index exert stronger

influence upon the beam and the normalized transmittance curve takes characte-

ristic shape [1–7]. For vivid explanation of the transmission changes dueto this

scan, a presentation of the sample of nonlinear medium as a thin nonlinear lensis

commonly used. However, this explanation is not good in principle, becausewe

cannot tell anything in general about the aberrated beam radius and how it changes

during beam propagation without exact calculations [19]. The Z-scan technique

allows determining the magnitude and sign of the nonlinear index change and

the magnitude of the nonlinear absorption of the sample. For the simplicity we

restrict ourselves only to the case of samples with Kerr nonlinearity, without

nonlinear absorption. Z-scan is performed with laser beams, which have ahighly

directional nature. This direction of propagation is usually taken to be alongthe

z-axis. Assuming a laser pulse propagating in the+z direction of the form

Ẽ(x, y, z, t) = Re
{

êE(x, y, z, t) exp[i(k0z − ωt)]
}

, (1)

and employing the slowly varying envelope approximation (SVEA) the nonlinear

Schrödinger equation (NSE) for slowly varying complex amplitudeE(x, y, z, t)

can be obtained [4,6,20]:

(∂x − v−1
g ∂t)E +

ik′′0
2
∂ttE +

∆⊥E

2ik0
+
α

2
E =

iω

c
n2|E|2E, (2)

where ê is the unit polarization vector,k0 = n0(ω)ω/c is the modulus of the

wave vector,ω is the circular frequency of the rapidly oscillating laser wave,

n0(ω) is the linear refractive index,vg = (dk0/dω)−1 is the group velocity,

k′′0 = ∂ωωk is the group velocity dispersion (GVD) coefficient,∆⊥ = ∂xx + ∂yy

is the transverse Laplacian,α is the linear absorption coefficient,c is the velocity

of light in vacuum,n2 is the nonlinear refraction index and the subscripts denote

corresponding partial derivatives.

In vacuumvg = c, k′′0 = 0, α = 0, n0 = 1, n2 = 0 and the simplest solution
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of Eq. (2) is the circular Gaussian beam [4–6]:

E(r, z, t) = E0(t)
w0

w(z)
exp

[

− r2

w2(z)
+

ikr2

2R(z)
+ iψ(z)

]

, (3)

wherer =
√

x2 + y2 is the radial coordinate,E0(t) is the field amplitude at the

beam waistz = 0 and contains the temporal envelope of the pulse,w0 is the radius

at the beam waist,w2(z) = w2
0(1 + z2/z2

R) is the beam radius,k = 2π/λ is the

wave number for the wavelengthλ in the free space,R(z) = z(1 + z2
R/z

2) is

the wavefront curvature radius,zR = kw2
0/2 is the Rayleigh length, and the term

ψ(z) = − arctan(z/zR) contains the radially uniform phase variations along the

z-axis.

We will assume that this Gaussian beam serves as a pump beam. Therefore

Eq. (2) should be solved with that beam as a boundary condition entering the sam-

ple. The sample can be assumed as a thin sample if its thicknessL is significantly

less than the Rayleigh lengthzR and the dispersion lengthLD = |k′′|τ2
L/2 of the

pump pulse of durationτL with the Gaussian transverse intensity distribution. In

this approximation second derivatives in Eq. (2) can be neglected and it iseasy

to determine that for the thin sample, the field amplitudeEe at the exit plane

z + L ' z from the sample [1–3]

Ee(r, z, t) = E(r, z, t)e−αL/2ei∆ψ(r,z,t) (4)

contains the nonlinear phase shift

∆ψ(r, z, t) = ∆ψ0(z, t) exp

[

− 2r2

w2(z)

]

with ∆ψ0(z, t) =
∆Ψ0(t)

1 + z2/z2
R

, (5)

where ∆Ψ0(t) = k∆n0(t)Leff is the on-axis phase shift at the beam waist,

Leff = (1−e−αL)/α,L is the sample length,α is the linear absorption coefficient,

∆n0(t) = n2|E(0, 0, t)|2/2 = γI0(t) is the nonlinear change of refraction index,

I0(t) = (cn0/8π)|E(0, 0, t)|2 is the on-axis intensity at the waistz = 0 and

γ = 4πn2/cn0 is the Kerr nonlinear refraction index to be determined from the

Z-scan transmission data.

The exact complex amplitudeEa(r, Z, t) at the aperture planeZ = z + d

(d is the distance from the sample to the aperture) can be found using different

methods for calculations of the aberrated beam propagation [21–24], and then
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the normalized Z-scan transmittance through an aperture with radiusa can be

expressed as [1–3]

T (z) =

∞
∫

−∞

dt
a
∫

0

∣

∣Ea
(

r, Z,∆Ψ0(t)
)∣

∣

2
rdr

∞
∫

−∞

dt
a
∫

0

∣

∣Ea
(

r, Z,∆Ψ0(t) = 0
)
∣

∣

2
rdr

. (6)

But the exact numerical calculation of the fieldEa(r, Z, t) using the field

amplitude (4) is rather complicated and requires much computational time for the

calculation ofEa(r, Z, t) values for many space-time pointsz, t used in the Z-scan

method.

Therefore for the Gaussian beam two approximate methods are widely used.

In the case of nonlinear nonaberrational lens approach Fig. 2(a), theGaussian

beam behind the sample, which is treated as a thin ideal temporal lens, has the

same beam radius and a different radius of curvature. Due to this, the position of

the beam waist and intensity distribution in the far field are changing during the

pulse.

Sample

R(z)

(a)

z = 0 z

Laser
beam

Aperture

Detector Detector

(b)

R(z)

z

Laser
beam Aperture

Sample

z = 0

(a) (b)

Fig. 2. Scheme of the setup for the Z-scan measurement and twodifferent
approaches for transmittance calculations: (a) thin nonlinear lens and

(b) Gaussian decomposition.

The intensity distribution of the Gaussian beam is of the form

I(r, Z, t) =
2P (t)

πw2(Z, t)
exp

[

− 2r2

w2(Z, t)

]

, (7)
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whereP (t) is the momentary power of the beam, andw(Z, t) is the beam width

in the positionZ of the aperture. If the aperture radiusa � w(Z, t), then

exp[−2a2/w(Z, t)] ' 1, and the registered pulse power behind the aperture is

PD(t) ≈ 2P (t)πa2

πw2(Z, t)
. (8)

For the calculation of the beam radiusw(Z, t) at the aperture plane the well known

ABCD law [25] can be used. In this approach the Gaussian beam is characterized

in any positionZ by the complex beam parameter

1

q(Z, t)
=

1

R(Z, t)
+ i

λ

πw2(Z, t)
. (9)

For the given beam parameterq on the initial planez just before the sample,

the beam parameter on any other plane is calculated using theABCD law:

q̃ =
Aq +B

Cq +D
. (10)

The ABCD matrix for the beam propagation from the initial plane to the aper-

ture plane consists of the product of two matrices corresponding to propagation

through the nonlinear lens and the empty space. Transmittance of a simple linear

lens is given by [25]

TL = exp

[

− ikr
2

2f

]

, (11)

while the transmittance of the nonlinear sample as follows from (4) is related to

the phase change by

TS(t) = exp
[

i∆ψ(r, z, t)
]

. (12)

Thus, using the parabolic approximation in (5), the focal length of the nonaber-

rated nonlinear lens is

fNL(z, t) =
kw2(z)

4∆ψ0(z, t)
. (13)

Therefore, the propagation matrix from the initial planez just before the

sample through the thin lens with the focal lengthfNL and the empty space of

lengthd = Z − z from the sample to the aperture plane is given by
[

A B
C D

]

=

[

1 d
0 1

]

·
[

1 0
−1/fNL 1

]

=

[

1 − d/fNL d
−1/fNL 1

]

. (14)
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The beam radius square on the planeZ of the aperture can be defined using

formula [25]:

w2
NL(Z) = w2(z)

[(

A+
B

R(z)

)

+

(

λB

πw2(z)

)]

. (15)

Taking into account (8) the transmittance (6) for a small aperture can be written

in the form:

TNL(z) =

2a2
∞
∫

−∞

P (t)dt
w2

NL
(Z,t)

2a2
∞
∫

−∞

P (t)dt
w2

L
(Z)

=

∞
∫

−∞

TNL(z, t)P (t)dt

∞
∫

−∞

P (t)dt

, (16)

where

TNL(z, t) =
w2
L(Z)

w2
NL(Z, t)

=
w2
NL

(

Z, fNL = ∞
)

w2
NL

(

Z, fNL(t)
) . (17)

Using these formulas, the transmittance for different distancesd to the aperture

can be easily calculated. For the cased � zR (d is the distance from sample to

the aperture plane) and small phase changes∆Ψ0(t) it is easy to get, keeping only

linear terms in∆Ψ0(t), simple enough formula for momentary transmittance:

TNL(z, t) ' 1 +
4(z/zR)∆Ψ0(t)

(1 + z2/z2
R)2

. (18)

Now it is very clear what type of temporal averaging should be introducedfor

getting true normaliazed energy transmittance through the small aperture:

TNL(z) ' 1 +
4(z/zR)

〈

∆Ψ0(t)
〉

(1 + z2/z2
R)2

, (19)

where

〈

∆Ψ0(t)
〉

=

∞
∫

−∞

∆Ψ0(t)P (t)dt

∞
∫

−∞

P (t)dt

(20)

is the power-weighted time-averaged on-axial nonlinear phase change at the beam

waist.
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It should be noted that analogous ideal thin lens consideration was used

previously for a thermal lens [26], but it was understood clearly enough that such

approach is insufficiently precise and that a more elaborate approach, which takes

into account aberrations of thermal lens, should be used. In spite of this know-

ledge, slightly different expression for a nonlinear lens transmittance is sometimes

used for Z-scan measurement data processing [27,28].

Transmittance curves calculated using formula (19) are presented in Fig. 3(a).

It is seen that the peak in the transmission curve emerges first as the sample with

negativen2 approaches the beam waist from the left, and then the valley appears

after the sample passes through the waist.

(a) (b)

Fig. 3. The Z-scan transmittance through a small aperture for a thin nonlinear
medium with negative

〈

∆Ψ0(t)
〉

= −0.25 as calculated using the methods
of the nonaberrated nonlinear lens approximation (a) and Gaussian beam

decomposition (b).

The sample nonlinearity is calculated from the difference between the highest

(peak) and the lowest (valley) transmission values denoted as∆Tp−v. The view

would be opposite for the positive nonlinear refraction index because thesample

would act as a focusing lens in this case. Qualitatively, this dependence can be

explained as follows. The sample acts as the negative lens, and for negative z the

enlarged beam waist is shifted towards the positivez coordinate. Therefore, the

beam width beside the aperture becomes smaller and transmittance increases.At

the waist, the sample has almost no effect because the curvature radius is infinite

in this position. After the sample passes through the waist and moves toward the
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aperture, it increases the beam divergence and thus decreases the transmission

through the aperture.

As we will see somewhat later, qualitatively analogous transmittance curves

are obtained using the standard for Z-scan Gaussian beam decomposition(GD)

method [1–3]. Therefore, practically in all papers the explanation of transmittance

curves is given usually in terms of an ideal (nonabberational) nonlinear lens,

which is not true in general.

The Gaussian beam decomposition (GD) method takes into account special

type of the abberations induced in Kerr media by Gaussian beam.The GD method

works as follows: the nonlinear phase term in (4) is decomposed into the Taylor

series

exp
(

i∆ψ(z, r, t)
)

=
∞

∑

m=0

[

i∆ψ0(z, t)
]m

m!
exp

[

− 2mr2

w2(z)

]

. (21)

This means that behind the thin nonlinear sample the incoming Gaussian beam is

decomposed into the sum of Gaussian beams with the same curvature radiusR(z)

and different radiuswm(z) = w(z)/
√

2m+ 1:

Ee(r, z, t) = e−αL/2

∞
∑

m=0

E0(t)
w0

w(z)

[

i∆ψ0(z, t)
]m

m!
exp

[ −2r2

w2
m(z)

+
ikr

2R(z)
+ iψ(z)

]

. (22)

Using theABCD law for each Gaussian beam propagation to the aperture plane

with matrix
[

A B
C D

]

=

[

1 d
0 1

]

(23)

the field pattern of the aberrated beam at the aperture can be expressedas [1–3]:

Ea(r, z, t) =E(r = 0, z, t)e−αL/2

∞
∑

m=0

[

i∆ψ0(z, t)
]m

m!

wm0

wm
exp

(

− r2

w2
m

+
ikr2

2Rm
+ iθm

)

, (24)

where

w2
m0 =

w2(z)

2m+ 1
, w2

m = w2
m0

[

g2 +
d2

d2
m

]

, Rm = d

[

1 − g

g2 + d2/d2
m

]−1
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dm =
kw2

m0

2
, g = 1 +

d

R(z)
, θm = tan−1

[

d

gdm

]

.

In case of a small nonlinear phase change (
∣

∣∆Ψ0(t)
∣

∣ � 1), using the far-

field conditiond � zR and keeping linear in∆Ψ0(t) terms only, the normalized

Z-scan temporal transmittance can be written as [1–3]

TGD
(

z,∆Ψ0(t)
)

' 1 +
4(z/zR)∆Ψ0(t)

(9 + z2/z2
R)(1 + z2/z2

R)
, (25)

Normalized energy transmittanceTGD(z) will be defined now by the same

formula, only∆Ψ0(t) should be changed to
〈

∆Ψ0(t)
〉

determined by (20)

Thus, in the Gaussian decomposition method (Fig. 2(b)), the temporal de-

pendence of the transmittance through the aperture is the result of interference of

two Gaussian beams behind the sample – the slightly attenuated initial Gaussian

pump beam and the additional Gaussian beam with the same (as for pump beam)

curvature radiusR(z) and smaller beam radiusw1(z). It should be noted that only

their amplitudes are changing in time, the positions and sizes of their waists are

unchanged during the pulse.

Z-scan curves obtained by both methods look very alike for the positions

and values of transmittance maxima and minima are different. What is more

important, the transmittance peak and valley difference given by the Gaussian

decomposition theory is a few times lower than that calculated for the nonlinear

lens (Fig. 3) because the effects of the aberrations are intrinsically included in the

Gaussian decomposition method. Therefore, below we will present resultsfor

different pulse shapes calculated using the Gaussian decomposition methodonly,

omitting index GD in corresponding expressions.

3 Influence of the pulse shape

Many pulse shapes encountered in the Z-scan experiments can be described by

super-Gaussian

f
(SG)
j (t) = exp

{

−
[

µS(t− t0j)/τ0j
]2S

}

, S = 1, 2, 3, . . . , (26)

and asymmetrical pulses [29]

f
(A)
j (t) =

exp(atm/τ0j) + exp(−btm/τ0j)
exp

[

a(t+ tm)/τ0j
]

+ exp
[

− b(t+ tm)/τ0j
] , (27)
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tm =
ln(b/a)

a+ b
τ0j , a > 0, b > 0.

In case ofµ1 = 1.1774 andµ2 = 1.5345, we have the Gaussian and lowest-order

super-Gaussian pulses, and in case ofa = b = 1.7628 — the standard symmetric

hyperbolic secant pulse with the durationτ0j as the full width at half maximum

(FWHM) of the intensity profile. Several other temporal pulse shapes areplotted

in Fig. 4. It should be noted that in Fig. 4, Fig. 5 and in Table 1τ0 is the time

normalization unit that is related toτ0j by some expressions, different for each

pulse shape.

τ τ

Fig. 4. Graphs of some typical temporal pulse shapes: (a) Gaussian, (b) super-
Gaussian, (c) secant hyperbolic, (d) sinc, (e) Lorentzian-I, (f) Lorentzian-II.

It has been shown [1–3] that for a small phase change and a small aperture

the magnitude of the sample nonlinearity can be determined in a straightforward

manner by measuring the difference in the peak and valley transmittance values.
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τ τ

τ
τ

τ

τ τ

Fig. 5. Autocorrelation functions for various temporal pulse shapes: (a) Gaus-
sian, (b) super-Gaussian, (c) secant hyperbolic, (d) sinc,(e) Lorentzian-I,

(f) Lorentzian-II.

The peak and valley transmittance values can be calculated by solving equation

dT (z)/dz = 0 and for a given pulse shape

∆Tp−v,j = A1

∣

∣

〈

∆Ψ0j(t)
〉
∣

∣, (28)

whereA1 = 0.406, ∆Ψ0j(t) = Ψ0jFj(t), Ψ0j = γkLeffI0j is the maximal

nonlinear phase change,γ is the nonlinearity coefficient to be determined,k is the

wave number,Leff is the effective sample thickness,I0j is the maximal intensity

on the beam axis at the beam waist,Fj(t) =
∣

∣fj(t)
∣

∣

2
is the normalized (to unity

at the peak) temporal shape of the pulse intensity. Taking into account (20), the

difference in the peak and valley values for normalized energetical transmittance

being measured by means of experiments can be written for a given temporal
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Table 1. The correction coefficientsη(1,2,3)
j for the nonlinear index determined

by Z-scan measurements with different temporal pulse shapes

Pulse shape fj(t) KGj KLj η
(1)
j η

(2)
j η

(3)
j

Gaussian exp[−(t/τ0)
2] 1.67 1.18 1.41 0.27 0.38

Super-Gaussian exp[−(t/τ0)
4] 1.76 1.54 1.19 0.26 0.29

Sinc
sin(t/τ0)

(t/τ0)
3.71 2.78 1.50 0.32 0.42

Secant hyperbolic sech (t/τ0) 2.72 1.76 1.50 0.28 0.43

Lorentzian-I
1

1 + (t/τ0)2
2.13 1.29 1.60 0.29 0.49

Lorentzian-II
1

√

1 + (t/τ0)2
4.00 2.00 2.00 0.39 0.79

Asymmetric sech a = 1.0, b = 1.0 2.72 1.76 1.50 0.28 0.43

Asymmetric sech a = 1.0, b = 2.0 1.94 1.19 1.51 0.28 0.46

Asymmetric sech a = 1.0, b = 5.0 1.30 0.84 1.57 0.30 0.46

shape as:

∆Tp−v,j =
A1|γ|kLeffI0j

η
(1)
j

, (29)

where values of the coefficientη(1)
j =

∞
∫

−∞

∣

∣fj(t
′)
∣

∣

2
dt′

/ ∞
∫

−∞

∣

∣fj(t
′)
∣

∣

4
dt′ depend

on the temporal pulse shape and are given in Table 1.

Therefore, the value of the nonlinear refractive index determined by the

Z-scan from the measured∆Tp−v,j is determined by the formula

|γ| = η
(1)
j

∆Tp−v,j
A1kLeffI0j

(30)

It is easy to see from formulas (29) and (30) that for given maximal intensity I0j
the difference in the peak and valley transmittance values does not dependon the

duration of pulses, it depends through the coefficientη
(1)
j on their shape only. The

values ofη(1)
j for different pulses are presented in Table 1.
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For short pulses only the total pulse energy

Wj =
πw2

0j

2
I0jτ0

∞
∫

−∞

∣

∣fj(t
′)
∣

∣

2
dt′ (31)

and the FWHM durationτGj = KGjτ0 of the autocorrelation functionG(2)
j (τ) =

∞
∫

−∞

Ij(t)Ij(t + τ) dt
/ ∞

∫

−∞

Ij(t)Ij(t) dt are often known (Fig. 5) [30]. HereKGj

is the coefficient dependent on the pulse shape,τ0 is the time normalization unit,

t′ = t/τ0. Graphs of the intensity and autocorrelation function for asymmetric

secant pulses with different shapes are presented in Fig. 6.

τ

τ

τ τ

Fig. 6. Asymmetric secant pulse (a) and its autocorrelationfunctions (b) for
a = 1 andb = 1 (solid),b = 2 (dash) andb = 5 (dot).

The following expression for the nonlinear refraction index can be written:

|γ| = η
(2)
j

λw2
0j

A1Leff

τGj
Wj

∆Tp−v,j , (32)

where the coefficient dependent of the pulse shape is:

η
(2)
j =

[

∞
∫

−∞

|fj(t′)|2 dt′
]2

·
[

4KGj

∞
∫

−∞

|fj(t′)|4 dt′
]−1

(33)

The numerically evaluated values of coefficientsη
(2)
j for several pulse shapes

are given in Table 1.
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If the pulse durationτLj = KLjτ0 is known, then the formula for nonlinear

refraction index can be written as

|γ| = η
(3)
j

λw2
0j

A1Leff

τLj
Wj

∆Tp−v,j , (34)

where the values forη(3)
j can be obtained fromη(2)

j by changingKGj to KLj .

The values of coefficientsη(3)
j are also given in Table 1. It can be seen from

Table 1 that for the same measured experimental data (pulse energy and duration,

peak-valley transmittance difference etc.) the value of sample nonlinear index

may differ significantly if the pulse shape is not taken into account, if, e.g., the

coefficientsη(1,2,3)
j are taken the same as for Gaussian pulse. Then the value of

nonlinear index determined by such Z-scan measurements may differ from true

one by the ratiosη(1,2,3)
j /η

(1,2,3)
G if pulse shape is not known exactly.

4 Conclusions

We have numerically analyzed the influence of the temporal pulse shape in the

Z-scan measurements for different cases: when the pulse peak intensityat the

beam waist is known, and when the total pulse energy with the widths of its au-

tocorrelation function or pulse durations are known. The results of the numerical

investigation demonstrate that the temporal pulse shape has significant influence

on the measurement results and therefore the values of the nonlinearity coefficient

obtained by the Z-scan method can significantly differ from the real value ifthe

proper pulse shape is not taken into account. The experimental tests of predicted

results using the pulses of the SBS pulse compressor with different pulse shapes

and duration [31,32] are under the preparation.
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