Nonlinear Analysis: Modelling and Control, 2005, Vol. 10, No. 2, 1616-17

On Some Extremal Problems on Linearly Invariant
Classes

E.G. Kiriyatzkii, J. Kirjackis

Vilnius Gediminas Technical University
Sauktekio av. 11, LT-10223 Vilnius, Lithuania
eduard.kiriyatzkii@takas.lt; ekir@takas.It

Received: 13.11.2004
Accepted: 27.12.2004

Abstract. In present paper the definition of linearly invariant clabarmalytical
in the right half-plane is given and some extremal problemsirdroduced
class are solved. For solving we use method based on vaadtiormulas
with specially introduced omega-operator, defined on theasses. In case
when domain is unit disk similar linearly invariant classesre considered by
Ch. Pommerenke, V. Starkov, E.G. KiriyatzKii.
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Major notational conventions, and definitions and auxilialy state-
ments

LetII is a half-planeRe z > 0, A, (II) — class of analytical idl functionsF'(z)
with condition (") (z) # 0, Vz € II, A, (II) — class of analytical ifil functions
F(z) from A, (IT), which are normalized by conditions:

F)=F(1)=...=F"Y1)y=0, FM™@1)=n!.

Obviously, that for any fixedn > 2 every functionF(z) of A,(II) can be
represented in form

F(z2)=(z= 1"+ apn(z = )" 4 0,(2),
k=2
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whereV,,(z) — dependent off’(z) analytical inII function. Number

B F(n-l—k—l)(l)
Wen = k- 1)

we call byk-th coefficient of functionF'(z). Let us introduce the operator

F(z) = F(1) = F'(1)(z — 1) —... = 2 F=1(1)(z — 1)~
Nn[F] = %F(n)(l) = s

which we call by normalizing operator. This operator transfers anytiomérom
A, (1I) to a function of classt,, (IT).

Denote byA(II) class of analytical in domaifl functions. Then-th order
divided difference of functio¥'(z) € A(II) define (see [1,2]) by formula

[F(2);205---,2n] = 1 /(g F(&)d¢

" omi —20) ... (E—2)
T

whereT is a simple closed contour, located ifhhand covering all the points
20,---,2n € II. In above formula among the points, ..., z, € II may occur
coincident.

Note that if P(z) is a polynomial of the degree no higher thar- 1, then

[P(z);zo,...,zn] =0, Vzo,...,2, €Il

Denote byL a set of functions of shape = tz, wheret > 0. Every function of
L univalently maps half-planH onto itself.

Let us arbitrarily choose@ € L and introduce omega-operatorofth order
by formula

(z—1)"[F(z);w(z),t,...,t].

L pwr)

n!

O [F] =

This operator for any fixedr = ¢z is defined on clas4,, (IT) and transfers every
function of classA,, (IT) to the function of classl,, (IT).

As it will be seen, the linearly invariant classes are defined using opgrato
QY w € L, so we find useful to give without proof some properties of these
operators as four theorems formulated below [3].
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Theorem 1. For arbitrarily fixedw = ¢z € L and any functionF'(z) € A, (II),
the equation

O [F(2)] = No[F(tz)] 1)
is valid.
Theorem 2 (On chain). Let wi,wy € A and Fy = QW [Fy], F5 = QY2[F).
ThenF; = Q¥3[F], wherews = wy (ws) € L.

Theorem 3. Only function®,, ,(z) = N,[z°], wheres # 0,1,2,...,n — 1,

(n+1)
s=(n+1l)a+nanda = %1)(,1) is a fixed point (fixed function) of operator

QY foranyw € L, i.e.,Q¥[®,, ] = &, 4, Yw € L. This function belongs to class
A, (10).

Function®,, ,(z) is called bymainone. Its expansion about poiat= 1 has
a shape

o

Opa(z) = (2= 1"+ cpnlz = )"
k=2
where for coefficients;, ,, k = 2, 3,4, ... formula
!

Chin = mm +Da((n+1)a—-1)...(n+1a—(k—2) (2
is valid. In particulargs ,, = a.

Let k-th coefficient of some functio’(z) € A, (II) is equal to numbe;,,
wherek > 2. If by, is thek-th coefficient of functionF(z; ¢t) = Q¥ [F(z)] for any

w € L, thenk-th coefficient of function'(z) we will call by invariant coefficient
of this function.

Theorem 4. Let equation

k—2
n!
(n+k—1) II ((n+1)a=m) = b
"' m=0
with respect taw hask — 1 of pairwise different roots.;, ...,ax—1. Then only

functions of form

k—1
F(Z) = Zcmén,am(z), cl+"'+ckf—l =1
m=1

has numbeb,, as theirsk-th invariant coefficient.
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Let us give the definition of linearly invariant class. Seof functionsF(z)
of KH(H) we will call by linearly invariant class of-th order, if from belonging
F(z) € Sfollows Q¥ [F(z)] € S foranyw € L [4].

Let us give some examples of linearly invariant classes-tif order.

Example 1. A, (I) is a linear invariant class. Note that, (IT) contains any of
linearly invariant classes.

Example 2. Let us fix in A, (II) function F(z) and make up the class of func-
tions ¥, (z) = QY[F(z)], wherew vary over all setL. Due to Theorem 2 (on
chain), such class must be linearly invariant one. We will call this clasggse
linearly invariant class and denote it By, (IT; F'). FunctionF'(z) we will call by
generator of simple class. For simple class we have the following

Property. If F1(z) € R,(II; F), thenF(z) € R, (I1; F}) for anyw € L. In other
words, if functionF'(z) is the generator of simple class aft(z) € R, (II; F),
then functionF (z) must be the generator of this simple class too.

Properties of simple class was investigated in [4].

Example 3. Simple linearly invariant class generated by main functign, (z)
consists only of this function.

Union of a set of linearly invariant classesroth order denote b§n(H). De-
note by K,(II) class of analytic inII functions F(z) such, that
[F(2); 20, - - -,2n] # 0 for any set of pairwise distinek, . . ., z, € II. Forn =1
one has, as it easily seen, class(II) of all univalent inll functions, which play
a large role in conformal mapping theory and in geometrical theory of anallytic
functions (see [5-7]).

In classkK.,, (II) one can extract subclass, (IT) normalized functions

F(2)=(z—1)"4agn(z — )" 4 ...
Example 4. ClasskK,,(I1) is a linearly invariant class [4].

In case whem = 1 and domain is unit dis& linearly invariant classes were
considered by Ch. Pommerenke and by V. Starkov (see [8-10]).
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2 Some variational formulas

Using the definition of normalizing operatdy,,, and denoting2¥ [F(z)] by
F(z;t), statement (1) of Theorem 1 we can rewrite in the form

Pe) = oyl = PPN
where
' (n=1) (4)4n—1
P(z;t) = F(t) + Fl(!t)t(z )4+ %( e

FunctionF'(z; t) represent in form

) = (o1 4 S mn(®) — )" 4 () € A1), (3)
k=2

wherek-th coefficientay, ,(t) in (3) is representable by formula

F(n+k71) (l)tkfln!

erll) = G e () ®
Represent also functiof(z; t) using Taylor’s formula

F(zt) = F(z;1) + Fl(2;1)(t — 1) + o(2;t — 1), (5)
where% — 0 whent — 1 uniformly whit respect ta: insideIl. It is easy

to come to the conclusion that
F(z;1) = F(2). (6)
For derivative with respect tbof function F'(z; t) at the pointt = 1 the formula
F{(z;1) = 2zF'(2) — ((n+ Dagy, +n)F(2) —n(z — 1)"* (7)

is valid. Formula (5), taking into account (6) and (7) is calledvayiational
formula for functionF(z) € A,(II). Represent function,, ,(t) using Taylor's
formula

e (t) = A (1) + ap, (1) = 1) +o(t — 1), (8)
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o(t—1)

1~ — Owhent — 1. Itis easy to see that

ak,n(l) = Ak n, (9)
aﬁm(l) =+ k)agrin + (k—1agy, — (n+ 1)agpazp. (10)

Formula (8), taking into account (9) and (10) is calledvayiational formula
for coefficientay, ,, (¢).

3 Applications of variational formulas

Using variational formulas we establish several theorems.

Theorem 5. Let Fy(z) € %n(H) and at the pointzg € II, wherezy # 1, the
condition

|Fo(z0)| = |F(20)], VF(2) € §a(ID) (11)
or condition
0 < |Fo(z0)| < [F(20)], VF(2) € 3n(ID) (12)

holds. Then in both cases equality
Re{ Fy(20) (2055 (20) — ((n+ 1)agn +n) F(z0) —n(zo—1)"" 1)} =0 (13)

is true. Here

1 (n+1)
n + 1)!F0 (1)-

a2n = (

Proof. Let us consider first case, i.e., when condition (11) holds. Variational
formula (5) for functionFy(z) € ,(II) at the pointz, is of following shape:

Fo(z03t) = Fy(20) + Fol(z0; 1) (t — 1) + 0(z0;t — 1) € Fn (1), (14)

for any value oft which is sufficiently close to unit. For suahaccording to
condition (11) of Theorem 1, we have inequality

‘FQ(ZOM > }Fg(zo;t)‘.
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This inequality due to (14) we can substitute by inequality
|Fo(z0)|* = [Fo(z) + Fop(z0:t)(t — 1) + (205t — 1) (15)
for sufficiently small values oft — 1|. Carrying out operations in (15) we will get
|Fo(z0)|” > |Fol(z0)|” + 2Re{ Fo(z0) Fol (203 1) } (¢ — 1) + 2Re{0(z0; ¢t — 1)}
or
0 > Re{Fy(z0)Foy(20;1) }(t — 1) + Re{o(z0;t — 1)} (16)

for sufficiently small values oft — 1|, where values of — 1 may be of opposite
signs. Then, considering (16), come to the conclusion

Re{po(Z())Foé(Zo; 1)} =0.

Now, using formula (7) at = z, we get (13).
Analogously, if in theorem the condition (12) holds, we come to the equality
(13). O

Theorem 6. Let Fy(z) € %n(H) and at the pointzg € II, wherezy # 1, the
condition

Re{Fy(z0)} > Re{F(2)}, VF(2) € (1) (17)
or condition
Re{Fy(20)} <Re{F(z0)}, VF(z) € Fu(ID) (18)

holds. Then in both cases equality
Re{z0F)(20) — ((n + as,, +n) Fo(z0) —n(zo — 1)" '} =0 (19)

holds. Here
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Proof. Let us consider first case, i.e., when condition (17) holds. Variational
formula (5) for functionFy (z) € 3, (I1) at the pointz, is of following shape:

Fo(z0:t) = Fol(z0) + Fob(z0: 1)(t — 1) + 0(20;t — 1) € Fn (D), (20)

for any value oft which is sufficiently close to unit. For sudhaccording to
condition (17) of Theorem 2, we have inequality

Re{Fy(20)} > Re{Fo(z0;t)}.
Due to (20), this inequality may be substituted by inequality

Re{Fy(20)} > Re{Fo(z0)} + Re{Foi(20;1) }(t — 1) + Re{o(z0;t — 1)},
or by inequality

0 > Re{Fo;(20;1)}(t — 1) + Re{o(z0;t — 1)} (21)

for sufficiently small values oft — 1|, where values of — 1 may be of opposite
signs. Thus, considering (21) come to the conclusion, that

Re{Fo;(z0;1)} = 0.

Using formula (7), we get (19). Similarly, if in theorem the condition (18) kold
we come to the equality (19). O

Remark 1. Considering equalitie€l3) and (19) one can come to the conclusion,
that main functior®,, ,(z) satisfy the differential equation of first order

2F'(2) = ((n+Da+n)F(z) —n(z—1)""' =0.

Theorem 7. Let for some fixedw = m > 2 the coefficientay, , of function
F.(z) € Z,(11) has property:

* 1 n+m—1
|G| = m’ it )(1)‘ > |agnl
1
_ n+m—1
B (n—l—m—l)!’F( )(1)‘

for any functionF'(z) € §,(I1). Then equality
Re{c‘z;w((n +m)ay, 1, + (m—1ag, , — (n+ l)a;‘nyna;n)} =0 (22

holds. Hereas ,,, ay, ,,, ay, .1 ,, are coefficients of functiof.(z).
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Proof. Let us represent variational formula (8) for coefficieiit ,, of function
F.(z) € §,(II):
U () = iy + a5 (D) = 1) + ot = 1), (23)

whereay,, ,, is a coefficient of functiorF(z;t) € 3. (IT). From here and taking
into account thalay;, .| > |a, ,,(t)| we get inequality

* * * 2
|am,n|2 > }am,n + am,n,(l) + O(t - 1)| .
After several transformations we can reduce it to inequality
0> Re{d;"nma;’n’(l)}(t — l)Re{o(t — 1)}, (24)

which holds true for sufficiently small values gf— 1| wheret — 1 may be of
opposite signs. Then from (24) follows equality
Re{ay, a5, ,'(1)} =0.
Using formula (10) we come to (22). O
Analogously one can prove

Theorem 8. Let for some fixed: = m > 2 the coefficient;, ,, of function
F.(z) € 3, (I) has property

Re{a;m} > Re{amvn}, VF(z) € gn(ﬂ)
or property

Re{a’:n’n} < Re{amm}, VF(z) € %n(ﬂ)
Then in both cases equality

Re{(n + m)ai,hLLn + (m— 1)a,*n7n —(n+ 1)afn7na§7n} =0 (25)
holds. Hereas ,,, ay, ,,, ar, 1 ,, are coefficients of functiof.(z).

Remark 2. Considering equalitie€22) and(25) one can come to the conclusion,
that coefficientsy, ,, k = 2,3,4,... of main function®,, ,(2), i.e., coefficients
(2), wherecy ,, = a, satisfy the equation

(n+k)cri1n — (R +1a— (k—1))cpn = 0.

Thus, the main functior®,, ,(z) has the property, that in many extremal
problems it satisfy the extremal conditions.
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