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Abstract. A class of tests for testing a changed segment in a binontjalesee
is proposed and an asymptotic behavior is established. Aistemt procedure
of estimating the length of a changed segment is proposed. p&hformance
of two tests from the given class is compared by Monte-Canuktions. The
results are applied for the non-coding deoxyribonucleid fONA) sequence
analysis.
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1 Introduction

Let X4,..., X, be independent binomial random variables with
P(Xi=1)=p, PXi=0)=1-—ypu,
O<pi<l, i=1,...,n.

We want to test the null hypothesis of a constant occurrence probability
Ho: p1 =+ = un = po,

against the following so called epidemic (or changed segment) alternative
Ha: there exist integers* andm*, 0 < k* < m* < n, such that

e {k*+1,....m"
px; =1y = ¢ PERT L mT, (1)
po, te€{l,....nt\{k"+1,...,m"}.
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Herek* stands for the beginningy* for the end and* = m* — k* for the length

of epidemic. The quantity = |1 — uo| is referred to the size of epidemic. I{H
is rejected, next step is to estimatek*, m*, uo anduy. (Note that the problem
of epidemic change in occurrence probability can also be reformulatedms ter
of epidemic change in the mean, becalisg = P(X; = 1) = u;.)

The problem of testing against the epidemic type alternative and then
locating an epidemic has applications in the non-coding deoxyribonucleic acid
(DNA) sequence analysis (for details see Avery and Henderso}) filridbng other
applications. Most of the DNA consists of the non-coding DNA. But it is lvelie
that non-coding DNA still has some functional importance. So it is of gralatev
to find locations in the non-coding DNA which may contain some information.
One way of approach to this problem is analysis of occurrence probabditibe
four main nucleic acids (marked by A, C, G, T), separately for every. atite
acid which is analyzed is marked by 1 and the other three by 0. Thus theabrigin
sequence of nucleic acids is replaced by a binomial sequence. THerprizhto
answer whether there is a change in an occurrence probability of te&abd then
to locate the segment where this probability has changed. Different medheds
used to tackle this problem. The most common tools are the maximum likelihood
method and those based on cumulative sums.

For a short survey of epidemic change problem we refer to @séng Hor-
vath [3], where mainly the cumulative sum type test statistics for testing the
epidemic change in the mean of random variables are discussed. Alstorigfe
where different type statistics are analyzed in the case of normally disttibute
observations. The problem of a changed segment in a binomial sequwasce
considered by Curnow and Fu [5]. They assumed that.; and the length of
epidemic are known, what is too restrictive for the most practical application
Avery and Henderson [1] introduced a test for zero-one obsenstind obtained
the limit distribution for test statistic under null hypothesis. They also applied
the test to the DNA sequence analysis. Another type of cumulative sum t&sts w
introduced by Rékauskas and Suquet [6, 7] for the sequences of random elements
with values in abstract measurable spaces.

In this paper (Section 2), following Rleauskas and Suquet [6, 7], a class of
tests that are identified by a certain weight functias proposed for the problem
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of a changed segment in occurrence probability of binomial sequehisethen
argued that the test introduced by Avery and Henderson [1] candaeded as

a particular case of the latter class of tests. For the introduced class ofveests
establish asymptotic behavior under null hypothesis and prove their temmsis
under epidemic alternative. We propose the estimate of the epidemic length and
establish its consistency in probability as well as almost surely. All pro&s ar
collected in the Appendix. We chose two tests from the given class and run a
number of Monte-Carlo simulations to compare their performance. In Section
3 we investigate performance of the test statistics under HH Section 4 we
compare empirical power of the test statistics. In Section 5 we preseitsriEsu

the tests when locating the changed segment and estimating epidemic mean. In
Section 6 we then perform an analysis of the nucleotide acids’ sequétice o
human glucagon gene’s introns 2, 3 and 4 (the same as in Avery andiidende
[1]). We end up with conclusions.

2 Cumulative sum type tests

Cumulative sum type statistics are based on differences between the mean of
observations in a certain sliding window and that of the whole sarmpleFor

a random binomial sequenég, ..., X, of lengthn, denote
S(k,m)= > (X;—X), 0<k<m<n, (2)
i=k+1

wherek can be regarded as the beginning of the sliding windowlaadmn — k
as its length. Now for every length< [ < n set

1

: 3

wherep(h) = p(h(1 — h)) andp(h), 0 < h < 1, is a certain weight function
to be defined later. Following Rkauskas and Suquet [6], we consider a class of
statistics

maXop<i<n Vp(l)

V(8(0,n)/n)(n — S(0,n))

Ul(n, p) =
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to test for a changed segment in a sequence of binomial variables. Ipdbials
casep = 1, we have the test statistic Ul, 1), which was considered by Avery
and Henderson [1]. To be precise they proposed the following testistatis

Z Z sgn( Xy, — Xp,) + Z Z sgn(Xp, — X, )

k1=1ko=i+1 k1=7+1 ko=i+1

, (4)

K}, = max
1<)

and normalized it b;&/nS(O, n)(n — S(0,n)). In (4) sgn(z) is a sign function.
In a binomial casegn(x) = = and K can be simplified to

K} =n max |S(i,j)| =n max max l‘S(k,k—i—l)’

0<i<j<n 0<l<n 0<k<n—
= n(orgag(n S(0,1) — OgliiilnS(O, i)).

We see that Ui, 1) = K/ /nS(0,n) (n — S(0,m)).
To obtain the limiting behavior of Uh, p) we need to determine an admissi-
ble class of weightp (see [6] for more details).

Definition 1. By R = {p: [0,1] — R} denote the class of non-decreasing
functions satisfying:

(i) p(h) =h*L(1/h),0 < h < 1forsomex € (0,1/2] and positive orjl, co),
normalized, slowly varying at infinity functiafx

(i) 6(t) = t'/2p(1/t) is continuously differentiable o, oc);
(i) 6(t)log=?(t) is non-decreasing ofu, o) for somes > 1/2 anda > 0.

FunctionL is normalized, slowly varying at infinity if and only if for every
§ > 0 t°L(t) is ultimately increasing ant° L(t) is ultimately decreasing. In the
special case wherg(h) = log®(v/h),

p(h) = p(h,a, B,7) = h*log’(v/h), (5)

which belongs tdR if eithera € (0,1/2) andf € R, ora = 1/2 andg > 1/2.
Parametery = v(a, 3) > 0 is chosen properly in such a way, that the weight
function is non-decreasing 90, 1].
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Let (W (¢t),t € [0, 1]) be a standard Wiener process d#it),t € [0, 1]) the
corresponding Brownian bridgd3(t) = W (t) — tW (1), t € [0,1]. Denote by
P . the convergence in distribution. Let

n—oo

1
UIP) = 200, o) ot P+ = BOL ©

which in the case = 1 reduces to

ul(1) :OiliElB(t) _OgtlilB(t)' (7)
Under the null hypothesis Theorem 1 (presented below) establishesritier€
gence in distribution of the test statistics() p), when eithepp € R or p = 1.

In the casep € R Theorem 1 is a special case of a more general result proved
in Ratkauskas and Suquet [6] for any independent identically distributestbra
variables. Using the Donsker-Prokhorov invariance principle, Sligdkynma

and continuous mapping theorem, one can easily obtain the resultpnhen

Theorem 1. AssuméH, holds and eithep € R or p = 1. Then

Ul(n, p) —— Ul(p). (8)
n—oo
In general case the explicit form of distribution function of(p)l is not
known. Thus we use Monte-Carlo simulations to get approximate critical value
In the case = 1 one can use approximation as pointed out in [1], namely the first
member2(4z? — 1) exp(—2z2), of the following series

P(Ul(n, 1) > 3:) ~ 2 i(4i2$2 — 1) exp(—2i2x2). 9)
i=1

When H, holds, we consider cases whefgn — 0 or I*/n — 1. If
I*/n — 0 € (0,1), weight functionp has no influence on the power of (@l p)
and problem of a changed segment can be solved by existing tests for multiple
change points. Next assume tiiaandn — [* tend to infinity as» — oco. Denote
by ﬁ the convergence in probability.
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Theorem 2. Suppose thatiy holds and eithep € R or p = 1. Moreover, let

nl/ths

lim
()

= 00, (10)

whereh,, = (I*/n)(1 — I* /n). ThenUl(n, p) —— oo.

n—oo

The proof is given in the Appendix.

Remark 1. Note that for binomial observationll (n, p) has the same value, if
X; is replaced byy; = (X; — X)? and X byY. This means that, no matter what
problem we solve, epidemic change in the mean or epidemic change ime&ria
for binomial observations test stays invariant.

The motivation for using weight function is the following. Assume for a
moment that*/n — 0 ands is fixed. If p = 1, condition (10) reduces to
I*/n'/?2 — oo, that is the epidemic length should tend to infinity faster than
n!/2 to ensure the consistency of the test. Similarly, wherc 1/2, 8 = 0,

I* should be larger than(1-2%)/(2=2%)  For example, takingr = 1/4, the
length of epidemic should be such that® = o(I*). However, the problem with
using the parametric weight functions is that there is no strict rule for dagign
certain values to parameters. It therefore remains interesting and opeetite
guestion of data driven choice of parameters.

To estimate the length and the beginning of a changed segment we use the
procedure proposed by Bkauskas and Suquet [7]. Using (3) we estimate the
length of epidemic by

= min{j: V,(j) = Jnax V(1) }. (11)

To estimate:*, we go back through diﬁerenc¢§(k:, k +f*)] and find such index
k, which corresponds to the maximal one. So we define
k= min{i: |S(i,i +f‘<)‘ = max _ ’S(k,k—i—f“)‘},
0<k<n—I*
wherel* is given by (11). To estimate the end of epidemic we take= k* + 1.
Next we estimatg:,; as sample mean over the integer{slAe’t +1,...,m"}, and
1o as sample mean of observations with indi¢es. . . ,E*, m*+1,...,n}.
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Avery and Henderson [1] suggest the following estimatesfaandm*,

k* =min{ky, ka: S(0, k) = Jnax 5(0,1),5(0, k) = Juin 5(0,4)},
m* = max{ky, ka: S(0,k1) = max S(0,7),5(0,k2) = min S(0,7)}.

0<i<n 0<i<n

One can see that these estimates coincide with those defined above in fhk spec
casep = 1.

Next we investigate the rate of convergeriégél* P .1 and give the
conditions for almost sure convergence wip¢h) = h*. Tnhroughout we assume
thats is such that

I*s%/log(n) — oo. (12)

Denote by—>5 the almost sure convergence.

n—o0

Theorem 3. Assume thaHa and (12) hold, p(h) = A%, « € (0,1/2) and

[* — 00 asn — oc.
@ If I*/n — 0 and
I*(1* /n) 72952 — oo, (13)

then I* /1* L

n—oo

(i) If I*/n — 0 and for eache > 0
Zexp(—sl*(l*/n)l_2as2) < 00, (14)

then 1* /1* -2, 1.

n—oo

We present the proof of this theorem in the Appendix.

Remark 2. Whenl*/n — 1, the consistency can be proved similarly but now
variables X; withi € {1,...,n} \ {k* + 1,..., k" 4+ *} should be viewed as
variables having epidemic probabilify;. Epidemic length in this case is— [*
and all the conditions in Theore@ishould be rewritten in such a way thétis
replaced byn — [* and{*/n by 1 — I* /n.
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The rest of the paper is intended to compare the performance of two test
statistics. Namely, we consider

Ty =Ul(n,1) and T, =Ul(n,p) with p(h) = h'/% (15)

We will write Ul (1) and Ul(p) for the limiting statistics of ; andT’ respectively.
The motivation of such parameter choice in (15) is the following. Recall that
for the weight function of the parametric form as in (5), paramater [0, 1/2)

(we chooses = 0). In the problem under investigation statistics(kllp) with

p(h) = h* anda close to0 behave quite similarly to Wk, 1). On the other
hand, whenu is close tol /2, the behavior of test statistic strongly depends on the
distribution of observations. Therefore we chdseas a representative of the set
Ul(n, p) with p(h) = h™ anda separated from and1/2.

3 The performance under the null hypothesis

In this section we investigate statisti¢s and7> under H, and perform thep-
value analysis. First we find approximations of critical values associaittd w
the certain significance level;. We randomly generat® = 10000 values of the
limiting statistics U[1) (using (7)) and U(lp) (according to (6)) and take empirical
quantiles as an approximation for the critical vafueBrownian bridge in each
replication of U(1) and Ul(p) is approximated by partial sum proces3) =
1/ym) (M z — e 7)), t € [0,1], £(0) = 0. HereZ; ~ N(0,1),
i=1,...,m, m = 10000 and[-] is an integer part of the number. For(UJ we
have also computed critical values using (9). Table 1 gives the results.

Table 1. The critical values

as =0.05 a, =001 a,=0.001

Ul(1) using (9) ~ 1.74726  2.00092  2.30297

Ul(1)using (7) 173459  1.98175  2.22504
Ul(p) 2.52019  2.86686  3.33042

We see that the critical values for (@) computed in two ways (we took only
first member of the series in (9)) differ in the second digit after the poicg@dfor

1In further considerations and conclusions we use critical values dmahjphis way.
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as = 0.001. Considering not large replication number to estintag®9 quantile
we can say that both approximations agree well.

For any statisticy’, assuming only non-negative values, fhealue isp =
1 — Fy(Y), whereFj is the null distribution function of the statistic. In our case
Fy is not known therefore we use empirical approximat}?@n When H, holds,
we computeR realizations of both statistics; and7’ (we will denoteY; for the
j-threalization of either of statistics) and the corresponding estimates/falues
(denoted byp;)

N
~ ~ 1 .
pj—l—Fo(Yj)—Ng_ll{Lk>Yj}, j=1,....R. (16)

HereL;, kK = 1,..., N, stands for a sequence of the limiting statistics’ values.

The random variabléy (Y') as well asl — Fy(Y') = p is uniformly distributed
on [0,1], if Y is distributed according téy. Having the se{p;,j = 1,..., R},
we compare the empirical cumulative distribution function fowith the dis-
tribution function of truep-value, F,(z) = z. The convenient way for such
analysis ig-value discrepancy plot (Davidson and MacKinnon [8]), represgntin
the diﬁerenceﬁﬁ(az) — F,(z) on y-axis (we will denoted(z)) againstz on z-
axis. For six different parameter sdts= 6000 realizations ofp-value estimates
were computed. In Fig. 1 the results are providedXor= 10000, = € [0,0.2],

o = 0.1, o = 0.2 andn = 200, 500, 1000.

For alln andp, both tests generally are a bit conservative (in average accept
the null hypothesis too often). This discrepancy naturally diminishes when
increases. In all cases thevalue differenced(z) for T; is smaller than for
T>. Whenpug = 0.1, T behaves considerably better than but passing to
uo = 0.2 p-value discrepancy fof, increases, nevertheless remaining slightly
less than foff. ForTi, when passing fromy = 0.1 to py = 0.2, d(x) slightly
decreases. Concluding thevalue analysis, we might say thétz) for x < 0.05
is acceptable in all six cases for both statistics.

4 The power analysis

In this section we present the results of simulations when comparing the pbwer
test statisticg; andT5,. For every parameter set we hakle= 1000 replications
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Fig. 1. Thep-value discrepancy plots.

of every statistic when Kl holds and count how much of them are greater than
critical value associated with the certaig. In other words, we find values of
empirical power functions of tests at the poimf. Table 2 gives the values at
as = 0.05 for several values af, I*, ;o and ;.

Fix n, po, 41 and letl* increase. From Table 2 we see that in all cases the
power increases quite rapidly for both statistics. Fixand letn increase. For
I* = 20 and50 the power of both tests gradually decrease except when 0.1,
w1 = 0.2, [* = 50 in the Ty case. Wheri* = 100, both tests reach maximum
power forn = 500. For fixedn andl* increaseu; — up|. We see that power
increases and again very quickly. Now fetand* increase but the rati&’ /n
keep constant. In this case again the power of both tests increase tirtedie we
observe rather interesting effect, which was mentioned in Avery and éisoa
[1]. Namely, that shifting bothi, andx; but not changindu; — po| decreases
the power. This effect can be explained by the fact that, on averageshift in
probabilities has no impact on statistics themselves. But it alters sample variance
X — (X)? and so the value of statistic. So if botly andy; increase by some
a > 0to ug + a anduq + a, sample variance also increases (only for some values
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Table 2. Empirical power at the significance leugl

T1 T2
os = 0.05 n\l* 20 50 100 20 50 100
o =0.1, py =02 200 0.066 0.158 0.241 0.089 0.206 0.264
500 0.054 0.149 0.372 0.073 0.222 0.445
1000 0.040 0.101 0.242 0.058 0.154 0.370

o =0.1, py =03 200 0.154 0.590 0.764 0.271 0.648 0.763
500 0.103 0.450 0.912 0.186 0.646 0.950
1000 0.078 0.296 0.832 0.126 0.529 0.944

po=02, 4y =04 200 0.100 0.398 0.640 0.142 0.438 0.623
500  0.067 0.305 0.760 0.092 0.421 0.826
1000 0.066 0.185 0.616 0.078 0.306 0.794

of a) thus diminishing the value of statistic. But statistic, which undgrribre
often assumes smaller values compared to some critical value, has lesstwer
the statistic which more often assumes larger values.

Comparing the power df; to 15, from Table 2 we see th&k in all cases
gains more power except wheén; — po| = 0.2 for [* = 100 andn = 200.
When!* = 20, both tests have very little power reaching the biggest valRel.
TheT; test shows its advantage fir= 50, especially whetu; — 19| = 0.2 and
n = 500, 1000. For example whepg = 0.1, 1 = 0.3 andn = 1000 it rejects H
(when Ha is true) 529 times out of 1000 compared to 2967 9r This case gives
the biggest difference. Fét = 100 this difference diminishes and when= 200
both tests behave very alike. When= 1000, 7% significantly outperformg;
and forn = 500 the difference is smaller but again in the favoriaf

For a more detailed inspection we present the so called size-power curves
a correct size-adjusted (not nominal size) basis (Davidson and MacKif8]).
For every parameter set we compute 1000 replications of both statisticeaad c
spondingp-value estimates: first for the sample with no changed segment then for
the same sample except for epidemic segment with indgxes 1,...,m*}. We
plot the empirical cumulative distribution function fprvalues under i (which
is the empirical power function) but anraxis we have the values of empirical
distribution function fomp-values under glinstead of nominal size;. That is we
adjust power to true size. In Fig. 2 results aresfo= 500, 1000, I* = 50, 100
and all three pairg, 1. We excludd* = 20 cases because of very low power
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andn = 200 cases because the difference in the performance of tests is small.

It is clearly seen from Fig. 2 how for true size values fr{in0.2] both tests
rapidly increase their power when increasif@r |1 — uol, slightly decrease it
increasing or increasinguo, 11, but keepingu; — | constant. We can conclude
that 73 displays its advantage for small values of rdtign (1/20 or 1/10) and
the biggest difference being when this ratio is the smallest./'Hor = 1/5 the
advantage of 5 is minor.

00 02 04 06 08 1.0
00 02 04 06 08 1.0
00 02 04 06 08 10

=100

=50
n=1000
Ho=0.1
H1=0.2

00 02 04 06 08 1.0
00 02 04 06 08 1.0
00 02 04 06 08 1.0

0.00 0.10 0.20 0.00 0.10 0.20 0.00 0.10 0.20

Fig. 2. The adjusted size-power curve plots.

5 Estimating parameters

In this section we investigate the estimates of the beginning, the length and the
size of epidemic for both tests. We will rest upon the procedures deddribe
Section 2. For every parameter set we have compiited 1000 replications

of estimates. For a sequence of realizatiéhs: {Z1,..., Zg} of any estimate
denoteMZ = Zf’;l Zi/R, pwW, o5 the empirical test power value for significance
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level oy, = 0.05 and
. 7 2 -
SEl* = M(l— . 1) . SEk* = M(
In Tables 3 to 5 we present results (we tdok= 90, 240,490 for sample sizes
respectivelyn = 200, 500, 1000).

E*— k*

2 ~ ~ 2
) . SEp =M(f — m)”

Table 3. The estimates fér, [* andu; whenpg = 0.1 andp; = 0.2

I n PW,os ~ ME* SEE*  MI*  SEI* Mp;  SEf

T, 50 200 0.158 70.99 056 7455 0.58 0.207 0.0080
500 0.149 165.25 529 18517 9.85 0.155 0.0063

1000 0.101 315.05 25.38 386.26 55.91 0.129 0.0072

100 200 0.241 7846 0.6 8439 0.0 0220 0.0098
500 0.372 19048 0.82 170.85  0.98 0.192 0.0037

1000 0.242 351.09 457 339.17 811 0.153 0.0048

T, 50 200 0.206 82.50 0.56 5294 0.3 0.315 0.0517
500 0.222 19746 445 123.09 6.29 0.245 0.0287

1000 0.154 372.25 20.84 257.05 36.25 0.199 0.0171

100 200 0.264 90.03 0.19 66.24 0.25 0.296 0.0422
500 0.445 216.19 0.60 128.96 0.69 0.240 0.0130

1000 0.370 412.00 3.16 227.35 4.93 0.205 0.0097

Table 4. The estimates fér*, * andu, whenpy = 0.1 andy; = 0.3

I* n PWyes  ME* SEE*  MI* SEFf Mp;  SEn

Ty 50 200 0590  79.90 025 6522 030 0.301 0.0083
500 0.450 187.50  2.89 143.98 539 0.225 0.0124

1000  0.296 34599 1823 320.68 39.20 0.168 0.0212

100 200 0.764 8893 0.07 89.56 0.04 0.316 0.0077
500 0.912 22204 018 13386 0.31 0.288 0.0037

1000 0832 42149 155 234.83 326 0.238 0.0085

T, 50 200 0.648 86.72  0.20 53.97 0.25 0.348 0.0166
500 0.646 21723 146 89.29 239 0.304 0.0121

1000 0.529 43236 8.03 156.56 15.41 0.280 0.0140

100 200 0.763 90.62 0.09 8390 0.07 0.328 0.0112
500 0.950 23447  0.09 109.74 0.15 0.315 0.0041

1000 0944 476.40 0.24 132.18 0.62 0.303 0.0045
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Table 5. The estimates fér, * andu; whenpy = 0.2 andy; = 0.4

* n pwy,  ME* SEkR*  MI* SEI* Mj; SEn

T, 50 200 0398 7516 038 73.16 048 0.390 0.0110
500 0.305 17159 427 171.02 819 0.307 0.0172

1000 0.185 326.68 21.52 352.80 46.64 0.258 0.0247

100 200 0.640 8150 0.11 90.62 0.04 0401 0.0123
500 0.760 20846  0.38 15240 0.56 0.377 0.0056

1000 0.616 38629 275 28832 526 0.317 0.0120

T> 50 200 0.438 83.13 032 60.51 0.39 0434 0.0196
500 0.421 200.84 2.68 116.81 490 0.385 0.0178

1000 0.306  398.46 13.83 219.69 26.55 0.339 0.0192

100 200 0.623 83.88 0.13 83.83 0.08 0.410 0.0177
500 0.826 223.69 0.24 125.86 0.33 0.407 0.0062

1000 0.794  448.41 1.15 180.30 2.14 0.381 0.0073

From results presented in Tables 3 to 5 we can draw several conclusions

For every fixed* and all three pairs gfy andy, letn decrease. We observe
that the sample meandl* approach true valud$ except forTs with g =
0.1, u1 = 0.3 and/* = 100. The sample means of squared ergEs* and
SEl* rapidly approach zero.

For every fixedn and all pairsug, 1, letl* increase. We see that for both
testsMk* approach their true valués, SEk* andSEl* decrease.

In two above cases no explicit conclusion can be drawn aldgytandSEfi,
except that they behave very alike, which means that, \Wlighh decreases,
Myi; gets closer to the true valyg .

Fix I* /n but letl* andn increase. For all pairgy, 1, the means of squared
errors decrease for all three parameters under investigitidh and ;..

Let|u1 — pol increase. In all caséd@*, SEE*, MZA*, SEl* improve. We mean
that the empirical means approach their true values and the means oftsquare
errors decrease.
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e Now fix |1 — uo| but letyy andy, increase. Similarly as for the behavior of
the power of both tests explained in Section 4, the results for all parameters
get worse both in mean and mean square error sense.

Comparing the results of both tests, we see that when estimating the beginning
of the epidemicME* for T, are closer to their true valués in all cases. Also

for T, Mi* are closer ta*, SEL* andSEl* are smaller in all cases except for

I* = 100 andn = 200 and for all4g, 1. Forn = 200 andi* = 50, 100, Mfi;

is closer tou; andSEf; is smaller forT; test. Forn = 1000 and bothl*, these
values are in the favor df;, test. The rest of the cases are difficult to classified.
The results in this analysis somewhat agree with the results of the powesianaly

6 An application to human glucagon gene data

In this Section we investigate human glucagon gene (GCG), located on chromo
some 2, as a sequence of four main bases A, C, G, T. This gene coh§isteoms
and 5 introns and we deal with the introns 2, 3, and 4. We refer to Naticeral C
ter’s for Biotechnology Information internet pager more information about this
gene and the sequence itself. Every base was analyzed separaten§iermed
the initial sequence to that of one’s and zero's: the base under anabsimarked
by 1 and the other three by 0. Using both te$isand7», we have first tested the
null hypothesis of no epidemic against epidemic alternative and computaidie
estimates according to (16). Then we have estimated the unknown paraafeters
epidemic (also in the cases where thg Wwhs not rejected for smadt, values).
The same procedure was done for all three introns. We present thiés ries
Table 6.

In Table 6,1 stands for either of statistics, first féf and in the next line for
T>. Blank positions ifl, case means that the values are the same &5, for a
line above.

For both statistics the-value estimates are quite similar except for the in-
tron 2 bases T and A, and intron 4 base C. Both tests significantly rejefcirH
intron 3 and all bases, also for intron 4 base A, intron 2 base G, andwvith0.1

Zhttp:/www.ncbi.nim.nih.gov/entrez/query.fcgi?db=gene&cmd=Retdelopt
=Graphics&list_uids=2641
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Table 6. The results of analysis for GCG introns 2, 3 and 4 féarsizes are
n = 1572, 1675 and1369 respectively)

Intron Base S(0,n) T D I Eomt o 1
2 T 566 1.503 0.167 701 473 1174 0.327 0.401
2.131 0.226
A 516 1.405 0.2564 689 473 1162 0.358 0.290
1.994 0.343

C 263 1.620 0.094 562 709 1271 0.144 0.210
2379 0.090 293 842 1135 0.150 0.242

G 227 2.003 0.008 1059 227 1286 0.199 0.118
2.925 0.008

3 T 455 2.366 0.000 501 654 1155 0.308 0.186

3.587 0.000 312 654 966 0.302 0.141

A 530 2.166 0.002 723 318 1041 0.273 0.373

3.107  0.003 319 666 985 0.289 0.433

C 333 2.630 0.000 699 403 1102 0.243 0.137
3.745 0.000

G 357 2966 0.000 691 481 1172 0.163 0.285

4.231 0.000 609 563 1172 0.167 0.294

4 T 446 1.405 0.254 437 253 690 0.352 0.270
2.057 0.283

A 506 2.025 0.007 638 342 980 0.320 0.426
2.868 0.010

C 206 1.243 0451 316 981 1297 0.135 0.203

2254 0.148 126 1171 1297 0.138 0.278

G 211 1.250 0.442 342 372 714 0.170 0.105
1.901 0.439

intron 2 base C. In the cases where both tests do not rejgetith small values of

o, the estimates for the parameters of epidemic are the same for both tests except
the case of intron 4 base C. In this cd3ayives quite smallep (nearly indicating
significant change), shorter the length and bigger the|gizeig|. When the tests
significantly reject K but give different results, agaif, indicates shorter and
bigger epidemics. Fgrsmaller thar).1 the estimated lengths of epidemics might
seem quite biglA*/n ranging approximately from /5 (corresponding intron 2
base C and intron 3 bases T and A, all in the cas&hofest) to1/2 (intron 4

base A; the case of intron 2 base G may be regarded as the epidemic of length
n — I* = 513). But on the other hand the values |ofi — 70| are quite small.
Minimum value0.066 is in the case of intron 2 base C for tdstand maximum
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0.161 for testT; in the case of intron 3 base T. Thus bigger length somewhat must
compensate for smaller size to detect epidemic (see condition (10)).

7 Conclusions

When the means of squared errors (SE) are big, the results of botbdpires

T1 andT> should be qualified with care. On the other hand, when the power is
small, the results are of little value even if the means of squared errors ate sma
Thus only when the power reaches high levels and the SE are small we might
be able to get reliable estimates fof, [* or ;11 and see the true picture of the
behavior of both tests. These cases might be wher- no| = 0.2, I* = 100 and

all values ofn in the Tables 4 and 5. These cases strengthen the notion that for
big values ofi* /n (1/2), T} test performs slightly better, for smallér/n (1/5)
moderate advantage is fés, and for small*/n (1/10), testT; shows its biggest
advantage.

The example of human glucagon gene demonstrates two alternative (as a test
statistic usingl} or T») ways to analyze the nucleotide sequences. It shows that,
when both tests strongly indicate the presence of an epidemic, bfterst esti-
mates shorter epidemic with bigger change in proportion of a certain nucleotide
base. This example can be regarded as a template for further applications o
methods presented for search and location of epidemic. Not only onéncerta
nucleotide base can be under investigation, but also any codon or andno ac

Appendix

For the proofs of Theorem 1 and Theorem 2 consider a sequence .ofangbm
binomial variablesX7, ..., X/, characterized b (X!=1) = po, i€{1,...,n}.
Also for independent but not identically distributed variahkgs. . . , X,, assume
PX;=1)=m,t e, ={k*+1,...,m*} andX; = X wheni € I,
Iy =A{1,....,n}\ L.

Proof of Theorem 2.DenoteM,, = n'/%h,s/p(h,). Next expand

l* * l*
S R+ = (1= ) S X, == ST X = (1= 2 ) (i = j1o) + R,
o) = (1-0) Y x-S = (1- 2 ) +

i€l i€lp
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Ry = <1— %) Z(Xi — 1) _%Z(Xz{_ﬂ())-

ISt 1€lp

Noting that(X (1 — X))'/2 < 1, we find the lower bound LB for Uh, p):

—1/2 n_1/2 * 7% *
Ul(n,p) >n Orillagzvp(l)zp(h )‘S(k K1)
n (A1)
> Mn<1 _ “Z—"') —.LB.
nhy,s

Since bothug — p andyu; — p? are less or equdl/4 < 1, we have

p( 1B\ o (N =) (N =) (o — ) 1
nhps) — n n?h2 s? n n2h2s? = nhps?’

which tends to, providednl/Qh,l/Qs = an(hn)/h,l/2 — oo. But the latter
follows from the divergence of,. Indeed, ifh, — 0 (whenl*/n — 0 or
*/n — 1), p(hn)/h}/2 — o0o. Thus the random element— |R,|/nh,s is
Op(1) and the lower bound in (A.1) tends to infinity providéd, — oo.

Next proof requires more notations. For angnd/, 0 < k < k+1<n

Ikl:{ki—i-l,...,k-f—l}, Akl:Iklﬁfl, ’Akl‘:#Akl-

Note that| Ay | < I Al*. UseX = X' + (1/n) >, (X; — X]) and (2) to get

i€l
— 1
kk+D)=S X! Xi—X)—1X — =S (Xi— X!
Sk o+ = 3 Xi+ 3 (Xi— X)) n 2= X0)
1€l 1€l el
A.2
= S/(k,k—i-l)—i-Zkl — (l/n)Zl ( )
+ ([Aw| = 1 /n) (p1 — po),
whereS’(k, k + 1) = 3, (X{ — X') and
Zu=Y_m Zi=Y»_m n=(Xi—-EX)-(X]-EX]).
1€ AR i€l
If i € Iy, thenn; = 0. Whenly; = I, we see thaty; = Z1, |Ay| = [* and

S(k* k*+1%) = S (k*, K +1%) + (1= 1" /n) Zy + (1 = I* /n)l* (11 — o). (A.3)
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Proof of Theorem 3. We follow the proofs of Theorem 4 and Proposition 13
in Ratkauskas and Suquet [7]. Evefit*/I* — 1| > ¢} is equivalent tofl* <
(1 —&)I* UT* > (14 ¢)I*}. On this event we have
Coci 7O = oz OV g Vo = e Vo)
Hence for any upper bounds YBand UB of maxg.j<i_c)+ Vp(l) and

maxg«<i<n V,(l) and for lower bounds LB and LB, of maxo<;<;- V,(I) and
max(i4¢)+<i<n Vp(l) we have

P(|I*/1* —1] > ¢) < P(UB; > LB; UUB, > LBy)

<p
(A4)
< P(UBy > LB;) + P(UB2 > LBy).

We will find upper and lower bounds such that (A.4) converges to zero.

Recall that by assumptioff /n — 0. This allows us to replace(h) =
(h(1 — h))* by p(h) = h* in the rest of the proof. For shortness we will use the
following notations

1
! 0I£la<xn (I/n)x 0;}?27}1(_1}5( R+ )}a 3

1
B>l = max ——— Zwl, TcC{l,...,n}.
2T NE W) B2 VBl Tl m)

From (3) and (A.3) we get

ax V(1) 3 SER DN (=1l
P el

0<I<i* (*/n) = (I*/n)® —E1—(1-1"/n)E3 := LB;.

Forl < [* we can useAy;| <l and so||Ag| — I(I*/n)| < max{l({*/n),l(1 —
I*/n)} < (1 —1*/n) for largen. Using (A.2) and the fact that/(l/n)® is
increasing in, we find an upper bound

max  V,(I) < (1=1"/n)(1 —¢e)l*s

E1+E5(0,1"]+ (I /n)Es =: UB;.
0<I<(1—e)l* ((1—6)l*/n)a + B+ E5(0, 7]+ (% /n) E3 1

So we have that

P(UB; > LBy) < P(2E1 + E»(0,0*] + E3 > A1), (A.6)
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where

(1 =10"/n)l*61(e)s
(*/n)* ’

Similarly we look for upper and lower bounds YBnd LB;. First,

(1 —=10%/n)l*s
SRS A4
g Voll) 2 =g

A= 51(5) =1- (1 - 8)170‘.

E1 — E3 = L82

To find an upper bound we analyze two cases. In the case Whgte-1l* /n > 0,

we usdg Ay | < I*toobtain||Ag|—11*/n| < 1*(1—1/n). When|Ay|—11*/n <0,

||Ag| — 1* /n| < 1I* /n. Then the upper bound is

(1—(1+e)l*/n)l*
(1 +e)ix/n)e

(1= +e)l*/n)l*s
(L+e)l*/n)>

(we uselZy| < |Z1]/(I*/n)®). Similarly to (A.6), we can now write

V(1) <
(1+$§)§{l<n p( )< {

Vl*}S+E1 + Eq[l*,n) + Es

< + By + B[l n) + B3 := UBy

P(U82 > LBQ) < P(2E1 + Eg[l*,n) + 2F5 > )\2), (A?)

where, ifda(e) =1 — (1 +¢)7 ¢, then
(1=1*/n)l*s (1 1= +9l"/n > > (1 —=1*/n)l*63(e)s .

(*/n)e (I=01/n)(1+e)* (I*/n)*

Our next step is to obtain the convergence to zero of the probabilities on the
right hand sides of (A.6) and (A.7). For eithgr or Ay we will write A\, andc(¢)
denotes a constant (may be different in different parts of the prep@idding on
e and such that(e) — 0 ase — 0.

First we analyz&(E; > c\) for some constant > 0. We have

1
B < - ’ X/ —EX!
1< max s mex | ) (X{-EX])
€1
I/n |

<9 ! (Spo1— S|
1. —0— —
=2 02180 (1/n)e odesney R Ok

0<ien (I/n)

2| 2_(Xi-EX])
1

whereS; = X| — EX{ +---+ X/ — EX/, i = 1,...,n. Defining the integer
J, by 2/» < n < 272+ and using the same technique of dyadic splitting of the
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I's andk’s indexation ranges as in the proof of Proposition 13 igkaskas and
Suquet [7], we obtain for some constant 0

Jn+1 Jn+1
P(Ey > ¢)) §822J Lexp(—27D) <82/ exp(— dx
(A.8)
< 8/ exp(—z%b)dx = 8(1/a)(1/b)Y/°T(1/a, b).
1
Herel'(1/a, b) is the incomplete gamma function and
a=1-2a, b=nby(e)=-c(e)l*({*/n)"s>. (A.9)

We finally have thaP (E; > c\) — 0 provided that condition (13) holds.
Next we analyzd’y(0,1*] and E5[I*,n) (see (A.5)). For both cases

>
P <max /)" 0<k:< |Zkl| cA) Z Z < c)\>
for some constant > 0. Using Hoeffding’s inequality we estimate

I 0<k<n-—I
| Zki ) ( c(s)(l*)282(l/l*)2a> ‘2
P >ch ) <2exp| — < 2exp(—c(e)l™s”).

(e 24) <200 Aal ) < 2e(me@rs)
When0 < I < I*, there are at mof* indexesk for which Ay, is not empty and
S0 Zy, is a proper sum with non-empty summation index set. WHeq | < n,
we can find at mostn + 1*)/2 such indexe&. Thus

Z Z (|1 Zwt| =M (l/n)™) <21 Z 2 exp(—c(e)l*s?)

0<I<I* 0<k<n-—l o<i<i*
< 4exp(—c(e )1*32+2log( ), (A.10)

> Pl zena/n)r) < P05 S 2ep(—e(r's?)

1*<l<n 0<k<n-—I 1*<l<n
< exp (—c(zs)l*s2 +2log(n)). (A.11)

If condition (12) holds, (A.11) converges to zero; (A.10) approactero when
1*s%/log(I*) — oo. But the latter follows from the same condition (12).
For E5 and some constant> 0 we get

P(E3 > c)) = P(|Zl| > c)\(l*/n)a) < Qexp(—c(a)l*SZ), (A.12)
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which tends to zero whelts? — oo. This condition follows again from (12).
Consequently the convergence in probability is proved.
To provefk/l* — 1 almost surely we show that for al> 0

e —~
S P([IF/1r—1] >z €) < 0.
n=1

Using estimates (A.8), (A.10), (A.11) and (A.12) this reduces in proving the
convergence of the following three series

0o 1/a >0
Zl( 1 ) L(1/a,b(e))s D exp(=el's® + clog(n)),

n=1 a bn(E) n=1
Z exp(—al*sQ),
n=1

wherea andb, () are as in (A.9). The convergence of these series follows
straightforwardly by conditions (12) and (14).
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