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Abstract. In this paper, a nonlinear mathematical model is proposet an
analysed to study the effect of heavy rain on the topsoilienoand crop-yield.

It is shown that as the velocity of rain water along the saifate increases, the
fertile topsoil depth decreases and this depth may be veajl #mwoil is exposed
continuously to the stresses generated by heavy rain. A Innodenserve the
fertile topsoil is also proposed. By analyzing the cons@mamodel it is shown
that the economy would follow a sustainable path if suitafferts are adopted

in time.
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I ntroduction

Soil is a valuable natural resource. Probably the most important usela$ so
to grow world’s food and fibre. In developing countries like India, veherore
than 60% people are involved in agricultural related activities, soil erdsian
major cause of concern. The agents of soil erosion are water and edict,
contributing a significant amount of soil loss [1-3]. The loss of soil dusctavy
rain from farmland may be reflected in reduced crop production potentiedrlo
surface water quality and damaged drainage networks [4—10].

Some investigations have been conducted to study the causes and conse-

guences of topsoil erosion and the need of afforestation [1, 11kl2]a lit-
tle attention has been paid to study these problems using mathematical models
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[13-15]. Shukleet al.[14] considered a single-sector economic growth model
and they investigated the effect of environmental factors such as anicdmd
wind on the depth of fertile topsoil and crop yiled. Recently, Dubey [18ppsed

a mathematical model to study the effect of high speed wind on the depletion
of depth of fertile topsoil by considering a Cobb-Douglas productiorction
which depend upon depreciating capital stock, a labor force and dépghtite
topsoil. But in these investigations effect of heavy rain on the depletioartfef
topsoil depth has not been considered. Keeping these in view, in this, @ape
mathematical model is proposed and analysed to study the effect of feawnr
the depletion of fertile topsoil. A conservation model is also proposed taeedu
the erosion of soil.

2 Mathematical mode

Consider an agricultural field where we wish to model the erosion of ferplkeoid
depth caused by heavy rain. We consider the Cobb-Douglas prodtgtiction
for the crop yield which is governed by the combination of capital stock, tinarla
force, and environmentally degraded topsoil depth. In such a cagadtiection
process is governed by following factors [16, 17].

Production function. Let Y'(¢) is the total output or net crop-yield{(¢) the
capital stock L(t) the size of labor forceS(t) the depth of fertile topsoil at time
Then the crop yield is assumed to follow the Cobb-Douglas production fumctio

Y = KML*25%, Y o;=1, a; > 0. 1)

Capital stock. The dynamics of depreciating capital stock is governed by the
following differential equation [17]:

K _ oy b
dt

wherea denotes the fraction of the output used for capital growth taddnotes
the depreciating rate coefficient of the capital stock.

Labor force and population growth relation. The supply of labor force in the
production process depends on per capita capital stock [17, 18] asghigsnics
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is governed by

Pu+1
L= Zn P > 0. (2a)
Here P(t) is the size of population at time In the case of highly developed
economy, the rate of population growth may be constant. However, in teeo€tas
less developed economy where population control measures are yeffeetive,
the growth rate of population may be taken as exponential. But, in general,
population growth is constrained by various schemes and measureschirasu

case dynamics of population would follow the logistic growth:

‘2—]; - n0(1 — %)P. (2b)

In the above equatiomy is the intrinsic growth rate of population atdj is the
maximum sustainable population size under the given environmental, ectlogica
and economic constraints.

Depletion of fertile topsoil due to heavy rain. Let S(¢) be the depth of fertile
topsoil, andR(t) be the density of rain at timecausing the erosion of soil. It

is assumed that the growth rate of topsoil depth decreases as the demsity of
increases. The decrease is assumed to be proportional to the prégticist)

and R?(t)S(t), the former interaction being due to laminar flow and the later due
to turbulent flow caused by corresponding shearing stresses onittsidace
which are assumed to be proportionalR¢t) and R?(t), respectively [19]. The
growth rate of rain is caused by hydraulic pressure gradigtt, which may
decrease due to natural factors and due to interaction with soil suifae®. the
dynamics ofS and R may be governed by the following differential equations:

d
d_f =q—rS5 —1roRS — r3R?S,

dR
— = 0(t) k1R — kRS — ksR2S,

S(O) =5y > 0, R(O) = Ry > 0.
Heregq is the natural growth rate coefficient of fertile topsoil assumed to be cons-
tant, r; is the depletion rate coefficient of fertile topsoil depth due to natural
factors such as gravitational forces on the slopeandrs are its depletion rate
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coefficients due to stresses of heavy rain on the soil surface assurhedoto-
portional to R and R? for laminar and turbulent flow respectivelys(t) is the
hydraulic pressure gradient causing rain which is assumed to be eith&ianb

or periodic,k; is the natural depletion rate coefficient of rain caused by various
resistancesk, and ks are the depletion rate coefficients of rain velocity due to
interaction with soil.

Output capital ratio. The output capital ratio denoted byis defined as

Y
ﬁ - ?a
which yields
B_Y _K
Y K

From (1) and (2), we get respectively
AN SANY AN
Y—OélK OézL 04357

L

P K
= )= — p=—.
7= tl)5 —ngp
A little algebraic manipulation yields
ag

P
E =0 |:— aoaﬂ+a2n0(1+u) (1 — Fo) +a3<% -7 —T’QR—T3R2> +a0b:| ,

whereag = 1 — a1 + asp > 0.
Now we are in a position to write all the equations governing the model
system as follows.

dap

P
E:g[—aoaﬂJrazno(lJrﬂ)(l_FO)

+ a3 (% —7r — V“QR — 7’3R2> + aob] s

dr = n0<1 — £)P,

dt P, 3)

% =q—7r1S — RS — r3R%S,
d
d—f = ¢(t) — k1R — ko RS — k3R?S,

£(0) >0, P(0) >0, S(0) >0, R(0) > 0.
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3 Two-dimensional dynamical behavior

We consider two-dimensional subsystem of model (3), and show that ighao
closed directory in eithergf — P, 53— S, 3— R, P—S, P— R, S— Rplanes.
First of all, we consider the following two-dimensional subsystem:

% = q — T15*T2RS*T3R2S = hl(S’R)7

% = ¢(t) — k1R — kRS — ksR*S = hy(S, R).

Let H(S,R) = <. We note thati{ (S, R) is positive in the interior of the
S — R plane. Then we have,

_9 0 __1 1o
A(S,R) = 5o (hH)+ 0 (hoH) =~y S<R2+k55><0.

This shows thatA is non zero and does not change sign in the interior of the
positive quadrant o6 — R plane. Hence using the Dulac-Bendixon criteria, it
follows that there is no closed trajectory in the interior of the positive qurdifa

S — R plane. Thus, we can state the following theorem.

Theorem 1. There is no periodic solution in the interior of the positive quadrant
of theS — R plane.

Similary, one can prove the following theorem.

Theorem 2. There is no periodic solution in the interior of the positive quadrant
of the eitherof3 — P, 3— S, 6 — R, P— S, P — R planes.

4 Mathematical analysis

In this section, we analyse the complete model (3) in two cases, naftéely—
¢o > 0, ande(t) is periodic.

Casel. ¢(t) = ¢o > 0.
In this case, model (3) has four nonnegative equilibria, nanigj{), 0, S* R*),

E1(0,P*,S*, R*), E(Bt,0,5*, R*), E*(8*,P*,S* R*). Here, we have
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P* = Py, Bt = azno(Ltp)+ach g _ b andS*, R* are the positive solutions

apa

of the following algebraic equations:

q
= 4
1+ 1R+ T'3R2 ’ ( a)
¢o — k1R
= . 4b
koR + ksR2 (4b)

It can easily be checked that the above isoclines (4a) and (4b) intatsecnique
point (S*, R*). From the last equation of model (3), it is natural to assume that
¢o > k1R, otherwised R/dt would be negative.

By computing the variational matrices [20] corresponding to each equilib-
rium, we note the following results.

1. Eyis always unstable in thé — P plane. It can be checked thay is locally
stable in theS — R plane if the following inequality holds:
Ty _ ko
s ks ©)
2. E; is a saddle point with stable manifold locally in tRedirection and unstable
manifold locally in thes direction. If (5) holds, ther; has a stable manifold
locally in theS — R plane.

3. Es is also a saddle point with stable manifold locally in thelirection and
with unstable manifold locally in thé direction. If (5) holds, therf; has a
stable manifold locally in thé — R plane.

The following theorem characterizes the stability behaviaEdf The proof
of this theorem follows from the Routh-Hurwitz criteria and hence omitted.

Theorem 3. If inequality(5) holds, then&* is locally asymptotically stable in the
8 — P — S — R space.

It may be pointed out here that inequality (5) is just a sufficient condition fo
E* to be locally asymptotically stable. A stronger condition (in fact, a necessary
and sufficient condition) is stated in the following theorem.
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Theorem 4. The equilibriumE™* is locally asymptotically stable if and only if
A > 0, where
A= (r] + roR* + r3R*?) (k1 + koS* 4 2k3R*S™)
— (r98* + 2r3R*S*) (ko R* + k3 R*?)
= r1ky + r1kaS* + 2r1k3 R*S* + roki R* + r3k; R*
+ (rok3 — r3ke) R*2S*.

(6)

The above theorems imply that under certain parametric conditions, the cap-
ital output ratio and the fertile topsoil depth settle down at its equilibrium level.

Remark. It may be noted that Theore&is a particular case of Theorerh

To study the global stability behavior of the positive equilibriithwe need
the following lemma whose proof is easy and hence omitted.

Lemma 1. The set
Q={(8,P,S,R): 0< B < Bm, 0<P <Py, 0<85<q/r1,0<R< ¢o/ki}

is a region of attraction for all solutions initiating in the interior of the positive
orthant, wheres,,, = Hla [aQno(l + p) + apb + ‘;—i‘f] and S, is the minimum
of S'in Q.

Theorem 5. Let the following inequality holds:

[% (7“2 + 7"3(% + R*)) 4 @ado (k‘g + M)} 2

1 1

)
< 0203(7“1 4+ roR* 4 T‘gR*Z)(kl + kgs*)

Then the positive equilibriurh™ is globally asymptotically stable with respect to
all solutions initiating in the interior of the positive orthant, wheteand cs are
some positive constants chosen suitably as mentioned in the proof of thentheo

Proof. Consider the following positive definite function abdiit,

v= (8- p"—B*In(3/6%)) + c1 (P — P* — P*In(P/P"))
+ %@(s _ S5 4 %c;g(R _ R

41



B. Dubey

wherecs are some positive constants to be chosen suitably.
Now differentiatingl” with respect to time along the solutions of model (3),
a little algebraic manipulation yields:

dV *\2 Clno %\ 2
= — _=—%p-P
o apa(B — %) 2 ( )

— a(r1 + o R* + 13 R*?) (S — %)% — e3(ky + k2S*) (R — R*)?

+(3— )P - P - 2] (g geys - 57 - 2]

+ (8- 6")(R— R")| — asrg — azr3(R+ R")|
+ (S - S*)(R — R*) L — CQT’QS — 627’35(R + R*) — CgkgR — CgkgRQJ
— c3k3S*(R+ R*)(R — R*)2.

The above expression can further be written as sum of the quadratics

dV 1 . . L1 i}
= =—ga(f—p )2 4+ a12(8 — B*)(P — P*) — gaz(P —P )2
1 1
—zan (8- )2 + ai3(8 — B*)(S — §*) — Sa(S — 5*)2
1 1
- 5@11@ — B +a14(8— B*)(R— R*) — §a44(R — R*)?
1 1
— 5ass(S — 5*)? + a3y (S — S*)(R — R*) — S (R — R*)?
— c3k3S*(R+ R*)(R — R*)?,
where
. g . 201n0
a1l = 3610(1, a22 = 2} )

azg = ca(r1 +raR* +r3R*?),  as = c3(k1 + ka2S¥),

a2 = 2 y a13 = Ggx

~agno(l + p) _ oaq

a14 = —Qi3Try — ang(R + R*),

as3q = —CorS — 627’3S(R + R*) —c3ko R — C3]€3R2.
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Sufficient conditions fordV/dt to be negative definite are that the following
inequalities hold:

G%Q < a11a22, (8a)

aiy < arpass, (8b)

a3, < arjau, (8c)

a§4 < a33044. (8d)
By choosing

3ngad(1 + p)?
daaoPy

C

S 3 ( asq )2
2 2@@0(7‘1 + TQR* + T3R*2) SmS* ’

3 %0 ?
i R*
€ > 2&&0([61 + k‘QS*) (0437“2 + Oég’l“g(kl + >> ’

we note that conditions (8a), (8b) and (8c) are automatically satisfiethdfuf7)
implies (8d). This shows thdf is Liapunov’s function [21] with respect tB™*,
whose domain contains the region of attractigrproving the theorem. O

This shows that the capital output ratio, population, depth of fertile topsoil
and density of rain settle down at steady state under certain parametrit@uwnd
It is also noted that the depth of fertile topsoil decreases as the velocitjirof r
increases along the surface of soil.

Case2. ¢(1) = ¢o+eg1(t) ¢t +w) = (1)

In this case, the model system (3) can be written as

X = A(X)+eB(t), X(0)=Xo,

where
) B 3(0) 0
|z | | P P(0) B 0
X = T3 - g ) XO - S(O) ) B(t) - 0 )
T4 R R(O) ¢1(t)
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1 [—agaxy+agno(14p) (1-F ) +az (L —ri—raxs—r323) +aob]
A(X)= no(1 — %3)332 )
q — T1T3 — T2T3%4 — T3T3Ty
po — k124 — kowszy — kswsx]
Let M* be the variational matrix corresponding to the positive equilibrium
E*. Then under an analysis similar to [13,22], one can state the followingsesu

Theorem 6. If M* has no eigenvalue with zero real parts, then systgywith
P(t) = do + e (t), ¢1(t +w) = ¢1(t) has a periodic solution(3(¢, ), P(t,e),
S(t,e), R(t,e)), with periodw, such that(3(¢,0), P(t,0), 5(¢,0), R(t,0)) =
(6%, P*, S*, R").

Theorem 7. If M* has no eigenvalue with zero real parts, then for sufficiently
smalle the stability behavior of the periodic solution of the sys{@jris same as
that of £*.

The above two theorems show that if the hydraulic pressure gradientas pe
dic, then it causes a periodic behavior in the system.

5 Conservation mode

It is well known that water is about 800 times heavier than air, half to one third
the weight of rock and about equal in weight to loose the topsoil. Whenasflo

it can move loose substances. The energy of a moving object is equal tosgs ma
multiplied by its speed squared. As water droplets grow in size, both their mass
and speed increase. Thus, the destructive power of rain increesaatitally

as the rainstorm produces larger drops. The larger drops of raincareery
common. But when it occurs, its effect is profoundly destructive. Tthesheavy

rain is one of the important natural factors that affects the fertility of soilingak

it less or non productive and consequently decreasing the crop yietatdeér to
fight this kind of erosion, it is necessary to take appropriate controlumesisuch

as keeping the soil covered after harvesting (stubble on the field)yamrazing
pastures, spacing tree planting, providing shelter belts, etc. Fertilizatiomlsmay
play an important role here in making foliage denser and in producing mdre lea
litter [23—-29].

44



A Nonlinear Model for Topsoil Erosion Caused by Heavy Rain

Keeping these in view, in this section a mathematical model is proposed to
minimize the effect of soil erosion due to heavy rain. E&t) be the density of
effort applied to conserve the depth of fertile topsoil. It is assumedAlatis
proportional to the depleted level of topsoil and the increase in the depehticé
topsoil is proportional to the effort applied. Then the dynamics of the systn
be governed by the following system of differential equations:

4 P
d_f _5{—(10@64-042”0(1"‘“)(1_?0)

F
—|—O£3<%—’I“1—T’2R—T3R2—|-%> —|—CLOb:|,

dP P

E = n()(l — FO)P,

% =q—1r1S—1r9RS — r3R%S + rF,

% = ¢(t) — k1R — ko RS — k3 R?S,

dF

i 11 (So — S)H(So — ) — poF,

B3(0) >0, P(0) >0, S(0) >0, R(0) >0, F(0) > 0.

In model (9),r is the growth rate coefficient & due to the effortF', u, is
the growth rate coefficient of' and .y is its depreciation rate coefficieng is
the density of fertile topsoil depth that one wish to maintditiz) is the unit step

function.
It can be checked that model (9) has only one positive equilibrium, namely,

(9)

B = b/aa P = POv
. 5 5 (11/H0)(So = S), So > 8,
F= So—S)H(Sy— S) = _
(11/10) (So )JH (So ) {O, Sy < S,
andS, R are the positive solutions of the following equations:
qpo + TS0
S = , 10a
Ty 4 r1po + ropo R + 3o R? (102)
$o — k1R
= 10b
s koR + /{73R2 ( )
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It can easily be checked that the isoclines (10a) and (10b) intersactigitjue
point in the positive quadrant.

In the following theorem, local stability behavior of the positive equilibrium
E is studied.

Theorem 8. Let the following inequalities hold:
[mg (ng + 2T3R§) + TTI3(]€2R + k3R2)] 2
3 _ _ _ _
< §m2m3(7“1 +roR + ?”3R2)(k‘1 + koS + 2]€3RS), (11)

1 _
(a3r)? < §m4aa0,u05, (12)

wherem/s are positive constants chosen suitably as mentioned in the proof. Then
E is locally asymptotically stable.

Proof. In order to prove the above theorem, first we linearize the model system
(3) by taking the following transformations:

ﬁ:B+/Bl7 P:P+Pla S:§+Sl) R:R+Rla F:F+Fla
where3,, P1, S1, Ri, F; are small perturbations abofit Then we consider the
following positive definite function:

1 1 1 1 1
Wi = 5/8% + §m1P12 + §mQS% + §m3R% + §m4F12

Now differentiatingl; with respect to time t along the linear version of the model
system (3), and by choosing

noaj(1 + p)?
> 2
aao P
40(3
2 > = =T
3aap(r1 + ro R + r3R?)S?
2
aao(kl + kgg + 2/€3R5)
mor
my=—",
M1
one can see thall; /dt is negative definite under conditions (11) and (12). This

proves the theorem (details of the proof are similar to that of Theorem 5)[J

(q+TF)7

m

(azra + 20373 R)?,

ms >
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In order to study the global stability behavior of the positive equilibriim
we need the following lemma whose proof is easy and hence omitted.

Lemma 2. The set
O ={(B,P,S,RF):0<B<B,0<P<P,0<8S<5,,
0<R<¢o/k1, 0<F < p1So/po}

is a region of attraction for all solutions initiating in the interior of the positive
orthant, where

1 S
Be=— {O@Tto(l + ) 4 aob + £<Q+ o 0)}

apa Sm Ho
1 1S

SC e (q _|_ M>’
(] Ho

and.S,,, is the minimum of' in Q.

Theorem 9. Let the following inequalities hold if;:

[szc <r2 + 7“3(2—? - R)) - 3o (kz - k3@)] 2

k1 k1
3 _ _ _
< §m2m3(rl +roR + T’3R2)(k‘1 + ]{525), (13)
1 _
(a3r)? < 57714(1@();1057 (14)
where
o noa3(1+p)?
CL(ZoPo
das ( TM150>
> = == )
2 3aag(r1+roR+r3R2)SS,, ot 140
> 2 ( + <¢0 + R>>2
m —— [ asrg + agrs( — ,
37 Gaolkr + ko) \ 1312 T g
mor
my = —.
M1

Then the positive equilibriun is globally asymptotically stable with respect to
all solutions initiating in the interior of the positive orthant.
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The proof of this theorem is similar to that of Theorem 5, and hence omitted.
This theorem implies that if suitable efforts are adopted to minimize the erosion of
topsoil, then the depth of fertile topsoil can be maintained at an appropriate lev

6 Numerical ssimulation

In this section, computer simulation is presented to illustrate the results obtained
in previous sections. For this purpose, we choose the following valyzeraime-
ters:

q=1.8, r1 =1.5, 1o =2.01, r3=0.002, ¢ = 10,
kl = 87 k? = 17 k3 = 00017 no = 457 PO = 307 (15)
ag=2.5, a=35, b=14, «ay=05, a3=0.2, p=0.6.

With the above values of parameters, our computer simulation shows that the
positive equilibriumE* of model (3) exists, and it is given by

B* = 4.0, P* = 30.0, $* = 0.4642, R* = 1.1814. (16)

It is found that condition (6) is satisfied for the values of parametersigivels).
This shows that the positive equilibrium is locally asymptotically stable. It can
also be checked that condition (7) is satisfied for the set of parameters igi
(15), which shows thak’* is globally asymptotically stable.

To see the effect of conservation, we choose the following valuesrafe
ters in addition to the values given in (15):

o = 0.6, p1 = 1.0, r = 0.5, So = 5.0.

Then we note that the positive equilibriuiiof model (9) exists, and it is given
by

B =4.0, P=300, S=4.8215 R =0.9481, F = 0.2975. (17)

It can be verified that conditions (11) and (12) in Theorem 8 are satjsfikich
shows that is locally asymptotically stable. It can also be checked that condi-
tions (13) and (14) in Theorem 9 are satisfied showing the global stabiliach

ter of E.
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From (16) and (17), it may be noted that due to the effgrdepth of fertile
topsoil has increased where as the velocity of rain water along the swfdbe
soil has decreased.

To see the effect of various parameters$@and R, computer simulations
are performed using MATLAB. Figs. 1-4 correspond to model (3),Rigd. 5-9
correspond to model (9). Fig. 1 and Fig. 2 show the effect,ofindrs on S,
respectively. These figures show that depth of fertile topsoil deeses> and
rs increase, and tend to its steady state. From Fig. 3 and Fig. 4, it is notefl that
decreases als, andks increase. In Fig. 5 and Fig. 6, effects«ofandrs on S
in model system (9) are shown, and in Fig. 7 and Fig. 8, effecks aihdk; are
illustrated. Fig. 9 shows that the effect»obn S. It is seen that as the density of
effort ( either in terms of tree plantation or shelter belts or covering the &eil a
harvesting or fertilization) increases, the depth of fertile topsoil also &#3e®
However, an excess amount of effort will lead a decrease in the dépdntite
topsoil. It is also noted that in all caseésand R tend to their steady state levels.

0.9

0.8

0.7

nNos
05} r2=2.01
0.4}
ol & r2=4.01
k r2=5.01
\ 12=6.01

0.2
0

t
Fig. 1. Model (3): plot ofS versus for different values of, obtained using the

parametersqg=1.8, r1 =1.5, r3=0.002, ¢9=10, k1 =8, ko=1, k3=0.001,
ng=4.5, Py=30, ap=2.5, a=3.5, b=14, as=0.5, a3=0.2, u=0.6.
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Fig. 2. Model (3): plot ofS versust for different values ofr; obtained with
ro = 2.01, and other values of parameters are same as in Fig. 1.
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Fig. 3. Model (3): plot ofR versust for different values oft; obtained with
ro = 2.01, and other values of parameters are same as in Fig. 1.
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Fig. 4. Model (3): plot ofR versust for different values oft; obtained with
ro = 2.01, and other values of parameters are same as in Fig. 1.
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Fig. 5. Model (9): plot ofS versust for different values ofr, obtained using
the parametersy = 1.8, r; =
k3 = 0001, ng = 45, P() =

g = 0.2, o= 06, Mo = 06, M1

1.5, T3
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= 0.002, ¢o = 10, k1 = 8, ko = 1,
30, ap = 2.5, a = 3.5, b = 14, ap = 0.5,
=1.0, r = 0.5, Sy = 5.0.



B. Dubey

1.4

r3=0.005

r3=0.505 1

1.2

11r

r3=1.005

r3=1.505

r3=2.005
r3=2.505

oot

0.8

0.6

051

N

0.4
0 10 15 20 25

Fig. 6. Model (9): plot ofS versust for different values ofr3 obtained with
ro = 2.01, and other values of parameters are same as in Fig. 5.
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Fig. 7. Model (9): plot ofR versust for different values ofk; obtained with
ro = 2.01, and other values of parameters are same as in Fig. 5.
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Fig. 8. Model (9): plot ofR versust for different values oft; obtained with
ro = 2.01, and other values of parameters are same as in Fig. 5.

55

45F \ r=10.5 -
r=8.5

o r=6.5
ash r=4.5

) sp r=2.5 A

25r q

151 q

r=0.5
L ]

05 I I I I
0 5 10 15 20 25

Fig. 9. Model (9): plot ofS versust for different values ofr obtained with
ro = 2.01, and other values of parameters are same as in Fig. 5.
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7 Conclusions

In this paper, a mathematical model has been proposed to study the topsimiher
caused by heavy rain. The model has been analysed when the hygraskcire
gradient is constant or periodic.

When the hydraulic pressure gradient is constant, it has been showtheha
depth of fertile topsoil decreases due to natural factors and this dedneaomes
faster when the soil is exposed to heavy rain. When the hydraulic peegsadi-
ent is periodic with small amplitude, it has been found that a periodic behavior
occurs in the system and its stability behavior is same as that of the case of
constant pressure gradient.

A model to minimize the effect of rain on the erosion of topsoil has also been
proposed and analysed. By analyzing the model it has been noted thizalifie
efforts are applied to conserve the topsoil, an appropriate level of ferpksoil
depth and crop yield can be maintained.

Computer simulation has been carried out to see the effect of various para
meters on the depth of fertile topsoil and velocity of rail flowing along theeserf
of soil. In particular, it has been noted that an appropriate amountart &fduld
increase the depth of fertile topsoil, and if the density of effort increbegsnd
the threshold level, then it may cause a decrease in the depth of fertile topsoil.
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