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Abstract. In this paper, a nonlinear mathematical model is proposed and
analysed to study the effect of heavy rain on the topsoil erosion and crop-yield.
It is shown that as the velocity of rain water along the soil surface increases, the
fertile topsoil depth decreases and this depth may be very small if soil is exposed
continuously to the stresses generated by heavy rain. A model to conserve the
fertile topsoil is also proposed. By analyzing the conservation model it is shown
that the economy would follow a sustainable path if suitableefforts are adopted
in time.
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1 Introduction

Soil is a valuable natural resource. Probably the most important use of soil is

to grow world’s food and fibre. In developing countries like India, where more

than 60% people are involved in agricultural related activities, soil erosionis a

major cause of concern. The agents of soil erosion are water and wind,each

contributing a significant amount of soil loss [1–3]. The loss of soil due toheavy

rain from farmland may be reflected in reduced crop production potential, lower

surface water quality and damaged drainage networks [4–10].

Some investigations have been conducted to study the causes and conse-

quences of topsoil erosion and the need of afforestation [1, 11, 12],but a lit-

tle attention has been paid to study these problems using mathematical models

35



B. Dubey

[13–15]. Shuklaet al. [14] considered a single-sector economic growth model

and they investigated the effect of environmental factors such as acid rain and

wind on the depth of fertile topsoil and crop yiled. Recently, Dubey [13] proposed

a mathematical model to study the effect of high speed wind on the depletion

of depth of fertile topsoil by considering a Cobb-Douglas production function

which depend upon depreciating capital stock, a labor force and depth of fertile

topsoil. But in these investigations effect of heavy rain on the depletion of fertile

topsoil depth has not been considered. Keeping these in view, in this paper, a

mathematical model is proposed and analysed to study the effect of heavy rain on

the depletion of fertile topsoil. A conservation model is also proposed to reduce

the erosion of soil.

2 Mathematical model

Consider an agricultural field where we wish to model the erosion of fertile topsoil

depth caused by heavy rain. We consider the Cobb-Douglas productionfunction

for the crop yield which is governed by the combination of capital stock, the labor

force, and environmentally degraded topsoil depth. In such a case, theproduction

process is governed by following factors [16,17].

Production function. Let Y (t) is the total output or net crop-yield,K(t) the

capital stock,L(t) the size of labor force,S(t) the depth of fertile topsoil at timet.

Then the crop yield is assumed to follow the Cobb-Douglas production function,

Y = Kα1Lα2Sα3 ,
∑

αi = 1, αi > 0. (1)

Capital stock. The dynamics of depreciating capital stock is governed by the

following differential equation [17]:

dK

dt
= aY − bK,

wherea denotes the fraction of the output used for capital growth andb denotes

the depreciating rate coefficient of the capital stock.

Labor force and population growth relation. The supply of labor force in the

production process depends on per capita capital stock [17, 18] and itsdynamics
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is governed by

L =
Pµ+1

Kµ
, µ > 0. (2a)

HereP (t) is the size of population at timet. In the case of highly developed

economy, the rate of population growth may be constant. However, in the case of

less developed economy where population control measures are not very effective,

the growth rate of population may be taken as exponential. But, in general,

population growth is constrained by various schemes and measures. In such a

case dynamics of population would follow the logistic growth:

dP

dt
= n0

(

1 −
P

P0

)

P. (2b)

In the above equation,n0 is the intrinsic growth rate of population andP0 is the

maximum sustainable population size under the given environmental, ecological

and economic constraints.

Depletion of fertile topsoil due to heavy rain. Let S(t) be the depth of fertile

topsoil, andR(t) be the density of rain at timet causing the erosion of soil. It

is assumed that the growth rate of topsoil depth decreases as the density ofrain

increases. The decrease is assumed to be proportional to the productsR(t)S(t)

andR2(t)S(t), the former interaction being due to laminar flow and the later due

to turbulent flow caused by corresponding shearing stresses on the soil surface

which are assumed to be proportional toR(t) andR2(t), respectively [19]. The

growth rate of rain is caused by hydraulic pressure gradientφ(t), which may

decrease due to natural factors and due to interaction with soil surface.Then the

dynamics ofS andR may be governed by the following differential equations:

dS

dt
= q − r1S − r2RS − r3R

2S,

dR

dt
= φ(t) − k1R − k2RS − k3R

2S,

S(0) = S0 > 0, R(0) = R0 > 0.

Hereq is the natural growth rate coefficient of fertile topsoil assumed to be cons-

tant, r1 is the depletion rate coefficient of fertile topsoil depth due to natural

factors such as gravitational forces on the slope,r2 andr3 are its depletion rate
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coefficients due to stresses of heavy rain on the soil surface assumed tobe pro-

portional toR andR2 for laminar and turbulent flow respectively.φ(t) is the

hydraulic pressure gradient causing rain which is assumed to be either constant

or periodic,k1 is the natural depletion rate coefficient of rain caused by various

resistances,k2 andk3 are the depletion rate coefficients of rain velocity due to

interaction with soil.

Output capital ratio. The output capital ratio denoted byβ is defined as

β =
Y

K
,

which yields

β̇

β
=

Ẏ

Y
−

K̇

K
.

From (1) and (2), we get respectively

Ẏ

Y
= α1

K̇

K
+ α2

L̇

L
+ α3

Ṡ

S
,

L̇

L
= (µ + 1)

Ṗ

P
− µ

K̇

K
.

A little algebraic manipulation yields

dβ

dt
=β

[

−a0aβ +α2n0(1+µ)
(

1−
P

P0

)

+α3

( q

S
−r1−r2R−r3R

2
)

+a0b

]

,

wherea0 = 1 − α1 + α2µ > 0.

Now we are in a position to write all the equations governing the model

system as follows.

dβ

dt
= β

[

− a0aβ + α2n0(1 + µ)
(

1 −
P

P0

)

+ α3

( q

S
− r1 − r2R − r3R

2
)

+ a0b

]

,

dP

dt
= n0

(

1 −
P

P0

)

P,

dS

dt
= q − r1S − r2RS − r3R

2S,

dR

dt
= φ(t) − k1R − k2RS − k3R

2S,

β(0) > 0, P (0) > 0, S(0) > 0, R(0) > 0.

(3)
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3 Two-dimensional dynamical behavior

We consider two-dimensional subsystem of model (3), and show that there is no

closed directory in either ofβ −P, β −S, β −R, P −S, P −R, S −R planes.

First of all, we consider the following two-dimensional subsystem:

dS

dt
= q − r1S − r2RS − r3R

2S ≡ h1(S, R),

dR

dt
= φ(t) − k1R − k2RS − k3R

2S ≡ h2(S, R).

Let H(S, R) = 1
SR

. We note thatH(S, R) is positive in the interior of the

S − R plane. Then we have,

∆(S, R) =
∂

∂S
(h1H)+

∂

∂R
(h2H) = −

q

SR2
−

1

S

( φ

R2
+k3S

)

< 0.

This shows that∆ is non zero and does not change sign in the interior of the

positive quadrant ofS − R plane. Hence using the Dulac-Bendixon criteria, it

follows that there is no closed trajectory in the interior of the positive quadrant of

S − R plane. Thus, we can state the following theorem.

Theorem 1. There is no periodic solution in the interior of the positive quadrant

of theS − R plane.

Similary, one can prove the following theorem.

Theorem 2. There is no periodic solution in the interior of the positive quadrant

of the either ofβ − P, β − S, β − R, P − S, P − R planes.

4 Mathematical analysis

In this section, we analyse the complete model (3) in two cases, namely,φ(t) =

φ0 > 0, andφ(t) is periodic.

Case 1. φ(t) = φ0 > 0.

In this case, model (3) has four nonnegative equilibria, namely,E0(0, 0, S∗, R∗),

E1(0, P ∗, S∗, R∗), E2(β
∗

1 , 0, S∗, R∗), E∗(β∗, P ∗, S∗, R∗). Here, we have
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P ∗ = P0, β∗

1 = α2n0(1+µ)+a0b
a0a

, β∗ = b
a
, andS∗, R∗ are the positive solutions

of the following algebraic equations:

S =
q

r1 + r2R + r3R2
, (4a)

S =
φ0 − k1R

k2R + k3R2
. (4b)

It can easily be checked that the above isoclines (4a) and (4b) intersect at a unique

point (S∗, R∗). From the last equation of model (3), it is natural to assume that

φ0 > k1R, otherwisedR/dt would be negative.

By computing the variational matrices [20] corresponding to each equilib-

rium, we note the following results.

1. E0 is always unstable in theβ − P plane. It can be checked thatE0 is locally

stable in theS − R plane if the following inequality holds:

r2

r3
>

k2

k3
. (5)

2. E1 is a saddle point with stable manifold locally in theP direction and unstable

manifold locally in theβ direction. If (5) holds, thenE1 has a stable manifold

locally in theS − R plane.

3. E2 is also a saddle point with stable manifold locally in theβ direction and

with unstable manifold locally in theP direction. If (5) holds, thenE2 has a

stable manifold locally in theS − R plane.

The following theorem characterizes the stability behavior ofE∗. The proof

of this theorem follows from the Routh-Hurwitz criteria and hence omitted.

Theorem 3. If inequality(5) holds, thenE∗ is locally asymptotically stable in the

β − P − S − R space.

It may be pointed out here that inequality (5) is just a sufficient condition for

E∗ to be locally asymptotically stable. A stronger condition (in fact, a necessary

and sufficient condition) is stated in the following theorem.
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Theorem 4. The equilibriumE∗ is locally asymptotically stable if and only if

A > 0, where

A = (r1 + r2R
∗ + r3R

∗2)(k1 + k2S
∗ + 2k3R

∗S∗)

− (r2S
∗ + 2r3R

∗S∗)(k2R
∗ + k3R

∗2)

= r1k1 + r1k2S
∗ + 2r1k3R

∗S∗ + r2k1R
∗ + r3k1R

∗2

+ (r2k3 − r3k2)R
∗2S∗.

(6)

The above theorems imply that under certain parametric conditions, the cap-

ital output ratio and the fertile topsoil depth settle down at its equilibrium level.

Remark. It may be noted that Theorem3 is a particular case of Theorem4.

To study the global stability behavior of the positive equilibriumE∗ we need

the following lemma whose proof is easy and hence omitted.

Lemma 1. The set

Ω=
{

(β, P, S, R) : 0 < β ≤ βm, 0 < P ≤ P0, 0 < S ≤ q/r1, 0 < R ≤ φ0/k1

}

is a region of attraction for all solutions initiating in the interior of the positive

orthant, whereβm = 1
a0a

[

α2n0(1 + µ) + a0b + α3q
Sm

]

, andSm is the minimum

of S in Ω.

Theorem 5. Let the following inequality holds:

[

c2q

r1

(

r2 + r3

(φ0

k1
+ R∗

)

)

+
c3φ0

k1

(

k2 +
k3φ0

k1

)

]2

< c2c3(r1 + r2R
∗ + r3R

∗2)(k1 + k2S
∗).

(7)

Then the positive equilibriumE∗ is globally asymptotically stable with respect to

all solutions initiating in the interior of the positive orthant, wherec2 andc3 are

some positive constants chosen suitably as mentioned in the proof of the theorem.

Proof. Consider the following positive definite function aboutE∗,

v =
(

β − β∗
− β∗ ln(β/β∗)

)

+ c1

(

P − P ∗
− P ∗ ln(P/P ∗)

)

+
1

2
c2(S − S∗)2 +

1

2
c3(R − R∗)2,
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wherec′is are some positive constants to be chosen suitably.

Now differentiatingV with respect to timet along the solutions of model (3),

a little algebraic manipulation yields:

dV

dt
= − a0a(β − β∗)2 −

c1n0

P0
(P − P ∗)2

− c2(r1 + r2R
∗ + r3R

∗2)(S − S∗)2 − c3(k1 + k2S
∗)(R − R∗)2

+ (β − β∗)(P − P ∗)
[

−
α2n0(1 + µ)

P0

]

+ (β − β∗)(S − S∗)
[

−
α3q

SS∗

]

+ (β − β∗)(R − R∗)
⌊

− α3r2 − α3r3(R + R∗)
⌋

+ (S − S∗)(R − R∗)
⌊

− c2r2S − c2r3S(R + R∗) − c3k2R − c3k3R
2
⌋

− c3k3S
∗(R + R∗)(R − R∗)2.

The above expression can further be written as sum of the quadratics

dV

dt
= −

1

2
a11(β − β∗)2 + a12(β − β∗)(P − P ∗) −

1

2
a22(P − P ∗)2

−
1

2
a11(β − β∗)2 + a13(β − β∗)(S − S∗) −

1

2
a33(S − S∗)2

−
1

2
a11(β − β∗)2 + a14(β − β∗)(R − R∗) −

1

2
a44(R − R∗)2

−
1

2
a33(S − S∗)2 + a34(S − S∗)(R − R∗) −

1

2
a44(R − R∗)2

− c3k3S
∗(R + R∗)(R − R∗)2,

where

a11 =
2

3
a0a, a22 =

2c1n0

P0
,

a33 = c2(r1 + r2R
∗ + r3R

∗2), a44 = c3(k1 + k2S
∗),

a12 = −
α2n0(1 + µ)

P0
, a13 = −

α3q

SS∗
,

a14 = −α3r2 − α3r3(R + R∗),

a34 = −c2r2S − c2r3S(R + R∗) − c3k2R − c3k3R
2.
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Sufficient conditions fordV/dt to be negative definite are that the following

inequalities hold:

a2
12 < a11a22, (8a)

a2
13 < a11a33, (8b)

a2
14 < a11a44, (8c)

a2
34 < a33a44. (8d)

By choosing

c1 >
3n0α

2
2(1 + µ)2

4aa0P0
,

c2 >
3

2aa0(r1 + r2R∗ + r3R∗2)

( α3q

SmS∗

)2
,

c3 >
3

2aa0(k1 + k2S∗)

(

α3r2 + α3r3

(φ0

k1
+ R∗

)

)2

,

we note that conditions (8a), (8b) and (8c) are automatically satisfied. Further, (7)

implies (8d). This shows thatV is Liapunov’s function [21] with respect toE∗,

whose domain contains the region of attractionΩ, proving the theorem.

This shows that the capital output ratio, population, depth of fertile topsoil

and density of rain settle down at steady state under certain parametric conditions.

It is also noted that the depth of fertile topsoil decreases as the velocity of rain

increases along the surface of soil.

Case 2. φ(t) = φ0 + εφ1(t) φ1(t + w) = φ1(t).

In this case, the model system (3) can be written as

Ẋ = A(X) + εB(t), X(0) = X0,

where

X =









x1

x2

x3

x4









=









β
P
S
R









, X0 =









β(0)
P (0)
S(0)
R(0)









, B(t) =









0
0
0

φ1(t)









,
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A(X)=











x1

[

−a0ax1+α2n0(1+µ)
(

1− x2

P0

)

+α3

(

q
x3
−r1−r2x4−r3x

2
4

)

+a0b
]

n0(1 −
x2

P0
)x2

q − r1x3 − r2x3x4 − r3x3x
2
4

φ0 − k1x4 − k2x3x4 − k3x3x
2
4











.

Let M∗ be the variational matrix corresponding to the positive equilibrium

E∗. Then under an analysis similar to [13,22], one can state the following results.

Theorem 6. If M∗ has no eigenvalue with zero real parts, then system(3) with

φ(t) = φ0 + εφ1(t), φ1(t + ω) = φ1(t) has a periodic solution,
(

β(t, ε), P (t, ε),

S(t, ε), R(t, ε)
)

, with periodω, such that
(

β(t, 0), P (t, 0), S(t, 0), R(t, 0)
)

=

(β∗, P ∗, S∗, R∗).

Theorem 7. If M∗ has no eigenvalue with zero real parts, then for sufficiently

smallε the stability behavior of the periodic solution of the system(3) is same as

that ofE∗.

The above two theorems show that if the hydraulic pressure gradient is perio-

dic, then it causes a periodic behavior in the system.

5 Conservation model

It is well known that water is about 800 times heavier than air, half to one third

the weight of rock and about equal in weight to loose the topsoil. When it flows,

it can move loose substances. The energy of a moving object is equal to its mass

multiplied by its speed squared. As water droplets grow in size, both their mass

and speed increase. Thus, the destructive power of rain increases dramatically

as the rainstorm produces larger drops. The larger drops of rain arenot very

common. But when it occurs, its effect is profoundly destructive. Thus, the heavy

rain is one of the important natural factors that affects the fertility of soil making

it less or non productive and consequently decreasing the crop yield. In order to

fight this kind of erosion, it is necessary to take appropriate control measures such

as keeping the soil covered after harvesting (stubble on the field), not overgrazing

pastures, spacing tree planting, providing shelter belts, etc. Fertilization mayalso

play an important role here in making foliage denser and in producing more leaf

litter [23–29].
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Keeping these in view, in this section a mathematical model is proposed to

minimize the effect of soil erosion due to heavy rain. LetF (t) be the density of

effort applied to conserve the depth of fertile topsoil. It is assumed thatF (t) is

proportional to the depleted level of topsoil and the increase in the depth offertile

topsoil is proportional to the effort applied. Then the dynamics of the system can

be governed by the following system of differential equations:

dβ

dt
= β

[

− a0aβ + α2n0(1 + µ)
(

1 −
P

P0

)

+ α3

( q

S
− r1 − r2R − r3R

2 +
rF

S

)

+ a0b

]

,

dP

dt
= n0

(

1 −
P

P0

)

P,

dS

dt
= q − r1S − r2RS − r3R

2S + rF,

dR

dt
= φ(t) − k1R − k2RS − k3R

2S,

dF

dt
= µ1(S0 − S)H(S0 − S) − µ0F,

β(0) > 0, P (0) > 0, S(0) > 0, R(0) > 0, F (0) > 0.

(9)

In model (9),r is the growth rate coefficient ofS due to the effortF , µ1 is

the growth rate coefficient ofF andµ0 is its depreciation rate coefficient.S0 is

the density of fertile topsoil depth that one wish to maintain.H(t) is the unit step

function.

It can be checked that model (9) has only one positive equilibrium, namely,

Ē(β̄, P̄ , S̄, R̄, F̄ ), where

β̄ = b/a, P̄ = P0,

F̄ = (µ1/µ0)(S0 − S̄)H(S0 − S̄) =

{

(µ1/µ0)(S0 − S̄), S0 > S̄,

0, S0 ≤ S̄,

andS̄, R̄ are the positive solutions of the following equations:

S =
qµ0 + rµ1S0

rµ1 + r1µ0 + r2µ0R + r3µ0R2
, (10a)

S =
φ0 − k1R

k2R + k3R2
. (10b)
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It can easily be checked that the isoclines (10a) and (10b) intersect ata unique

point in the positive quadrant.

In the following theorem, local stability behavior of the positive equilibrium

Ē is studied.

Theorem 8. Let the following inequalities hold:

[

m2(r2S̄ + 2r3R̄S̄) + m3(k2R̄ + k3R̄
2)

]2

<
3

2
m2m3(r1 + r2R̄ + r3R̄

2)(k1 + k2S̄ + 2k3R̄S̄), (11)

(α3r)
2 <

1

2
m4aa0µ0S̄, (12)

wherem′

is are positive constants chosen suitably as mentioned in the proof. Then

Ē is locally asymptotically stable.

Proof. In order to prove the above theorem, first we linearize the model system

(3) by taking the following transformations:

β = β̄ + β1, P = P̄ + P1, S = S̄ + S1, R = R̄ + R1, F = F̄ + F1,

whereβ1, P1, S1, R1, F1 are small perturbations about̄E. Then we consider the

following positive definite function:

V1 =
1

2
β2

1 +
1

2
m1P

2
1 +

1

2
m2S

2
1 +

1

2
m3R

2
1 +

1

2
m4F

2
1 .

Now differentiatingV1 with respect to time t along the linear version of the model

system (3), and by choosing

m1 >
n0α

2
2(1 + µ)2

aa0P 2
0

,

m2 >
4α3

3aa0(r1 + r2R̄ + r3R̄2)S̄2
(q + rF̄ ),

m3 >
2

aa0(k1 + k2S̄ + 2k3R̄S̄)
(α3r2 + 2α3r3R̄)2,

m4 =
m2r

µ1
,

one can see thatdV1/dt is negative definite under conditions (11) and (12). This

proves the theorem (details of the proof are similar to that of Theorem 5).
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In order to study the global stability behavior of the positive equilibriumĒ,

we need the following lemma whose proof is easy and hence omitted.

Lemma 2. The set

Ω1 =
{

(β, P, S, R, F ) : 0 < β ≤ βc, 0 < P ≤ P0, 0 < S ≤ Sc,

0 < R ≤ φ0/k1, 0 < F ≤ µ1S0/µ0

}

is a region of attraction for all solutions initiating in the interior of the positive

orthant, where

βc =
1

a0a

[

α2n0(1 + µ) + a0b +
α3

Sm

(

q +
rµ1S0

µ0

)

]

,

Sc =
1

r1

(

q +
rµ1S0

µ0

)

,

andSm is the minimum ofS in Ω1.

Theorem 9. Let the following inequalities hold inΩ1:

[

m2Sc

(

r2 + r3

(φ0

k1
+ R̄

)

)

+
m3φ0

k1

(

k2 + k3
φ0

k1

)

]2

<
3

2
m2m3(r1 + r2R̄ + r3R̄

2)(k1 + k2S̄), (13)

(α3r)
2 <

1

2
m4aa0µ0S̄, (14)

where

m1 >
n0α

2
2(1+µ)2

aa0P0
,

m2 >
4α3

3aa0(r1+r2R̄+r3R̄2)S̄Sm

(

q+
rµ1S0

µ0

)

,

m3 >
2

aa0(k1 + k2S̄)

(

α3r2 + α3r3

(φ0

k1
+ R̄

)

)2

,

m4 =
m2r

µ1
.

Then the positive equilibrium̄E is globally asymptotically stable with respect to

all solutions initiating in the interior of the positive orthant.
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The proof of this theorem is similar to that of Theorem 5, and hence omitted.

This theorem implies that if suitable efforts are adopted to minimize the erosion of

topsoil, then the depth of fertile topsoil can be maintained at an appropriate level.

6 Numerical simulation

In this section, computer simulation is presented to illustrate the results obtained

in previous sections. For this purpose, we choose the following values ofparame-

ters:

q = 1.8, r1 = 1.5, r2 = 2.01, r3 = 0.002, φ0 = 10,

k1 = 8, k2 = 1, k3 = 0.001, n0 = 4.5, P0 = 30, (15)

a0 = 2.5, a = 3.5, b = 14, α2 = 0.5, α3 = 0.2, µ = 0.6.

With the above values of parameters, our computer simulation shows that the

positive equilibriumE∗ of model (3) exists, and it is given by

B∗ = 4.0, P ∗ = 30.0, S∗ = 0.4642, R∗ = 1.1814. (16)

It is found that condition (6) is satisfied for the values of parameters given in (15).

This shows that the positive equilibrium is locally asymptotically stable. It can

also be checked that condition (7) is satisfied for the set of parameters given in

(15), which shows thatE∗ is globally asymptotically stable.

To see the effect of conservation, we choose the following values of parame-

ters in addition to the values given in (15):

µ0 = 0.6, µ1 = 1.0, r = 0.5, S0 = 5.0.

Then we note that the positive equilibrium̄E of model (9) exists, and it is given

by

B̄ = 4.0, P̄ = 30.0, S̄ = 4.8215, R̄ = 0.9481, F̄ = 0.2975. (17)

It can be verified that conditions (11) and (12) in Theorem 8 are satisfied, which

shows thatĒ is locally asymptotically stable. It can also be checked that condi-

tions (13) and (14) in Theorem 9 are satisfied showing the global stability charac-

ter of Ē.

48



A Nonlinear Model for Topsoil Erosion Caused by Heavy Rain

From (16) and (17), it may be noted that due to the effortF , depth of fertile

topsoil has increased where as the velocity of rain water along the surface of the

soil has decreased.

To see the effect of various parameters onS andR, computer simulations

are performed using MATLAB. Figs. 1–4 correspond to model (3), andFigs. 5–9

correspond to model (9). Fig. 1 and Fig. 2 show the effect ofr2 andr3 on S,

respectively. These figures show that depth of fertile topsoil decreases asr2 and

r3 increase, and tend to its steady state. From Fig. 3 and Fig. 4, it is noted thatR

decreases ask2 andk3 increase. In Fig. 5 and Fig. 6, effects ofr2 andr3 on S

in model system (9) are shown, and in Fig. 7 and Fig. 8, effects ofk2 andk3 are

illustrated. Fig. 9 shows that the effect ofr on S. It is seen that as the density of

effort ( either in terms of tree plantation or shelter belts or covering the soil after

harvesting or fertilization) increases, the depth of fertile topsoil also increases.

However, an excess amount of effort will lead a decrease in the depth of fertile

topsoil. It is also noted that in all cases,S andR tend to their steady state levels.
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Fig. 1. Model (3): plot ofS versust for different values ofr2 obtained using the
parameters:q=1.8, r1 =1.5, r3 =0.002, φ0 =10, k1 =8, k2 =1, k3 =0.001,

n0 =4.5, P0 =30, a0 =2.5, a=3.5, b=14, α2 =0.5, α3 =0.2, µ=0.6.
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Fig. 2. Model (3): plot ofS versust for different values ofr3 obtained with
r2 = 2.01, and other values of parameters are same as in Fig. 1.
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Fig. 3. Model (3): plot ofR versust for different values ofk2 obtained with
r2 = 2.01, and other values of parameters are same as in Fig. 1.
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Fig. 4. Model (3): plot ofR versust for different values ofk3 obtained with
r2 = 2.01, and other values of parameters are same as in Fig. 1.
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Fig. 5. Model (9): plot ofS versust for different values ofr2 obtained using
the parameters:q = 1.8, r1 = 1.5, r3 = 0.002, φ0 = 10, k1 = 8, k2 = 1,
k3 = 0.001, n0 = 4.5, P0 = 30, a0 = 2.5, a = 3.5, b = 14, α2 = 0.5,

α3 = 0.2, µ = 0.6, µ0 = 0.6, µ1 = 1.0, r = 0.5, S0 = 5.0.
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Fig. 6. Model (9): plot ofS versust for different values ofr3 obtained with
r2 = 2.01, and other values of parameters are same as in Fig. 5.
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Fig. 7. Model (9): plot ofR versust for different values ofk2 obtained with
r2 = 2.01, and other values of parameters are same as in Fig. 5.
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Fig. 8. Model (9): plot ofR versust for different values ofk3 obtained with
r2 = 2.01, and other values of parameters are same as in Fig. 5.
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Fig. 9. Model (9): plot ofS versust for different values ofr obtained with
r2 = 2.01, and other values of parameters are same as in Fig. 5.
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7 Conclusions

In this paper, a mathematical model has been proposed to study the topsoil erosion

caused by heavy rain. The model has been analysed when the hydraulicpressure

gradient is constant or periodic.

When the hydraulic pressure gradient is constant, it has been shown that the

depth of fertile topsoil decreases due to natural factors and this decrease becomes

faster when the soil is exposed to heavy rain. When the hydraulic pressure gradi-

ent is periodic with small amplitude, it has been found that a periodic behavior

occurs in the system and its stability behavior is same as that of the case of

constant pressure gradient.

A model to minimize the effect of rain on the erosion of topsoil has also been

proposed and analysed. By analyzing the model it has been noted that if suitable

efforts are applied to conserve the topsoil, an appropriate level of fertiletopsoil

depth and crop yield can be maintained.

Computer simulation has been carried out to see the effect of various para-

meters on the depth of fertile topsoil and velocity of rail flowing along the surface

of soil. In particular, it has been noted that an appropriate amount of effort would

increase the depth of fertile topsoil, and if the density of effort increasesbeyond

the threshold level, then it may cause a decrease in the depth of fertile topsoil.
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