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Abstract. The load-carrying capacity of the member with imperfectiomder
axial compression is analysed in the present paper. They studivided

into two parts: (i) in the first one, the input parameters avaswered to
be random numbers (with distribution of probability fumects obtained from
experimental results and/or tolerance standard), whijeir(ithe other one,
the input parameters are considered to be fuzzy numberh (mé&mbership
functions). The load-carrying capacity was calculated &grgetrical nonlinear
solution of a beam by means of the finite element method. Incése (ii),

the membership function was determined by applying theyfisets, whereas
in the case (i), the distribution probability function ofali-carrying capacity
was determined. For (i) stochastic solution, the numesgalulation Monte

Carlo method was applied, whereas for (ii) fuzzy solutidre method of the
so-calledn cuts was applied. The design load-carrying capacity waschéhed

according to the EC3 and EN1990 standards. The results &fizlag, stochastic
and deterministic analyses are compared in the concludirtgopthe paper.

Keywords: fuzzy set, membership function, stochastic, steel, ingmtidn.
1 Introduction

In this paper, methods will be presented on behalf of which the indetermessten
can be modelled. The indeterminateness has (at least) two complementésy face

*The present paper was elaborated under the GACzR researchtpfefs: No. 103/03/0233
and within the Research Centre Project Reg. No. 1M6840770001.
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randomness [1] and fuzziness [2]. The fuzziness can be modellee ffiyzby set
theory, whereas the randomness, on behalf of the probability theory.aWiithe
exaggeration, it can be said that the fuzzy set theory answers thigoguéshat

set in as a matter of fact” whereas the probability theory answers the questio
whether “anything set in”.

In project practice, the design reliability is basically ensured by standéasl r
for design. The contemporary approach is based on the method of pelitialli-
ty factors of ultimate limit state, which is, in general, newly introduced by the Eu-
ropean unified documents (EUROCODES). The steel beam designdoadhg
capacity can be calculated deterministically according to the Eurocode 3&fand
[3]. At the calculation, the input characteristics are considered byactexistic
or nominal values. Surely, the deterministic load-carrying capacity calcnlatio
method cannot be considered to be fully convenient but another ajpi®aot
viable in the project practice. Alternatively, the design load-carryincaciap
can be determined by statistical calculation, applying the statistical charécteris
of input (material and geometrical) random quantities according to the EN199
Standard [4] procedure. The standard [4] stipulates, for the loagHog capacity
limit state, the determination of the design value as a quantity obtained from
several possible distribution types, see [4]. For the target reliability index3.8,
the design load-carrying capacity can be determined as 0.1% quantile.

In the preset paper, the load-carrying analysis is analysed on a simple ex
ample of a member under axial compression. The fuzzy analysis resuiebas
compared with the results of stochastic analysis elaborated by applyingrttee nu
rical simulation Monte Carlo method. Further on, the deterministic load-carrying
capacity values are given for the load-carrying capacity ultimate limit state ac-
cording to the standards [3] and [4].

2 Fuzzy sets

For the first time, the notion “fuzzy” was used by Prof. Lotfi Zadeh in 1832In
1965, L. Zadeh published the paper, legendary at present, “Fetzy[6]. The
fuzzy sets theory or the fuzzy logic is based on the idea that each elemant in
certain system can get one value within the intefvid 1. Mathematically, it can

be expressed as follows. Let Bea classical set which generates a space, and its

66



Fuzzy Sets Theory in Comparison with Stochastic Methods

elements let be marked The membership of the sdt which is the subset of the
spaceX, can be described by the membership functign which gets the values
{0;1}, as follows:

1, ifandonlyifz € A,
pna = { (1)

0, otherwise

If the membership function can get real values within the interval, thel set
is called fuzzy set, and expresses the grade of membershipoahe setd. The
more the value approximates to the valyghe more sac belongs to the sedl.

At the value zero, the element does not belong to the set, at the atueelongs

to that fully; in the other cases, it belongs to the set partly. It is admissible for
fuzzy element to belong to more sets, namely to each series with variousajrade
membership [2].

The grade of membership has nothing in common with the probability. If we
wanted to speak about the probability, we would have to study a phenomenon
whether it would or wouldn'’t take place. On behalf of the fuzzy sets,dvaw it
is possible to describe the vague notions in themselves.

3 Fuzzy number

Fuzzy numbers are the fuzzy sets, defined on the set of real nunibsusily,
they are supposed to have the special form presented in Fig. 1.

membership
1 function

Fuzzy number

a a, ap

Fig. 1. Membership function of the number “abaigt (triangle distribution).

A fuzzy number intuitively represents the value which is inaccurate, i.e.,
the value which can be characterized in words by the expressionst“agbu

Typical examples are “about 5”, “roughly 1205”, “approximatélgn”, etc. [2].
In practice, we met, quite entirely, the numbers which are fuzzy. When megsu
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the dimensions of a table by a common metre, the result may be,568.gm.
However, it means in reality “abous cm” because our measurement is rather
rough and we cannot be sure whether it might not be, g1 cm, or similar.
Let us realize that the measurement results are always inaccurate ndsoédly a
the case that we apply the most accurate measuring system which exists.

Let us imagine that, e.g., we will measure the heights of manufactured, hot-
rolled beam IPE140, see Fig. 2. When studying the probability, our interks

o~

%
x

Fig. 2. Geometry of IPE140.

be focused on the occurrence frequency of values within the inteeaalto the
nominal value ofl40 mm. On the contrary, the fuzzy set theory informs on to
what verity degree it is possible to assume that a hot-rolled IPE140 profile is
concerned. The larger the deviation from the nominal vali¢0-mm will be, the

less it will be true that the IPE140 profile is concerned. The probabilityringo

on the frequency of a phenomenon, whereas the fuzzy set theorynitets the
phenomenon.

The absolute majority of phenomena in the reality are determined just by
vague notions which are dealt with by means of a natural language. Itidred
logic, the use of exact notions is assumed which, however, are applinatdse
of an ideal idea only. The endeavour at reaching the incessantly bedieness
leads to disproportionate increase of definitions, and of the scope tiségan
practically simple things. The limit exactness means the capacity of describing
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each phenomenon in reality. So, the science gets into the situation of telling
always more on an always smaller reality part. Fuzzy words corresfootite
reality far better — maybe yes, maybe not, a little, moderately, etc.

4 Input quantitiesasrandom and fuzzy numbers

Member with lengthl, = 1.57 m was analysed. The corresponding non-dimen-
sional strut slenderness calculated by [3}is- 1.0. The loading of a steel strut is
demonstrated as an example, see Fig. 3 The load-carrying capacity is limited by
geometrical and material characteristics the uncertainty of which conditisns a
the uncertainty of the load-carrying capacity.

N N
— g R

Fig. 3. Member under axial compression.

For the first alternative, the input quantities are assumed to be random [1]
Buckling in the direction of the axis perpendicular to the web plane was taken
into account. The initial curvature of the member axis was introduced asatfre h
wave of the sine function with random amplituege The Gaussian distribution
function of the initiation curvature amplitudg was introduced. Its statistical
characteristics were calculated so that the frequency of the occaroénandom
realizations within the interval was 95%. For geometrical characteristians$c
sectionh (cross-section height}, (flange width),t; (web thickness)is (flange
thickness), Gaussian distribution is assumed with the mean value equalling the
nominal value. The standard deviatidiy has been derived, based on the as-
sumption that 95% of all the realizations (ri&'x) lie within tolerance limits
of the Standard [7]. For yield strength of the steel S235, Gaussian distrib
with statistical characteristics was considered according to experimes¢alroh
results [8]. For Young’'s modulug, the study was based on the data given in
literature [9, 10]. The influence of deviations of physical-mechanical niahte
characteristics (e.g., heterogeneousness), is included in the Youndiguawa-
riability.
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For the second alternative, the input characteristics are considerediunzy
numbers. The membership functions are assumed to be identical in form with

the probability functions, see Tab. 1. It means that the courses of mempbers
functions are nonlinear.

Table 1. Statistical characteristics of input random qitiast

No. Quan- Name of random Type of Dimen- Mean Standard
tity guantity distribution  sions value deviation

1. h Cross-section height Gauss mm 140 1.25

2. b Flange width Gauss mm 73 1.25

3. th Web thickness Gauss mm 4.7 0.35

4, to Flange thickness Gauss mm 6.9 0.75

5. €o Amplitude of curvature Lognormal mm 0.524 0.62

6. fy Yield strength Gauss MPa 297.3 16.8

7. E Young's modulus Gauss GPa 210 12.6

The maximum value of the membership function equals 1, see Figs. 4-10.

membership
function

cross-section
height [mm]

136 140 144

Fig. 4. Membership functions of heiglht

membership
function

cross-section
width [mm]

69 73 77

Fig. 5. Membership functions of heigiht

If the IPE140 cross-section height equad® mm, the membership function gets
the value 1 (i.e., the statement is absolutely true). For the membership function of
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the initial curvature amplitude in the form of lognormal distribution, the maximum
is not identical with mean value, see Fig. 8.

membership
function
1
web thickness [mm]
3.6 4.7 5.8

Fig. 6. Membership functions of heigit.

membership
function
1
flange thickness [mm]
4.5 6.9 9.3

Fig. 7. Membership functions of height.

membership
function

amplitude of initial beam
curvature [mm]

0 0.15 4

Fig. 8. Membership of amplitude of initial imperfectian.

membership
function
1
yield strength [MPa]
235 297.3 359.6

Fig. 9. Membership functions of yield strengf.
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membership
function

Young's modulus [GPa]

171 210 249

Fig. 10. Membership functions of Young's modulus

5 Nonlinear computational model for steel plane beam analysis

Member geometries may be modelled by means of the beam element with initial
curvature in the form of a parabola of the 3rd degree [11]. The membsr w
meshed into 10 beam elements. The steel member was solved by the nonli-
near Euler incremental method and combined with the Newton-Raphson method.
Geometrical and material nonlinearities were considered. The first cnitéoio

the load-carrying capacity is a loading at which plastification of the flange is
initiated. The second criterion for the load-carrying capacity is reptedesy a
loading corresponding to a decrease of the determinant to zero. The ulinete
parametric loading is defined as the lowest value of load-carrying capatity
phenomenon occurs at high yield point values with small geometrical member
imperfections. In each step of the simulation method, the load-carryingitapac
was determined to an accuracy of 0.1%. The load-carrying capacityvahmeed

for the basic element material only [11].

6 Conclusion

The results obtained by application of the fuzzy set theory and by pilapalis-
tribution were compared to clear up the difference between the fuzzy disbmb
and the probability distribution. As both methods applied are based on differe
assumptions, the comparison of results is difficult. However, the informadive
of each method is of a different type.

The full line in Fig. 11 represents the membership function obtained on be-
half of the so-calledv-cuts [2, 12] for ten layers. The histogram of the relative
frequency of random load-carrying capacity was obtained by the MGatto
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method for10000 simulation runs. The mean load-carrying capacity of the his-
togram is314.8 kN; the standard deviation i£).8 KN. The value of the member-
ship function for mean load-carrying capacityi93 (in the ascendant part of the
diagram), i.e., the verity of the statement that the strut load-carrying capscity
314.8 kN represents only 93%.

Membership Function Relative Frequency Histogram
1.0

0.1020

0.9 0.0918

0.8 0.0816

0.7 0.0714

EC1: 250 kN
0.6

0.0612
0.5 I 0.0510
EC3: 225 kN,

0.4 0.0408

0.3 0.0306

0.2 0.0204

0.1 0.0102

0.0 0.0000

Load-Carrying Capacity [kN]

Fig. 11.Comparison of the fuzzy, stochastic and deterministicyaisl

It has been confirmed by the Chi-square test that the Gauss distribution fu
tion can be assumed for the random load-carrying capacity. The desight#r-
rying capacity determined according to [4] from the Gaussian probabilityi-dis
bution for the reliability indexg = 3.8 (as 0.1% quantile) has the val24¢9.7 kN.

This value is by 11% higher than the val24.56 KN calculated according to the
procedures of the Standard for design of steel structures, EC3jg].compari-

son of design values according to the standards [3, 4] representumgy the
possibilities how to calibrate and verify the standard design procedures the

case may be, how to analyse the steel structure reliability by applying the data
experimentally found.

The stochastic and fuzzy set theories cannot be considered to be an om-
nipotent mean which will solve all the problems automatically. They have to be
understood as an appropriate instrument for modelling the indeterminaté&sess
the main objective of fuzzy sets is the modelling of the semantics of a natural
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language there exist numerous specialisations in which the fuzzy setsecan b
applied. In the field of the design of building structures, the papers418ah be
mentioned.
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