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Abstract. In this paper, a mathematical model is proposed and analgsed
study the dynamics of one-prey two-predators system witb-cependent pre-
dators growth rate. Criteria for local stability, instdtyiland global stability
of the nonnegative equilibria are obtained. The permanemxistence of the
three species is also discussed. Finally, computer sironkare performed to
investigate the dynamics of the system.
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1 Introduction

The co-existence and extinction of interacting species have been ofirgea-
tance and have been studied extensively in the past. The effect of tmpetiog
predators on a single limited prey has also been studied [1-4]. In particular
Hsu [3] proposed and analysed a model of two predators competingsiogke

prey. He showed that if the interference coefficient is small, then the winne
in purely exploitative system competes its rival successfully and if the exterf
ence coefficient is large enough, then the competition outcome depends on th
initial population of predator species. Freedman and Waltman [1] condidere
three level food webs — two competing predators feeding on a single prky a
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a single predator feeding on two competing prey species. They obtaiedacr

for the system to be persistent. Cushing [5] studied a competition model of two
predator species competing for a single renewable resource pragsspacer

the assumption that the system parameters are periodic in time. Gopalsamy [6]
also described a model of two consumer species and one resourdessmed
found some sufficient conditions for the solutions of the system to coaverg

its equilibrium. Mitraet al. [4] studied the permanent co-existence and global
stability of a model of a living resource supporting two competing predaidrsy
proved that the permanent co-existence of the system depends orettteottrof

the ratio between the coefficients of numerical responses of the tworoensu
Dubey [7] described a mathematical model of two species utilizing a common
resource and one of the species itself is an alternative resource @ahtéreDubey

and Das [8] proposed and analysed a mathematical model based on #meick/n

of Gause-type model where the two predators are competing with intecéefen

a limited prey.

It may be pointed out here that all the above studies are based on the tra-
ditional prey dependent models. Recently, it has been observed thamia s
situations, especially when predators have to search for food anddiechave
to share or compete for food, a more suitable predator-prey theorydsheu
based on the so-called ratio-dependent theory, in which the per capdatpr
growth rate should be function of the ratio of prey to predator abundaae
should be the so-called predator functional response [9-12]. Thisepb is
also supported by numerous field and laboratory experiments and atisesv
[11, 13, 14]. In prey-dependent models, predator has a verticdirisoand in
ratio-dependent models, predator has a slanted isocline. There adéfaisnces
in their prey isoclines. It has been shown that the ratio-dependent mawels
capable of producing richer and more reasonable or acceptable dgnflr8ic
15, 16]. Kuang and Beretta [17] investigated the global qualitative aisabfs
a ratio-dependent predator-prey system. They showed that if thevpositgiady
state of the so-called Michaelis-Menten ratio-dependent predatorsgstgm is
locally asymptotically stable, then the system has no nontrivial positive peri-
odic solutions. In this paper, some important questions on the global qualitativ
behavior of solutions of the model were left open. These open quesiwhs
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unigueness of limit cycles are resolved by Hsual. [18]. Berezovskayaet

al. [19] studied the stability properties and dynamic regimes of a predator-prey
model in which the functional response is a function of the ratio of prey and
predator abundances. They showed that there exists areas otenegjsareas in
which both the species become extinct, and the areas of conditional caegiste
depending on the initial values. Xiao and Ruan [20] also investigated tHe qua
tative behavior of a class of ratio-dependent predator-prey modithay found

that there exists numerous kinds of topological structures in a neightadirh

of the origin including the parabolic orbits, the elliptic orbits, the hyperbolic
orbits, and any combination of them. It may be pointed out here that a very
little attention has been paid to the qualitative analyses of food chains or multi-
species interaction models based on ratio-dependent approach. tliRe€esh

et al. [21] proposed and analysed a mathematical model of two competing prey
and one predator species where the prey species follow Lotka-Voitgnamics

and predator uptake functions are ratio-dependent. They deriveatitioms for

the existence of different boundary equilibria and discussed their gdtddaility.

They also obtained sufficient conditions for the permanence of the sykisnet

al. [18] studied the qualitative properties of a ratio dependent predaggrpodel.
They showed that the dynamics outcome of interactions depend upon parame
values and initial data. Hset al. [16] proposed a model to study the qualitative
properties of a ratio-dependent one-prey two-predators systenin Bus paper,

the proposed model is not well defined(t0,0). Also, in this investigation

the existence of interior equilibrium, its stability behavior and persistence of the
system are not discussed, which are biologically and ecologically veryrterio
Further, no interaction has been considered between the two predators.

Keeping the above in view, in this paper, a mathematical model of one prey
— two predators system in which the predator interference is of rationdepeis
proposed and analysed. Our proposed model is well defined at tlie @nig the
two predators are in the state of competition for the single prey. It may be dointe
out here that results on one prey — two predator system with prey depend
trophic function are well known [3, 4, 8]. Here we are interested to tiyate
changes in the qualitative behavior of the system when the trophic functan is
ratio-dependent.
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2 Mathematical model

Consider an ecosystem where we wish to model the interaction of two predato
competing for a single prey. Itis assumed that prey species grows lotjystind

the predator functional response is of ratio-dependentx sgtbe the density of
prey species ang;(t) (i = 1,2) be the density of predator species that compete
with each other for the prey. Then the dynamics of the system may be gaovern
by the following system of autonomous differential equations.

dx (1 x ) a1xy1 asmxyo

—_— =TT - = | — - )

dt K 1+biz+y1+mys 1+ box+y1 +mys

. _ —01y1 — ay1y2 + A12y1

dt L+ bz +y1 +my2’ 1)
dys A2aamays

22 = s — + )

dt 22 = By1yo 1+ box + y1 + mye

z(0)>0, u;(0)>0, i=12.
In model (1),r is the intrinsic growth rate of prey species aldis its carrying
capacity.d; is the mortality rate coefficient of predator spegjeandc;, S are their
interspecific interference coefficient,, a; are searching efficiency constants and
m is the relative predation rate gf with respect tqy;. A; is the food conversion
coefficient of the predator specigs a;/b; andagm /by are the maximum per-
capita capturing rates for andy, respectively.

First of all, we re-scale the variables in model (1). Let

T=xz/K, Y =y, Yp = myz, a1 = ai, ag = a
rT=m, a=aq, B:ﬁa S1:517 52:52;
51 = blK, 52 = bQK, Xl = )\1K, XQ = )\QKm.

Using the above variables and dropping bars from the resulting equatin,
obtain

dx a1Tyy asTys

— =rz(l—x) — - ,

dt 1+biz+yi+y2 1+box+y1 + 1o

i = —01y1 — ay1y2 + A7y

dt L+biz+y+y2 2
dys A2a22y2

892 o — + 7

dt 22 = Byye + o

z(0)>0, w;(0)>0, i=1,2.
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In the next section we present the equilibrium analysis of model (2).

3 Equilibrium analysis

It can be checked that system (2) has five nonnegative equilibria, Ipame
Ey(0,0,0), £1(1,0,0), Es(7,7,,0), Es(z,0,y2) andE*(x*, yi,ys). The equi-
libria Ey and E; obviously exist. We show the existence of other equilibria as
follows.

Existence ofF» (7, 7,,0).
HereZ andy, are the positive solutions of the following algebraic equations:

a1Y1
1—g)— ———2%  —
T( .T) 1+ blﬂj + U1 3
P [ LR ©
! 1+ blﬂ? + Y1 N
Solving (3), we get
T=Li(1+w),
=B+ /BI—4A,C; (4)
yl - 2A]_ 9
where
L1 = (51/()\10,1 — (51[)1),
Al = T‘Ll(l + blL1)7
B = 7“(1 + blLl)[ZLl — 1] +ai,
Cl = 7“(1 + blLl)[Ll — 1].
Thus, the equilibriunE; exists if
0<Li<1 %)
holds.
Existence oft3(, 0, y2).
As in the existence af)s, it can be seen that
T = Ll(]- + 272)a
~ —By + 4/ B% —4A5C5 (6)
Y2 = 24, )
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where

Ly = 62/ (Aaag — bad2),

A9 =1La(1+ baLs),

By = r(1+4 baLs)[2La — 1] + a2,
Cy =r(1+baLa)[La —1].

Thus, the equilibriunEs exists if
0<Ly<1 @)

holds.

Existence o™ (z*, v}, y3).
Herez*, y; andy; is the positive solution of the system of algebraic equations
given below.

a1y azy2
re(l —x) = , 8a
( ) 1+biz+y1+y2 1+bx+yi +yo (52)
)\10,13}
6 = 9 8b
1+ oy L+biz+y1 +y2 (80)
A2aoX
02 + By = 22 (8c)

L+box +y1+y2
Solving (8b) and (8c), we get

fy1,92) = (01 + ayz)(A2ag — bads — bafBy1)

9
— (62 + By1)(Ma1 — bid1 — biayz) = 0. ©

Using (8b) and (8c) in (8a), we obtain

1) 1 S 1
9(y1,92) Er)\l)\z( 1+oy2) (14 +9») (1_( 1+ay2)(1+y1+y2)

Ara1 —b161 —brays Arar—b1d1 —brays > (10)
— (01 + ay2) Aay1 — (02 + By1)A1y2 = 0.

From (9) we note the following: whesm, — 0, theny; — y1,, where

Ll(/\zag — b252) - 52

Yla = ,8(1 n bng) (11)
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We note that;, > 0 if
0< Ly < Ly. (12)
A
We also havéjl% = 4, where

A = afAaz + (62 + By1) (b1 — b2)],
B = ,8[)\1@1 + (62 + Otyz)(bg — bl)] .

Itis clear that‘;—f;; > 0 if either

i) A>0 and B>0, or

(i) A<0 and B <0, (13)
hold.

Remark. If b = bo, thenj—z’; > 0.

From (10) we note the following: whep, — 0, theny; — y1;, where

B
243

Yib
Az = rA\ Ao L3,

Bs = A\ Ao L1[2L1 — 1] + Xody,
Cs =rAiAeLi[L; —1].

ClearlyCs3 < 0 if inequality (5) is satisfied. We also have

dyr _ 99 /09
dys dya! Oyr’
We note thalfi% < 0if either
@ >0, or
0y
] -

<0
)

() 99 >0 and
Oy
(ii) @ <0 and
oy
hold.
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From the above analysis we note that the two isoclines (9) and (10) intersec
at a unique pointys, y7) if in addition to conditions (5), (12)—(14), the following
inequality holds:

Y1a < Y1b- (15)
Knowing the values ofj; andy3, the value ofc* can be calculated from

Arar — b1 — browys

It may be noted here that for* to be positive we must have
Aa > by ((51 + ay%‘) (17)

This completes the existence Bf.

4 Dynamical behaviour

The dynamical behaviour of equilibria can be studied by computing the var@tio
matrices corresponding to each equilibrium point. From these matrices egd us
the Routh-Hurwitz criteria, we note the following.

1. The equilibrium poini is a saddle point with locally stable manifold in the
y1 — y2 plane and with locally unstable manifold in thedirection.

2. (a) If inequalities (5) and (7) hold, thef, is a saddle point with locally
stable manifold in the: direction and with locally unstable manifold in
they; — yo plane.

(b) If M\ja; < 6;b; (i = 1,2), then equilibriaEs and F’3 do not exist and in
such a case the equilibrium poify is locally asymptotically stable in
thex — y; — o Space.

3. Let us denote

oo
L3:—52—ﬁ§1+%,
1+bQCE+y1 (18)
~ )\1@1%
Ly= -1 — + —.
T TR T T A
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Then E, is locally stable or unstable along the direction according as
L3 < 0orLs > 0andEFEjs is locally stable or unstable along the direction
accordingad.y < 0or Ly > 0.

We now state the local dynamical behavior of planer equiliitisand F’3
in the form of Theorem 1 and Theorem 2 respectively. The proofseasfettiwo
theorems follow from the Routh-Hurwitz criteria and hence omitted.

Theorem 1. (i) If Ay > by, thenEs is locally asymptotically stable in the — 1
plane.

@iy If Ay > by and Aqao < bods, thenFEy is locally asymptotically stable in
thex — y1 — yo» Space.

@iy If Ay > by and Ly > 0, then F, is a saddle point with locally stable
manifold in thexr —; plane and with locally unstable manifold in thedirection.

Theorem 2. (i) If A2 > bo, thenE5 is locally asymptotically stable in the — 3
plane.

(i) If Ao > by and A1ay < b161, thenEjs is locally asymptotically stable in
thex — y1 — yo Space.

(i) If 2 > by and Ly > 0, then F3 is a saddle point with locally stable
manifold in thex — - plane and with locally unstable manifold in thedirection.

Remark. () If A1a; < b101, then the equilibrium poinE, does not exist and in
such acasd., < 0.

(b) If A2ao < bada, then the equilibrium poinE’s does not exist and in such
acaseLs < 0.

In the next two theorems we show that planer equilibia and E3 are
globally asymptotically stable under certain parametric conditions.

Theorem 3. If A\; > b1, thenE; is globally asymptotically stable in the interior
of the positive quadrant of — y; plane.
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Proof. Let
1
H(z, 1) = —,
( yl) T
a1rY1
hi(z,y1) =rz(l —2) — ——/———,
1(w, 1) ( ) T —
Ata1zyr
ha(z, = -0y + ———.
2( Z/2) 1Y1 1+biz+u

Clearly, H(x,y1) > 0 in the interior of the positive quadrant af— y; plane.
Then we have

Az, y1) = 3(th) + i(th) __r _ (A1 —b1)ay

——— < 0.
Oz Oy o (I+bix+y1)?

Clearly A(z,y;) does not change sign and is not identically zero in the positive
guadrant ofc — y; plane. Therefore, by Bendixson-Dulac criterid,is globally
asymptotically stable in the interior of the positive quadrant ef y; plane. O

Similarly we can prove the following theorem.

Theorem 4. If Ay > by, thenE3 is globally asymptotically stable in the interior
of the positive quadrant of — - plane.

Theorems 3 and 4 show that in ratio-dependent models, food conversion
coefficients); (i = 1,2) play an important role in determining the dynamics
of planer equilibria.

In the next theorem we show that system (2) is uniformly persistent. By the
permanence or persistence of a system, we mean that all the speciessam pr
and non of them will go to extinction. The persistence of a system have been
studied by several researchers [1, 4, 22-24].

Theorem 5. In addition to assumptiongs) and (7), let the hypotheses of Theo-
rem3 and Theorend hold. If

L3 >0, Ls>0 (19)

hold, then systerR) is uniformly persistent.
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Proof. We prove this theorem by the method of average Liapunov function [23].
Let the average Liapunov function for system (2) be

o(X) = aPyt'yh?,

wherep, p; and p, are positive constants. Clearty(X) is a nonnegativeC'
function defined inRi. Then we have

a1 _ azy2 ]
l+bix+yr+y2 1+bex+uyi+y2
)\1(1156
1+blx+y1+yz]
)\gagx :|

:p[r(lx)

+p1[—51—ay2+

1+ box 4+ y1 + o

Since inequalities (5) and (7) hold, planer equilibfia and E5 exits. Further,
hypotheses of Theorem 3 and 4 imply that there are no periodic orbits in the
interior of positive quadrant af — y; plane andr — y, plane. Thus, to prove

the uniform persistence of the system, it is enough to showth&t) > 0 for all
equilibria X € bd R3, for a suitable choice of, p1,p» > 0 i.e., the following
conditions must be satisfied for the system to be uniformly persistent.

+p2[—62—ﬁy1+

Y(Eo) = pr — p161 — p2d2 > 0, (20a)
_ Aay A2as

1/1(E1)—p1[ 61+1+b1]+p2{ 62+1+b2]>o, (20b)

Y(E2) = p2Ls > 0, (20c)

Y(E3) = p1Lg > 0. (20d)

We note that by increasing to sufficiently large valuey)(E,) can be made
positive. Thus, inequality (20a) holds. Equations (5) and (7) imply th@ib)(2
holds. If inequalities in equation (19) hold, then (20c) and (20d) arefigatis
Hence the theorem follows. O

Theorem 5 shows that system (2) is permanent or uniformly persistent if
prey-predator subsystems are globally asymptotically stable and deathorate ¢
efficient §; of predator specieg; is less than a threshold value. This threshold
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value depends upon the equilibrium levels of prey and predators, fooetcsion
coefficients and capturing rates.

In the next theorem, we are able to find sufficient conditions under whech th
given system is not persistent.

Theorem 6. If \;a; < b;0; (i = 1,2), then systen2) is not persistent and both
predators will go to extinction.

Proof. Under the given hypothesis we note from (20b)—(20d) th@t;) < 0,
Y(E2) < 0 andy(Es) < 0 for some positive constangs andp,. As stated

in 2(b) of Section 4 of this article that under the given hypothesis of Témd,
equilibria E» and E'3 do not exist. Hence, distance to the boundary decreases
along orbits near the fixed poit;. Using Theorem 3 of Amann and Hofbauer
[25], it follows that there is a positive invariant set C R containing the fixed
point £;. Thus, the trajectory initiating itRi must converge td@’;. Hence, the
system is not permanent and both predator species will go to extinction. [J

In the following theorem we show that the positive equilibridtis locally
asymptotically stable. In this theorem we shall use the following notations:

B = (1+biz* +yi +y3)°, B = (L+ba* +yf +43)% (21a)
H* =r —a1b1y]/B] — a2bays/B5, (21b)
o = L+biz" +y3 - 1+ box* + ‘ (21¢)
ML+ 97 +y3) Ao(1+yi +y3)
Theorem 7. Let the following inequalities hold:

H* >0, (22a)
(agys/B3)? < eithian H*2* | B, (22b)
(a1y}/B})? < codgapH*z* /B, (22¢c)

(cro+ 23 + crhrara™ /B + codgaga’™/ B5)?
< crcoM Maaraza™? /(B BS). (22d)

Then the positive equilibriury™* is locally asymptotically stable.

Proof of the theorem is deferred to Appendix A.

318



Persistence and Extinction of One-Prey and Two-Predators System

In the following theorem we show that the positive equilibrium is globally
asymptotically stable. In order to prove this theorem we need the following lemma
which establishes a region of attraction for system (2). The proof of thigkeis
deferred to Appendix B.

Lemmal. The set
Q= {(x>y17y2): 0<z<10< $+y1/A1 +y2/)\2 < ya}a

is a region of attraction for all solutions initiating in the interior of the positive
orthant, where

Yo = (r+mn)n, 0<n<min{d,d}.

Theorem 8. Let the following inequalities hold in the regidi

. a1b1yy azbay;
G"=r— — 0, 23a
L+biz*+y; +ys  1+box* +yi +us (232
azy; ] 2 araz’Gr (23b)
L1+ box* +yf + 3 (1 + b1+ 2Mya) (1 + biz* + yf +y3)
alyT :|2 Cg)\gagw*G* (23C)
L1+ byo* + v + y3 (14 b + 2X2y) (1 + box* + y} + y3)’
[ cl)\lalx* CQ)\QCLQ{L‘* 2 N1
cia+coff + <, (23d
Y Y e R R B
where
N1 = cieparash Aoz*?, (23e)
No = (14 b1 + 2M1¥Ya) (1 + b2 + 2X2y4)

X (14 b1x™ +yi +y3) (1 + boz™ + yi + v3), (23f)

¢1 andcy are same as defined {@1c)
Then the positive equilibriun™* is globally asymptotically stable with re-
spect to all solutions initiating in the interior of the positive orth&ht

Proof of this theorem is deferred to Appendix C.

Theorems 7 and 8 show that under certain parametric conditions the grey an
the competing predator species settle down at its equilibrium level. Conditions
(22a) and (23a) show that for system (2) to be globally asymptotically stiigle
intrinsic growth rate of prey species must be grater than a threshold value.
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Remark. It may be noted here th&23a}{(23d)= (22a)(22d)respectively. This
ensures that global stability always implies local stability.

5 Numerical ssimulations

In this section we present numerical simulations of model system (2). For this
purpose, we consider the following values of parameters in model (2):

r=0.75, a1 = 4, by = 5.01, ay = 0.5, by = 4.05,

(24)
51 =04, a=0.05, \; = 1.05, 63 =2, = 1.5, and\, = 0.15.

For the above set of parameter values, it is found that the model sys}ead-(2
mits a stable limit cycle (slc) solution. Numerical simulation also shows that the
dynamical outcomes of the interactions are very sensitive to parametes asde
initial data. The model system (2) is solved using the ODE workbench gacka
(AIP, New York). All the simulation are performed in the screen drea < X <

2) x (=2 <Y < 2) for the initial conditionz(0) = 1, y1(0) = 0.2, y2(0) = 1.5.

The main objective in this section is to show numerically that all the three
species can coexist either in the form of oscillatory solution (slc) or in thra @
steady state solution (stable focus) for some range of parameters anddaeop
species can go to extinction in some other range of parametric values. dhe pr
speciest become extinct only at the discrete point for the paramiter 0.001.

The results of simulation experiments are presented in Table 1. From this table,
it is found that the mortality rate coefficient of predator spegieqi.e. d1)

is the only parameter which is responsible for the extinction of all the species
in different parameter regimes. The predaggrbecomes extinct in the range
[0.75,2.65] but at the same time other species rests on stable fggus (). The
predatory, becomes extinct in the range.07, 0.35] and other species rests on
limit cycle attractor in this range. The depletion rate coefficient of preyiepeitie

to predatow; (i.e.,a;) and the food conversion coefficient of this predatar) @re
responsible for the extinction of the predator spegieandys. The predator;
becomes extinct in the rangéd < a; < 2.2,0.001 < A\ < 0.55 and predator

12 doomed to extinction in the rangds3 < a1 < 10 and1.2 < \; < 4.05. The
other species rests either on limit cycle attractor or stable focus. The pgarame
b1, 62 and 3 are responsible for the extinction of the predajgonly but at the
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same time other species behaves in a oscillatory manner. All the species co-
exist either in the form of steady state or in the form of oscillatory solutions
for the parameters andbs in the rang€0.01, 10] and foras, ar, A2 in the range
[0.001, 10].

The analytical condition of Theorem 6 for the parametric values giverdin (2
is well matched by our numerical results given in Table 1. The co-existdribe
species in the form of positive steady state solution and in the form of ospjllato
solutions are shown by the time trajectory in Figs. 1, 2 and 3. It is found that in
no cases predatap rests on stable limit cycle solution. It either rests on stable
focus or goes to extinction.

Table 1. Results of simulation experiments of model syst&jmth

parameter values which were kept constants at limit cydlaaor are

same as in (24) with the initial values(0) = 1.0, y;(0) = 0.2,
yQ(O) =15

Parameter Varied Range in which

Parameter Dynamical Outcome
Varied x 1 Yo
r 0.01-0.96 Limit Cycle  Limit Cycle  Stable Focus
0.01 <r<10 0.97-10 Stable Focus Stable Focus Stable Focus
ay 0.1-2.2 Stable Focus Extinct Stable Focus
0.1 <a1<10 2.25-3.75 Stable Focus Stable Focus Stable Focus
3.8-4.25 Limit Cycle  Limit Cycle  Stable Focus
4.3-10 Limit Cycle  Limit Cycle  Extinct
by 0.01-3.35 Stable Focus Stable Focus Stable Focus
0.01 <b; <10 3.4-3.6 Limit Cycle  Limit Cycle  Stable Focus
3.65—4.2 Limit Cycle  Limit Cycle  Extinct
4.25-6.05 Limit Cycle  Limit Cycle  Stable Focus
6.1-10 Stable Focus Stable Focus Stable Focus
as 0.001-10 Limit Cycle  Limit Cycle  Stable Focus
0.001 <ap< 10
b 0.01-10 Limit Cycle  Limit Cycle  Stable Focus
0.01 << 10
01 0.001 Extinct Stable Focus Stable Focus
0.001 <6;<5 0.002-0.05 Limit Cycle  Limit Cycle Stable Focus
0.07-0.35 Limit Cycle  Limit Cycle  Extinct
0.4 Limit Cycle  Limit Cycle  Stable Focus
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Parameter Varied Range in which

Parameter Dynamical Outcome
Varied x Y1 Yo
01 0.45-0.7 Stable Focus Stable Focus Stable Focus
0.001 <61 <5 0.75-2.65 Stable Focus Extinct Stable Focus
2.7-5 Stable Focus Stable Focus Extinct
e 0.001-5 Limit Cycle  Limit Cycle  Stable Focus
0001 <a<h
A 0.001-0.55 Stable Focus Extinct Stable Focus
0.001 <A1 <5 0.6—0.95 Stable Focus Stable Focus Stable Focus
1-1.15 Limit Cycle  Limit Cycle  Stable Focus
1.2-3.5 Limit Cycle  Limit Cycle  Extinct
3.55—4.05 Stable Focus Stable Focus Extinct
4.1-5 Stable Focus Stable Focus Stable Focus
P 0.01-1.65 Limit Cycle  Limit Cycle  Extinct
0.01 <5< 5 1.7-5 Limit Cycle Limit Cycle Stable Focus
I} 0.01-0.55 Limit Cycle  Limit Cycle  Extinct
0.01<p<5 0.6-5 Limit Cycle  Limit Cycle  Stable Focus
Ao 0.001-5 Limit Cycle  Limit Cycle  Stable Focus
0.001 <X<5
2 X9,
N\
-
0 |‘ t 100

Fig. 1. This figure shows the solution of model system (2) when2, a; = 4,

bl =5, ag = 0.5, b2:4.05,51 = 0.5, a = 0.05, )\1 = 1.25, (52 =2, ﬁ = 1.5,

A2 = 0.15, 2(0) = 1, y1(0) = 0.2, y2(0) = 1.5. The solution tends to steady

state. The bottom curve near the time axis depicts the pe@athe middle
curve depicts the prey species and the top curve depicts¢dafor 1.
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2 X) yl

|

NALA A
AN

0 Y L
300

0

Fig. 2. This figure shows the,y; components of a periodic orbit of system

(2). Here initial values are(0) = 1, y1(0) = 0.1, y2(0) = 0.01 and model

parameters are= 0.9, a1 = 4,b; = 5, a9 = 0.5, b3 = 4,01 = 0.5, a = 0.25,

A1 = 2.25,05 = 2,8 = 1.5, Ay = 0.15. The predatot, becomes extinct at this

parameter space. The bottom curve depicts the prey spedietha top curve
depicts the predator 1.

Fig. 3. This figure shows the time series of the prey speciebenr = 0.75,
[ 4, bl = 5, ag — 0.5, b2 = 4.05, (51 = 0.4, o = 0.05, /\1 = 1.05, (52 = 2,
B =15 =0.15,2(0) = 1, 41(0) = 0.2, y2(0) = 1.5.

6 Conclusions

In this paper, a mathematical model of one prey-two predator system with ratio
dependent predators growth rates has been proposed and andg®imnical
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behavior of all feasible equilibria has been investigated. It has beewmstiat

the role of food conversion coefficients of predators in ratio-depano@dels

are crucial in determining the stability behavior of planer equilibria. Sufficien
conditions for the system to be uniformly persistent have been derielias|
been shown that if mortality rates of predators are less than a threshodd thedn

the system is uniformly persistent. However, if the mortality rate coefficients of
predators increase beyond a threshold vadue-(\;a;/b;), then both the predator
species will be extinct and the system will not be permanent.

It may be pointed out here that in Theorem 3.4 of Hsu [3] it has beenrshow
that the interior equilibrium of one prey-two predator system in prey-oidget
case is always unstable. In fact, it is an unstable saddle point with two dionahs
stable manifold through the interior equilibrium point. But in the case of ratio-
dependent growth rates, the dynamics of the interior equilibrium is chaenekd
we have found sufficient conditions under which all the three specidstand
the positive equilibrium is globally asymptotically stable.

Our numerical computations show that the dynamical outcomes of the inter-
acting species in the ratio-dependent model are very sensitive to paraalats
and initial data. An important conclusion is that the predatofaces high risk
of extinction depending upon the complexity of the system. The prey speuiks fi
safe habitats in the complex ecosystem. Due to competitive exclusion outcome,
this model is never expected to generate chaotic solution.

Appendix A: Proof of Theorem 7
We first linearize system (2) using the following transformations:
r=z"+X, yi=yi+tY1, y2=y;+Ys (A1)

where X, Y7 andY, are small perturbations aboft*. Then the linear form of
model (2) is given by

X=-H2"X+

. [ayp*yé‘ _a* (14 bz + yé‘)] vi

B3 B (A2)
N az'y; asx* (1 + box™ + y7) v,
B} B} .
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- a g (L4y i +ys Marx*y; L Arta1ztyy
Vi = 10195 ( *1/1 y2)X— 1 1*y1Y1—[ay1+ 1 1*91}1/27
Bl Bl Bl (AZ)
, _ Asagys (147 +3) A2a23™y3 A2a2x"y;
Y= X—|fys + ——= |1 ———=2Y5
2 B Bys + B B;
We consider the following positive definite function,
1 C1 C9

U=_—X? \ & 2, A3

2x* + 2yt L+ 2y3 2 (A3)

DifferentiatingU with respect to time along the solutions of linear model (A2)

it can be seen thal/ is negative definite under conditions (22a)—(22d) (detail
computations can be carried out similar to the proof of Theorem 8). Hence,
Theorem 7 follows from Liapunov-LaSalle’s invariance principle [26].

Appendix B: Proof of Lemma 1

From first equation of model (2) we have

d
d—? <rz(l-ux),

and hencéimsup,_, . z(t) < 1.
DefineW (t) = x(t) + y1(£) /A1 + y2(t) A2. Then we have

dw _ n Y2
7 +nW = (r +n)x — (&1 ")Al (62 —m) "
o any2  Pyiye
A1 A9
<tr+m) -Gt -G -2
A1 Ao

< (r+mn), since n < min(d;d2).

By the theory of differential inequality [27], we have

rtn

0<W(t) <
B=—

(1—e ™)+ W(0)e ™.

Whent — oo, we haved) < W (t) < “7;”, proving the lemma.
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Appendix C: Proof of Theorem 8

Consider the following positive definite function abdtit
V= (z—a"—a"In(e/z")) + e (y1 — yi —yi In(yi/y7))
+c2(y2 — y5 — y5 In(y2/y3)).
DifferentiatingV” with respect to time along the solutions of model (2), we get

(C1)

V= (o =)L el —uD) o+ el — ) 2 (C2)

Using system of equations (2), we get after some algebraic manipulations as

. biyy boys
V= _ |:’I”—a1 1Y1 _a2 2y2:|(1‘—$*)2

My Mo
B k2 cl)\lalx* B k2 CQ)\QCLQI‘*
(y1 — 1) [7M1 ] (y2 —y3) [71\42 ]
a1(1+ brx* + vy,
o =) - )| - )
1
01)\1(11(1 -+ yI + y§) agyék
C3
+ A + i (C3)
. . as(1 + box™ + y7
o =) - )| - 2 )
2
+02A2a2(1+y1‘+y§) +alyf
M My

01/\1a1x* CQ)\QCLQLU*:|
)

+(y1—yi‘)(yQ—yS)[—cm—@ﬂ— TV

where

Mi=0+biz+y1+y2) (1 +biz™ +y] +v5),
My = (1 4+ box +y1 + y2)(1 + baz™ + y7 + 5).

The above equation can further be written as sum of the quadratics

. 1 * * * 1 *
V=— §a11($ - )2 + arp(z — ") (y1 — i) — za(y1 — y1)2

2
1 1
— ez - )+ arz(r — %) (y2 — y3) — a33(y2 = y3)?  (C4)

1 . 1
= S - Y1)+ ass(y1 — yi) (v2 — v3) — 5a33(y2 — y3)?,
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where
B arbiyy  agboy;
ai; =nr— - )
My My
cl)\lalx* CQ)\Q(IQSL'*
a2 = ——F -, A33 = ——F -
My Mo
o a1(1 + biz* +y§) 01)\1a1(1 —|—y’f —i—y;) a2y§
a2 = — + + 5
M, M,y M,
ax(T4ber* 4 yy) | c2dea(l 4y +u3) | a1yl
a3 = — + + ;
Mo My My
ﬁ 01)\10,11'* CQ)\QCLQ.%'*
a3 = —C1QX — €90 — — .
My Mo,

Sufficient conditions forV to be negative definite are that the following

inequalities hold:

a1 > 0, (C5)
a2y < ajjag, (C6)
a%3 < aijass, (C7)
435 < 92033 (C8)

We note that (23a} (C5), (23b)=- (C6), (23c)= (C7) and (23d}= (C8). Hence
V' is a Liapunov function with respect t6*, whose domain contains the region
of attraction(2, proving the theorem.
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