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1 Introduction

Let E be an elliptic curve over the field of rational numbers given by the Weier-

strass equation

y2 = x3 + ax + b,

wherea and b are rational integers. Suppose that the discriminant ofE ∆ =

−16(4a3 + 27b2) 6= 0. It is known that thenE is non-singular.

For each primep, denote byν(p) the number of solutions of the congruence

y2 ≡ x3 + ax + b(mod p),

and denoteλ(p) = p − ν(p). By the classical result of H. Hasse

∣∣λ(p)
∣∣ ≤ 2

√
p. (1)
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To study the numbersλ(p), H. Hasse and H. Weil introduced and studied theL-

function attached toE. Let s = σ + it be a complex variable. Then the later

L-function is defined by

LE(s) =
∏

p-∆

(
1 − λ(p)

ps
+

1

p2s−1

)−1 ∏

p|∆

(
1 − λ(p)

ps

)−1

,

in view of (1) the product being absolutely convergent forσ > 3
2 . By the Shimura-

Taniyama theorem proved in [1] the functionLE(s) is analytically continuable to

an entire function and satisfies the functional equation

(√
q

2π

)s

Γ(s)LE(s) = η

(√
q

2π

)2−s

Γ(2 − s)LE(2 − s),

whereq is a positive integer composed of prime factors of the discriminant∆,

η = ±1 is the root number, andΓ(s) denotes the Euler gamma-function.

In [2] the universality in the Voronin sense of the functionLE(s) has been

obtained. Denote by meas{A} the Lebesque measure of the setA, and let, for

T > 0,

νT (. . .) =
1

T
meas

{
τ ∈ [0, T ] : . . .

}
,

where in place of dots a conditinion satisfied byτ is to be written. LetC be the

complex plane, andD = {s ∈ C : 1 < σ < 3
2}.

Theorem A. Suppose thatE is a non-singular elliptic curve over the field of

rational numbers. LetK be a compact subset of the stripD with connected

complement, and letf(s) be a continuous non-vanishing onK function which

is analytic in the interior ofK. Then, for everyε > 0,

lim inf
T→∞

νT

(
sup
s∈K

∣∣LE(s + iτ) − f(s)
∣∣ < ε

)
> 0.

In [2] also the universality ofLk
E(s), k = 2, 3, . . ., and, under the analogue

of the Riemann hypothesis forLE(s), of L−k
E (s), k = 1, 2, . . ., was considered.

The aim of this paper is to obtain the joint universality forL-functions of

elliptic curves.
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Let n > 1 be an positive integer. Considern elliptic curvesE1, . . . , En given

by the Weierstrass equations

y2 = x3 + ajx + bj ,

with ∆j = −16(4a3
j + 27b2

j ) 6= 0, j = 1, . . . , n. Let, as above,

λj(p) = p − νj(p),

whereνj(p) is the number of solutions of the congruence

y2 ≡ x3 + ajx + bj(mod p), j = 1, . . . , n.

Define

LEj
(s) =

∏

p-∆j

(
1 − λj(p)

ps
+

1

p2s−1

)−1∏

p|∆j

(
1 − λj(p)

ps

)−1

, j = 1, . . . , n.

To state a joint universality theorem for the functionsLEj
(s) we need some

additional conditions. LetP be the set of all prime numbers and letPl, l =

1, . . . , r, r ≥ n, be sets of prime numbers such thatPl1

⋂
Pl2 = ∅ for l1 6= l2,

and

P =
r⋃

l=1

Pl.

Moreover, we suppose that, forx → ∞,

∑

p≤x
p∈Pl

1

p
= κl log log x + bl + ρl(x), (2)

whereκ1 + . . . + κr = 1, κl > 0, ρl(x) = O(log−θl x) with θl > 1, andbl is

some real number,l = 1, . . . , r. Denote

Bj(p) =
λj(p)√

p
,

and suppose thatBj(p) is constant forp ∈ Pl, i. e., forp ∈ Pl

B1(p) = Bl1,

. . . . . . . . . . . .

Bn(p) = Bln.
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Let

Brn =




B11 . . . B1n

. . . . . . . . .

Br1 . . . Brn


 .

Theorem 1. Suppose thatrank(Brn) = n. Let Kj be a compact subset of the

strip D with connected complement, and letfj(s) be a continuous non-vanishing

on Kj function which is analytic in the interior ofKj , j = 1, . . . , n. Then, for

everyε > 0,

lim inf
T→∞

νT

(
sup

l≤j≤n
sup
s∈Kj

∣∣LEj
(s + iτ) − fj(s)

∣∣ < ε
)

> 0.

Joint universality theorems for DirichletL-functions independently were pro-

ved by S.M. Voronin [3], S.M. Gonek [4] and B.Bagchi [5], [6]. For Dirichlet se-

ries with multiplicative coefficients they were obtained in [7]. The joint universa-

lity for Lerch zeta-functions, for Matsumoto zeta-functions, and for zeta-functions

attached to certain cusp forms were proved in [8], [9] and [10], respectively. Joint

universality theorems for twists of Dirichlet series with Dirichlet characterswere

investigated in [11] and [12]. Finally, theorems of a such type for some classes of

general Dirichlet series were obtained in [13] and [14]. A survey on universality is

given in [15] and [16]. A large part of the work [17] is also devoted to universality

of Dirichlet series.

2 A limit theorem

Let V > 0, and

DV =
{

s ∈ C : 1 < σ <
3

2
, |t| < V

}
.

In this section we state a joint limit theorem for functionsLE1
, . . . , LEn

on the

space of analytic onDV functions. Denote byH(G) the space of analytic on

the regionG functions equipped with the topology of uniform convergence on

compacta, and let

Hm(G) = H(G) × . . . × H(G)︸ ︷︷ ︸
m

, m ≥ 2.
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Moreover, byB(S) we denote the class of Borel sets of the spaceS. We will

consider the weak convergence of the probability measure

PT (A) = νT

((
LE1

(s + iτ), . . . , LEn
(s + iτ)

)
∈ A

)
, A ∈ B

(
Hn(DV )

)
,

asT → ∞.

Let γ = {s ∈ C : |s| = 1} be the unit circle on the complex plane, and

Ω =
∏

p

γp,

whereγp = γ for any primep. With the product topology and operation of point-

wise multiplication the setΩ is a compact topological Abelian group, therefore

the probability Haar measuremH on
(
Ω,B(Ω)

)
exists. This gives a probability

space
(
Ω,B(Ω), mH

)
. Denote byω(p) the projection ofω ∈ Ω to the coordinate

spaceγp, and define on the probability space
(
Ω,B(Ω), mH

)
theHn(DV )-valued

random elementL(s, ω) by

L(s, ω) =
(
LE1

(s, ω), . . . , LEn
(s, ω)

)
, (3)

where

LEj
(s, ω) =

∏

p-∆j

(
1 − λj(p)ω(p)

ps
+

ω2(p)

p2s−1

)−1
∏

p|∆j

(
1 − λj(p)ω(p)

ps

)−1
,

j = 1, . . . , n. Let PL be the distribution of the random elementL(s, ω), i. e.,

PL(A) = mH

(
ω ∈ Ω: L(s, ω) ∈ A

)
, A ∈ B

(
Hn(DV )

)
.

Lemma 1. The probability measurePT converges weakly toPL asT → ∞.

Proof. The functionLEj
(s), for σ > 3

2 , can be written in the form

LEj
(s) =

∏

p|∆j

(
1 − λj(p)

ps

)−1 ∏

p-∆j

(
1 − αj(p)

ps

)−1 (
1 − βj(p)

ps

)−1

,

where

αj(p) + βj(p) = λj(p),
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and by (2)

|αj(p)| ≤ 2
√

p, |βj(p)| ≤ 2
√

p j = 1, . . . , n.

Therefore,LEj
(s) is the Matsumoto zeta-function withα = 0 andβ = 1

2 , for

definitions, see [18] and [19]. Since by the Shimura-Taniyama theoremLEj
(s)

coincides withL-function attached to a newform of level 2, we have that, for

σ > 1, the estimates

LEj
(σ + it) = O

(
|t|αj

)
, |t| ≥ t0, αj > 0,

and

T∫

0

∣∣LEj
(σ + it)

∣∣2 d t = O(T ), T → ∞,

are satisfied. Therefore, by Theorem 2 of [9] we have that the probability measure

νT

((
LE1

(s + iτ), . . . , LEn
(s + iτ)

)
∈ A

)
, A ∈ B

(
Hn(D)

)
,

weakly converges to the distribution of theHn(D)-valued random element de-

fined by (3) asT → ∞. The functionh : Hn(D) → Hn(DV ) defined by the

coordinatewise restriction is continuous, therefore by Theorem 5.1 of [20] hence

we obtain the lemma.

3 A denseness lemma

To prove Theorem 1 we need the support of the measurePL in Lemma 1. For this

we will consider the random elementL(s, ω) and its support.

Let ap ∈ γ. Forj = 1, . . . , n, we define

fjp(s, ap) =





− log
(
1 − λj(p)ap

ps
+

a2
p

p2s−1

)
, if p - ∆j ,

− log
(
1 − λj(p)ap

ps

)
, if p|∆j ,

and

f
p
(s, ap) =

(
f1p(s, ap), . . . , fnp(s, ap)

)
.
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Lemma 2. Suppose thatrank(Brn) = n. Then the set of all convergent series∑
p

f(s, ap) is dense inHn(DV ).

For the proof of the lemma we will use the following statements.

Lemma 3. Letµ be a complex Borel measure on
(
C,B(C)

)
with compact support

contained in{s ∈ C : σ > σ0}, and let

f(z) =

∫

C

e sz
dµ(s), z ∈ C.

If f(z) 6≡ 0, then lim sup
x→∞

log
∣∣f(x)

∣∣
x

> σ0.

The lemma is Lemma 5.2.2 of [5]. Its proof is also given [21], Lemma 6.4.10.

Lemma 4. Letf(s) be a function of exponential type such that

lim sup
x→∞

log |f(x)|
x

> −1.

Then, forl = 1, . . . , r,
∑

p∈Pl

∣∣f(log p)
∣∣ = ∞.

The proof is based on the property (2) of the setsPl as well as on the following

lemma.

Lemma 5. Let f(s) be an entire function of exponential type, and let{λm} be a

sequence of complex numbers. Letα, β andδ be positive real numbers such that

(i) lim sup
x→∞

log |f(±ix)|
x

≤ α;

(ii) |λm − λn| ≥ δ|m − n|;

(iii) lim
m→∞

λm

m
= β;

(iv) αβ < π.

Then lim sup
m→∞

log |f(λm)|
|λm| = lim sup

r→∞

log |f(r)|
r

.
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The lemma is a special version of the Bernstein theorem. The proof is given

in [21].

Proof of Lemma4. Sincef(s) is a function of exponential type, there exists an

α > 0 such that

lim sup
x→∞

log
∣∣f(±ix)

∣∣
x

≤ α.

We fix a postitive numberβ such thatαβ < π. Suppose, on the contrary, that for

somel, 1 ≤ l ≤ r, the series
∑

p∈Pl

∣∣f(log p)
∣∣ (4)

converges.

Define the subsetA of the setN of positive integers by

A =
{

m ∈ N : ∃r ∈
(
(m − 1

4
)β, (m +

1

4
)β

]
and

∣∣f(r)
∣∣ ≤ e−r

}
.

Then we have that
∑

p∈Pl

∣∣f(log p)
∣∣ ≥

∑

m/∈A

∑

m

′∣∣f(log p)
∣∣ ≥

∑

m/∈A

∑

m

′ 1

p
, (5)

where
∑′

m denotes a sum over prime numbersp ∈ Pl such that

(m − 1

4
)β < log p ≤ (m +

1

4
)β.

In view of (2) we find

∑

m

′ 1

p
=

∑

p∈Pl

p≤exp{(m+ 1

4
)β}

1

p
−

∑

p∈Pl

p≤exp{(m− 1

4
)β}

1

p

= κl log
m + 1

4

m − 1
4

+ O
(
(m − 1

4
)θl

)
=

κl

2m
+ O

(
1

mθl

)
.

This, the convergence of the series (4) and (5) yield

∑

m/∈A

(
κl

2m
+ O

( 1

mθl

))
=

∑

m/∈A

∑

m

′ 1

p
≤

∑

p∈Pl

∣∣f(log p)
∣∣ < ∞.
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Hence, clearly, sinceκl > 0,

∑

m/∈A

1

m
< ∞. (6)

Suppose thatA = {am ∈ N : a1 < a2 < . . .}. Then (6) shows that

lim
m→∞

am

m
= 1. (7)

Moreover, by the definition of the setA, there exists a sequence{λm} such that

(am − 1

4
)β < λm ≤ (am +

1

4
)β, (8)

and

∣∣f(λm)
∣∣ ≤ e−λm . (9)

Therefore, by (7) and (8)

lim
m→∞

λm

m
= β,

and

|λm − λn| ≥ β|am − an| −
1

2
β ≥ δ|m − n|

with someδ > 0, and in view of (9)

lim sup
m→∞

log
∣∣f(λm)

∣∣
|λm| ≤ −1. (10)

So, all hypotheses of Lemma 5 are satisfied, and we have by (10) that

lim sup
r→∞

log
∣∣f(r)

∣∣
r

≤ −1.

Howewer, this contradicts the hypothesis of the lemma. Hence, the series (4)must

be divergent, and the lemma is proved.

Lemma 6. Let {f
m
} =

{
(f1m, . . . , fnm)

}
be a sequence inHn(DV ) which

satisfies:

339
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(i) If µ1, . . . , µn are complex Borel measures on(C,B
(
C)

)
with compact sup-

ports contained inDV such that

∞∑

m=1

∣∣∣∣
n∑

j=1

∫

C

fjm d µj

∣∣∣∣ < ∞,

then
∫

C

sr
dµj(s) = 0 for j = 1, . . . , n and r = 0, 1, 2, . . . ;

(ii) The series
∞∑

m=1
f

m
converges inHn(DV );

(iii) For any compactsK1, . . . , Kn ⊂ DV ,

∞∑

m=1

n∑

j=1

sup
s∈Kj

∣∣fjm(s)
∣∣2 < ∞.

Then the set of all convergent series
∞∑

m=1
amf

m
with am ∈ γ is dense inHn(DV ).

The lemma is a special case of Lemma 5 from [10], where its proof is given.

Now we are ready to prove Lemma 2.

Proof of Lemma2. Let p0 be a fixed positive number. We define

f
p
(s) =

{
f

p
(s, 1), if p > p0,

0, if p ≤ p0.

First we observe that there exists a sequence{âp : âp ∈ γ} such that the series

∑

p

âpfp
(11)

converges inHn(DV ). Really, in view of (1)

fjp(s, 1) =
λj(p)

ps
+ rjp(s),
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whererjp(s) = O
(
p1−2σ

)
, j = 1, . . . , n. Hence we have that for compact

subsetsK1, . . . , Kn of DV ,

n∑

j=1

∑

p

sup
s∈Kj

∣∣rjp(s)
∣∣ < ∞.

In the proof thatLEj
(s, ω), j = 1, . . . , n, is anH(DV )-valued random element it

is proved that the series

∑

p

λj(p)ω(p)

ps
, j = 1, . . . , n,

converges uniformly on compact subsets ofDV for almost allω ∈ Ω, see, for

example, [19], where the Matsumoto zeta-functions were considered. Hence the

series

∑

p

(
λ1(p)ω(p)

ps
, . . . ,

λn(p)ω(p)

ps

)

converges inHn(DV ) for almost allω ∈ Ω. Consequently, there exists a sequence

{âp : âp ∈ γ} such that the series (11) converges inHn(DV ).

Now we will prove that the set all convergent series

∑

p

apfp
, ap ∈ γ, (12)

is dense inHn(DV ). To prove this, it suffices to show that the set of all convergent

series

∑

p

bpgp
, bp ∈ γ, (13)

wheregp = âpfp
, is dense inHn(DV ). For this we will apply Lemma 6 for the

sequence{g
p
}.

By the definition ofg
p

we have that the series
∑
p

g
p

converges inHn(DV ).

Moreover, in virtue of (1), for any compactsK1, . . . , Kn ⊂ DV ,

∑

p

n∑

j=1

sup
s∈Kj

|gjp(s)|2 < ∞.
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Therefore, the hypotheses ii) and iii) of Lemma 6 are satisfied, and it remainsto

verify the hypothesis i).

Let µ1, . . . , µn be complex Borel measures on(C,B(C)) with compact sup-

ports contained inDV such that

∑

p

∣∣∣∣
n∑

j=1

∫

C

bpgjp dµj

∣∣∣∣ < ∞. (14)

Let D0V =
{
s ∈ C : 1

2 < σ < 1, |t| < V
}

, and leth(s) = s − 1
2 . Define

µjh
−1(A) = µj(h

−1A), A ∈ B(C), j = 1, . . . , n. Then, clearly,µjh
−1 is a

complex measure on(C,B(C)) with compact support contained inD0V , j =

1, . . . , n. This and (14) show that, for everyl = 1, . . . , r,

∑

p∈Pl

∣∣∣∣
n∑

j=1

blj

∫

C

p−s
dµjh

−1(s)

∣∣∣∣ < ∞. (15)

We put

νl(s) =
n∑

j=1

bljµjh
−1(s).

Then (15) yields, for everyl = 1, . . . , r,
∑

p∈Pl

∣∣ρl(log p)
∣∣ < ∞,

where

ρl(z) =

∫

C

e−sz
d νl(s), z ∈ C.

Clearly, we have that, forr > 0,

∣∣ρl(r e iϕ)
∣∣ ≤ e V r

∫

C

∣∣ d νl(s)
∣∣.

Hence

lim sup
r→∞

log
∣∣ρl(r eiϕ)

∣∣
r

≤ V
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uniformly in ϕ, 0 < ϕ ≤ π. This shows thatρl(z), l = 1, . . . , r, is a function of

exponential type.

In view of Lemmas 3 and 4 we find thatρ(z) ≡ 0 for every l = 1, . . . , r.

Hence it follows by differentiation that
∫

C

sk
d νl(s) = 0 (16)

for all l = 1, . . . , r andk = 0, 1, 2, . . .. Now let

xj = xj(k) =

∫

C

sk
dµjh

−1(s).

Then the definition ofνj(s) and (16) give the following system of equations

n∑

j=1

bljxj = 0, l = 1, . . . , r.

Since rank(Brn) = n, the later system has only a solutionxj = 0, j = 1, . . . , n.

Thus we have that
∫

C

sk
dµjh

−1(s) = 0

for all j = 1, . . . , n andk = 0, 1, 2, . . .. From this it follows that
∫

C

sk
dµj(s) = 0

for all j = 1, . . . , n and k = 0, 1, 2, . . .. This shows that all hypotheses of

Lemma 6 hold, therefore the set of all convergent series (13) is dense inHn(DV ),

hence the same is true for the set of all convergent series (12).

Now let x(s) =
(
x1(s), . . . , xn(s)

)
be an arbitrary element ofHn(DV ),

K1, . . . , Kn be compact subsets ofDV , and letε be an arbitrary positive number.

We fix p0 such that

n∑

j=1

sup
s∈Kj

∑

p>p0

∞∑

k=2

∣∣λj(p)
∣∣k

kpkσ
<

ε

4
. (17)
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The denseness of all convergent series implies the existence of the sequence{ãm :

ãm ∈ γ} such that

sup
1≤j≤n

sup
s∈Kj

∣∣∣x(s) −
∑

p≤p0

f
p
(s) −

∑

p≥p0

ãpfp
(s)

∣∣∣ <
ε

2
. (18)

We take

ap =

{
1, if p ≤ p0,

ãp, if p > p0.

Then (17) and (18) yield

sup
1≤j≤n

sup
s∈Kj

∣∣∣x(s) −
∑

p

f
p
(s, ap)

∣∣∣

= sup
1≤j≤n

sup
s∈Kj

∣∣∣x(s) −
∑

p≤p0

f
p
(s, ap) −

∑

p>p0

f
p
(s, ap)

∣∣∣

≤ sup
1≤j≤n

sup
s∈Kj

∣∣∣x(s) −
∑

p≤p0

f
p
(s) −

∑

p≥p0

ãpfp
(s)

∣∣∣

+ sup
1≤j≤n

sup
s∈Kj

∣∣∣
∑

p>p0

ãpfp
(s) −

∑

p>p0

f
p
(s, ãp)

∣∣∣ < ε.

Sincex(s), K1, . . . , Kn andε are arbitrary, the lemma is proved.

4 The support ofPL

Let

S =
{
f ∈ H(DV ) : f(s) 6= 0 or f(s) ≡ 0

}
.

Lemma 7. The support of the measurePL is the setSn.

The proof of Lemma 7 relies on Lemma 2, the Hurwitz theorem and the

following statement. We denote bySX the support of the random elementX.

Lemma 8. Let {Xn} be a sequence of independentHn(DV )-valued random

elements such that the series
∞∑

m=1
Xm converges almost surely. Then the support
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of the sum of the later series is the closure of the set of allf ∈ Hn(DV ) which

may be written as a convergent series

f =
∞∑

m=1

f
m

, f
m

∈ SXm
.

The lemma is a special case of Lemma 4 from [10], where its proof can be

find.

Proof of Lemma7. Since
{
ω(p)

}
is a sequence of independent random variables,{

f
p

(
s, ω(p)

)}
is a sequence of independentHn(DV )-valued random elements

defined on the probability space
(
C,B(C), mH

)
. The support of eachω(p) is the

unit circleγ. Therefore, the support off
p

(
s, ω(p)

)
is the set

{
f ∈ H(DV ) : f(s) = f(s, a), a ∈ γ

}
.

Hence by Lemma 8 the support of theHn(DV )-valued random element

(
log LE1

(s, ω), . . . , log LEn
(s, ω)

)
(19)

is the closure of the set of all convergent series
∑
p

f
p
(s, ap). However, by Lem-

ma 2, the latter set is dense inHn(DV ). Hence the support of the random element

(19) isHn(DV ). The maph : Hn(DV ) → Hn(DV ) given by the formula

h
(
f1(s), . . . , fn(s)

)
=

(
e f1(s), . . . , e fn(s)

)
, f1, . . . , fn ∈ Hn(DV ),

is a continuous function which sends the element (19) toL(s, ω), andHn(DV ) to(
S \{0}

)n
. Therefore, the supportSL of the random elementL(s, ω) contains the

set
(
S \ {0}

)n
. However, the support of a random element is a closed set. In view

of the Hurwitz theorem, see, for example, [22], Section 3.4.5, the closure of S\{0}
is S. Thus,SL ⊇ Sn. On the other the factors of the product definingLEj

(s, ω),

j = 1, . . . , n, do not vanish fors ∈ DV . HenceLEj
(s, ω), j = 1, . . . , n, is

an almost surely convergent product of non-vanishing factors, andtherefore, the

Hurwitz theorem shows thatLEj
(s, ω) ∈ S, j = 1, . . . , s, almost surely. Hence

the relationSL ⊂ Sn holds, and we have thatSL = Sn.
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5 Proof of Theorem 1

Proof of Theorem 1 is based on Lemmas 1 and 7 as well as on the Mergelyan

theorem which is the following lemma.

Lemma 9. Let K ⊂ C be a compact subset with connected complement, and let

f(s) be a continuous onK function which is analytic in the interior ofK. Then

f(s) can be approximated uniformly onK by polynomials ins.

Proof of the lemma can be found in [23].

Proof of Theorem1. Clearly, there existsV > 0 such that the setsK1, . . . , Kn

are contained inDV . First we suppose that the functionsf1(s), . . . , fn(s) are

non-zero analytically continuable toDV . Let G =
{
(g1, . . . , gn) : (g1, . . . , gn) ∈

Hn(DV )
}

, and

sup
1≤j≤n

sup
s∈Kj

∣∣gj(s) − fj(s)
∣∣ < ε.

The setG is open. Therefore, the properties of the weak convergence of probabi-

lity measures [20] and Lemma 1 show that

lim inf
T→∞

νT

((
LE1

(s + iτ), . . . , LEn
(s + iτ)

)
∈ 0

)
≥ PL(G).

However, the properties of the support and Lemma 7 show thatPL(G) > 0.

Therefore, in this case

lim inf
T→∞

νT

(
sup

1≤j≤n
sup
s∈Kj

∣∣LEj
(s + iτ) − fj(s)

∣∣ < ε
)

> 0. (20)

Now we suppose that the functionsf1(s), . . . , fn(s) satisfy the hypotheses

of Theorem 1. By Lemma 9 there exist polynomialsp1(s), . . . , pn(s) which are

non-vanishing onK1, . . . , Kn, respectively, such that

sup
1≤j≤n

sup
s∈Kj

∣∣pj(s) − fj(s)
∣∣ <

ε

4
. (21)

Each polynomialpj(s), j = 1, . . . , n, has finitely many zeros. Therefore, there

exitsts a regionGj with connected complement suchKj ⊂ Gj andpj(s) 6= 0 for

s ∈ Gj , j = 1, . . . , n. Thus we can consider a continuouns branch oflog pj(s)
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on Gj , andlog pj(s) is analytic function in the interior ofGj , j = 1, . . . , n. By

Lemma 9 again there exist polynomialsg1(s), . . . , gn(s) such that

sup
1≤j≤n

sup
s∈Kj

∣∣pj(s) − e qj(s)
∣∣ <

ε

4
.

This and (21) show that

sup
1≤j≤n

sup
s∈Kj

∣∣fj(s) − e qj(s)
∣∣ <

ε

2
. (22)

However,e qj(s), j = 1, . . . , s. Therefore, in view of (20),

lim inf
T→∞

νT

(
sup

1≤j≤n
sup
s∈Kj

∣∣LEj
(s + iτ) − e qj(s)

∣∣ <
ε

2

)
> 0.

This together with (22) proves the theorem.
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8. Lauriňcikas A., Matsumoto K. “The joint universality and the functional
independence for Lerch zeta-functions”,Nagoya Math. J., 157, p. 211–227, 2000

347
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10. Lauriňcikas A., Matsumoto K. “The joint universality of zeta-functions attached
to certain cusp forms”,Fiz. matem. fak. moksl. sem. darbai,5, p. 58–75, Šiauliai
University, 2002

11. Šleževǐcieṅe R. “The joint universality for twists of Dirichlet series with
multiplicative coefficients”, In:Analytic and Probab. Methods in Number Theory,
Proc. of third Intern. Conf. in konow of J. Kubilius, Palanga2001,Dubickas A. et
al. (Eds.), TEV, Vilnius, p. 303–319, 2002
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