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Abstract. In present paper the properties of classes of introducedithoes
functions analytical in the half-plane are investigatekede classes constructed
by using special normalization of functions, automorphégitine half-plane and
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Major notational conventions, definitions and auxiliary statements

LetII is a half-planeRe z > 0, A, (II) — class of analytical idl functionsF'(z)
with condition F(")(z) # 0, Vz € II, A, (II) — class of analytical ifil functions
F(z) from A, (IT), which are normalized by conditions:

F)=F1)=...=F"Ya)y=0, FM™(@1)=n!.

It is obvious that for any fixedn > 2 every functionF(z) of A,(II) can be
represented in form

F(2)=(z= 1"+ apn(z = )" 4 0, (2),
k=2

whereV,, (z) — dependent oif’(z) analytical inIl function. Number

F(ntk—1) (1)

W = itk — 1)
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we call byk-th coefficient of functionF'(z). Let us introduce the operator

g =P
MF] = s (0 = X T e - 1),

k=0

which we call bynormalizing operator This operator transfers any function from
A, (I1) to a function of classt,, (IT). Forn = 0 we set thatVo[F] = F(z)/F(1).
Note thatN,[cF' + P] = N,[F], wherec # 0 and P, is a polynomial of the
degree no higher than— 1 and thatV,, [N, [F]] = N, [F].

Denote byA(D) class of analytical in domaif functions. Then-th order
divided difference of functio#'(z) € A(D) define (see [1, 2]) by formula

o F(g)ds
[F()20,0 2] wr/a—zo)...@—zw’

whereI is a simple closed contour, located In and covering all the points
z0,...,2n € D. In above formula among the points, ..., z, € D may occur
coincident. Denote by. a set of functions of shape = tz, wheret > 0. Let us
arbitrarily choosev € L and introduce omega-operatoroth order by formula

(z = 1)"[F(2);w(2),t,...,t] .
L pwr)

n!

This operator for any fixedr = ¢z is defined on clas4,, (IT) and transfers every
function of classA,,(II) to the function of classd, (II). Let us introduce the
operators

Py (n+1) P _
:u2,n[F} = (n fl)F(i)()Z>7 F(Z> € An(H)a
vnlF] = n & (:'(Z>, F(z) € A, (I)

Note, that if one fix some function df(z) € A, (II), then above operators
became a functions af € II. If we will fix z € II, then these operators convert
to functionals, defined on clagTsl(H). The below lemma is nearly clear.
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Lemma 1. The equations

pon [F(2)] = — v [F(2)], wm|F(z)] = / nj 1H2,n [F(z)]d=

holds true.

2 Some properties of operatof)”, w € L

n’?

In this paragraph we remind some properties of oper@jointroduced in paper
[3] and give some new properties of this operator.

Theorem 1. If F(z) € A(ll) andw = ¢z € L, then

where
n! gy Al
Np[F(w)] = F(”)('t)t (F(tz)—P(z;t)), P(zt) = kZ::O dl k'( )tk(z—l)k
Let

o0
Bpa(2) = (2= 1"+ D cpn(z— 1ML
k=2

where

Cnk = (n—i—+'—1)'(n+ Da((n+1)a—1)...((n+1)a— (k—2))

for k = 2,3,.... Note thatc, ,, = a. Function®,, ,(z) we call bymainone.

Theorem 2. The main function belongs to class, (I1) and is a fixed function of
operatorQ2?, i.e.

QY[ @0 = P4, VYwe L.

Let k-th coefficient of some functio’(z) € A, (II) is equal to numbeby,,
wherek > 2. If by, is thek-th coefficient of functionF'(z; t) = Q¥ [F(z)] for any
w € L, thenk-th coefficient of function'(z) we will call by invariant coefficient
of this function.
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Theorem 3. Let equation

k—2
n!
— ((n+1)a—m):bk
(n+k—1 22
with respect taw hask — 1 of pairwise different roots,...,ax_1. Then only

functions of form

k
F(z) = Z m®Pran(2), c+...+cg1=1

-1
m=1

has numbeb,, as theirsk-th invariant coefficient.

Set of transformations) = ¢tz € L is a group, if we define product of two
transformationsv; andws by formulaws = w; (ws).

Theorem 4. Letwy,...,w, € L and Fy, = QU [Fy], F3 = QW2 [Fy), Frp1 =
Q%}k [Fk} Thean+1 = Q;karl [Fﬂ, WherewkH = w1 (wg(. .. (wk) .. ))

Proof. It is enough to prove the theorem fbr= 2. Using properties of normali-
zing operator we get

F3(z) = Q2 [Fa(2)] = 0 [0 [Fa(2)] |
= Q7 [Ny [Fi (w1(2))]] = No [Ny [Py (w1 (w2(2)))]]
=N, [Fl (w1 (wg(z)))] =N, [Fl (wg(z))] = Qs [Fl(z)] O

Theorem 5. If I} € ﬁn(H) andF;, € Zn(l'[), whereF; # F5, then
Qy[F1] # Qp[F2], Vw e L.

Proof. Let, contrary to the statement of theorem, for some= ¢z € L the
identity Q% [Fy (2)] = QY [F»(z)] takes place. Using Theorem 1 we get identity
Fi(z) = p(t)Fa(2) + R(z;t), wherep(t) # 0 and R(z;t) is a polynomial of
the degree no higher than— 1. FunctionsF;(z) and F»(z) are normalized in
the half-plandl, sop(t) = 1 andR(z;t) = 0. ThereforeF;, = F,. Obtained
contradiction proves the theorem. O
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3 Definition of linearly invariant class

SetS of functionsF(z) of A, (IT) we will call by linearly invariant class of-th
order, if from belonging”'(z) € S follows Q¥ [F(z)] € S foranyw € L.
Let us give some examples of linearly invariant classes-tif order.

Example 1. A,(II) is a linear invariant class. In fact, operat@} transfers
function F'(z) from A,,(II) to function of the same class, (II), for anyw € L.
Note also that4,,(IT) contains any of linearly invariant classes.

Example 2. Let us fix in A, (IT) function F(z) and make up the class of functions
Wy (2) = QY[F(2)], wherew vary over all setL. Due to Theorem 4 (on chain),
such class must be linearly invariant one. We will call this classiaple li-
nearly invariant class and denote it ¥, (IT; F). FunctionF(z) we will call by
generator of simple class. For simple class we have the following

Property 1. If Fy(z) € R,(II; F), then F(z) € R,(II; F}) for anyw € L.
In other words, if functionF'(z) is the generator of simple class arfd (z) €

R, (II; F'), then functionf; (z) must be the generator of this simple class too.

Validity of this statement follows from construction of simple family together
with Theorem 4 (on chain). The following properties of simple family are near
clear.

Property 2. If pair of simple classes has a common function, then they are fully
coincident.

Property 3. Union of the simple classes is a linearly invariant class.

Theorem 6. Let functionF runs over whole set of functions from simple class

R, (IT; Fy). Then function = Q¥ [F| for any fixedw € L runs over whole set
of functions fronik,, (II; Fy) too.

Proof. Let w € L is arbitrarily fixed. SinceF € R, (II; Fy), then Property 1
implies thatF' (as well asFy) is the generator of clas{%n(l'[; Fy). Therefore
U = QUF € R,(II; Fy). According to Theorem 5, two distinct functions of

R, (I1; Fy) are reflected to pair of distinct functions of the same classWgyéds a
arbitrary fixed function of®,, (IT; Fy). Generate functiod™ = Q%" [¥,], where
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w*(w) = wy = 2. As far as¥ € R, (II; Fy), then keeping in mind Property 1
we have that functio® (as well asFp) is a generator of claﬁn(ﬂ; Fp). Hence
F* € R, (I; Fy). Further, it is easily seen thaty = Q| F*|. By Theorem 5 we
get, that in clasg%n(H; Fy) there is one and only one functidfi* corresponding
to function®, € R, (IT; Fy). So the proof of the Theorem 6 is complete. [

Example 3. Simple linearly invariant class generated by main functign, (z)
consists only of one function.

This statement follows from Theorem 4.

Union of a set of linearly invariant classes with order denote b, (I1).
Number

dF = sup }/Lgm [F] ‘
z€Il

we call byograndof function F'(z). Number

0= sup O
Feg(In)

we call by ogrand of linearly invariant cla?fﬁ(ﬂ). Simple class with ogrand
we denote bﬁf{n(ﬂ; 0). By using Theorem 6 one can establish validity of

Theorem 7. The ogrand of some function of simple class coincides with the
ogrand of simple class containing this function. In other words, the ogtakels
up constant value on the set of functions of simple class.

Linearly invariant class with ograndl we denote by@n(H; J). Let us de-
note the union of all linearly invariant classes with ogrand not greaterdhmn
U, (I1; §) and call it byuniversalclass.

Denote byK,, (D) class of analytic in domai® functions F'(z) such, that
[F(2);20,...,2n] # 0 for any set of pairwise distincty, . .., z, € D (see [4]).
Forn = 1 one has, as it easily seen, cldsg(D) of all univalent inD functions,
which play a large role in conformal mapping theory and in geometrical thafory
analytical functions [4, 5].

By using definition of clasds,,(II) and elementary properties of divided
differences [3], we get
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Lemma 2. If F(z) € K, (II), then
cF(z)+ P(z) € K,(II),

wherec # 0 and P(z) is a polynomial of the degree no higher than- 1.
The following lemma is valid too [6]:

Lemma 3. If F(z) € K,(II), thenF(™(z) # 0 for anyz € II. Conversely, if
F™)(z) # 0 for all z € 11, then for any point € II there exists its neighborhood
(domain)O(¢) such, thatF'(z) € K, (O(€)), i.e. F(z) € K,(II) locally inII.

Using Lemma 3 we arrive at conclusion, that in cl&§g11) one can evolve
a subclasss,, (IT) of normalized functions. Lemma 3 shows that clags(IT)
is the subclass of class, (IT). Furthermore, it is clear from Lemma 3, that if
F(z) € A,(II), thenF(z) € K, (II) locally in II.

Example 4. Classk,, (I) — is a linearly invariant class.

In fact, let us fix arbitrarily transformation = ¢z € L and pointsy, . . ., z,.
Letwy = tzx, k= 0,1,...,n. By using properties of normalization operator and
elementary properties of divided differences, we get

%F(”)(t) QW [F(2)]; 20, 2n) = [F(w); 20, ., 2n]. (1)
Since F(z) € K,(IT) andwy, ..., w, € II, then right-hand member of (1) is
nonzero. But then left-hand member of (1) is nonzero too. Taking intowsxtc
the arbitrariness ofy = tz € L andz,...,z, € II, we get that)¥ (F(z)) €

K, (I1). Thus, ifF(z) € K,(IT), thenQ¥ (F(z)) € K,(IT) for anyw = tz € L.

So, classi?n(H) is a linearly invariant class. In case when= 1 and domain

is unit discF linearly invariant classes were considered by Ch. Pommerenke [7]
and by V. Starkov [8, 9].

4 Some tests of belonging to universal class
Theorem 8. F(z) € U,(1I;6) if and only if

op < 6. (2
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Proof. Necessity immediately follows from the definition of cld§§(H; 9) and
from definition of ogrand. Let us establish sufficiency. Let functidf(z) satis-
fies the condition (2). By using this function generate simple cfsdl). Then,
according to Theorem 7, ogrand of this class is equalzto Henceiiin(l'[) C
U, (I1; §) and consequently’(z) € U, (I1; ). O

Corollary 1. If |a| < 8, thend®,, ,(z) € U, (I1; §).
In fact, the ogrand of functiof,, ,(z) is equal tga|.

Theorem 9. If F,,,(z) € U,(I1;8), m = 1,...,k, then for any combination of
positive),,, m = 1,...,k, suchthat\; + ...+ \x = 1, one has

¥4 z k

F(z) :// (F () dz ... dz € U, (I1; 8).
1

1 m=1

Proof. Note that

k
FMz) =[] (EP(), FM(z) £0, vzell

m=1

and therefore?(z) € A, (II). Further

k k k
m=1 m=1
Finally, from Theorem 7 it yields, that Theorem 8 is valid. O

5 This section deals with estimations of modules

We need in lemma, which has a number of applications.

Lemma 4. Letu(z) be a continuous in a certain intervid, b] complex-valued
function of real argument. Equality

b b

‘ / w(w)de| = / fua)|da, 3

a a
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takes place if and only if all values of the function belong to segment df fy
which is outgoing from origin and inclined to real axis on the some afglee. if

u(z) = ‘u(ac)‘ew, Vz € [a,b].

Proof. Let for mentioned functiom(z) the equality (3) takes place. Assume that

b
x)dx = ‘/u(w)dw e

Then equality (3) we can rewrite in the form

/Re{e 0 }da:—/’e Bu(z)|de. )

a

Further,
Re{e_wu(x)} < ‘e_wu(x)’, Vz € [a,b]. (5)

FunctionsRe{e~"u(x)} and|e~’u(x)| are continuous in any point of segment
[a, b]. Therefore from (4) and (5) it follows that

Re{efiﬁu(x) } = ‘eiiﬁu(az)

This implies that all values of functiom(x) belong to ray(3).
Let conversely all values of functian(x) belong to ray/(3). Then clear that

b b b
‘ / ()| = ‘ / lu(2)e|de| = / fu(z) | da 0

Theorem 10. For any functionF(z) € A, (II) the estimate

, Va € la,b].

[va[E()]] < [vn[@n5e(r)]

. Vr>0 (6)

holds true. Equality sign for = rq > 0, rg # 1 realize only main functions
®,,.4(2) from A, (I1).
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Proof. We have

r

fn+1
S‘/n+ Opdr
.
1

r

v [F()]| = ‘ / ntl W [F()]dr

< | / L i [FO)] | dr

(7)

= ‘V" [(I)nﬁF (T)} |

and inequality (6) is proved. Let for some= o > 0, rg # 1 in (6) the equality
sign takes place, i.e.

v [F(r0)]| = [vn [®n.6p(10)] | - (8)

Then from (7) and (8) we get

T0 0
1 1
‘/;Mzm [F(r)]dr = ’/; ‘/J,Q,n [F(r)] ‘ dr|, (9)
1 1
70 1 70 1
‘/;‘MQ,n[F(T‘)”dT = ‘/;(Lvdr. (10)
1 1
From (10) and taking into account properties of ograpgdwe obtain, that
|20 [F(r)]| = OF (11)

for any r betweenl andry. Applying Lemma 4 to equality (9) and taking into
consideration (11) come to conclusion, that, [F(r)] = dpe'” for anyr be-
tweenl andrg. Sincepus, [F(z)] is an analytical inll function, then, using
principle of analytic continuation, we get

H2.n [F(z)] =dpe®, Vzell
Solving the last equation with respectfi9”” (z) obtain
F)(2) = pl(+D0e” — ) (), (12)

wherea = 6pe’? is the second coefficient of functioh, ,(z). This implies that
function realizing equality sign in (6) is of shagdsg, ,(z). Verify that function

358



Linearly Invariant Classes

®,, ,(2) in fact realizes equality sign in (6). For that let us substitute this function
in (8). We have

(n)
eia(ro)| [, P (10)
In—|=|ln———
n! n!
or
‘ In r(()n—&—l)a‘ _ ‘ In T(()n+1)|a\"

that is equivalent to evident equality
|(n+ 1)a| = |(n + 1)|al|.

So, we come to conclusion, that equality sign in (6) realizes only main functions
of shape. O

Corollary 2. For any functionF'(z) € U, (II; §) the estimate

va[F@)]] < Jvn[@ns(r)]

, Vr>0

holds true. Equality sign for = ro > 0, rg # 1 realize only main functions
®p.q(2) € U,(11; 6), wherela| = 6.

Theorem 11. If F(z) € A, (II), then

\F(”)(z)‘

n+1)ép|Inr| ~
- n!

e < et Dorlinr] oy 5 0, (13)

Equality signs in(13) for » = rq > 0, 79 # 1 realize only main functions
O, +4(r) € Ap(IT), a > 0.

Proof. According to Theorem 9 we have

‘Vn [F(’f’)] ’ < ’Vn [(bn,(SF (T)]

, Vr>0.

From here

— ‘l/n [(I)n,ép (r)” < Re {I/n [F(T‘)}} < |Vn [<I>n’5F (r)]

, Vr>0

359



J. Kirjackis, E. Kiriyatzkii

or

9

(n) (n)

d r (n) () T

—’ln@‘gRe{lnF (T)}g‘ln@
n! n! n!

| < 1 ‘F(")'(T)\ < [Tt or |
n.:

)
n!
F00)
n!

—|(n+1)dpInr| <In <|(n+1)dplnr

Y

—(n+1)ép|lnr| <In < (n+1)ép|lnr|,

|F(n) (r) ‘

n+1)ép|Inr| ~
- n!

1)ép|1
< o(nt+1)dp| HT\7

e (

and thus inequalities (13) are proved.

Let us investigate equality signs in (13). Let for some= g > 0, rg # 1
and for some functior¥'(z) € ﬁn(ﬂ) in the right part of (13) the equality sign
occurs, i.e.

‘F(n”i‘(ro)l — e(n-&-l)&ﬂ ln'r\ (14)

or

Re {vn[F(ro)]} =In

n (n)
|[F™) (o) _ |1nr(n+1)5p| _ ‘ln ®, 5, (ro) 1s)

n! 0 n!

Using Theorem 10, we get

Re {vn[F(r0)]} < [vn[F(ro)][ < |vn[®nsr (ro)] | -
Due to (15), come to equality (8):

v [F(ro)]| = [vn[®nsp-(ro)] | -

Again using Theorem 10 we conclude, that the functigft) () must be of the
shapelF ™ (z) = @) (). After substituting it in (14) we will get

(n)
|Pria(ro)| _ o(n+D)alln ol
' )
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or

‘e(n—i-l)alnro‘ _ e(n+1)|a\|lnm\_
Hence it follows that: > 0. Analogously is established equality sign on the left
side of (13) O

Corollary 3. If F(z) € U,(IL; §), then

7o)

n+1)d|Inr| ~
- n!

e ( < emtD)dllnr] g S

Equality signs forr = 9 > 0, o # 1 realize only main function®,, 15(z) €

U, (113 6).
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