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ekira@post.omnitel.net; eduard.kiriyatzkii@takas.lt

Received: 17.08.2004
Accepted: 27.09.2004

Abstract. In present paper the properties of classes of introduced by authors
functions analytical in the half-plane are investigated. These classes constructed
by using special normalization of functions, automorphismof the half-plane and
by operator actual on these classes. Such classes are calledas linearly invariant
ones. In case when domain is unit disc similar linearly invariant classes were
considered by Ch. Pommerenke, V. Starkov, E.G. Kiriyatzkii.
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1 Major notational conventions, definitions and auxiliary statements

Let Π is a half-planeRe z > 0, An(Π) – class of analytical inΠ functionsF (z)

with conditionF (n)(z) 6= 0, ∀z ∈ Π, Ãn(Π) – class of analytical inΠ functions

F (z) from An(Π), which are normalized by conditions:

F (1) = F ′(1) = . . . = F (n−1)(1) = 0, F (n)(1) = n! .

It is obvious that for any fixedm ≥ 2 every functionF (z) of Ãn(Π) can be

represented in form

F (z) = (z − 1)n +

m∑

k=2

ak,n(z − 1)n+k−1 + Ψm(z),

whereΨm(z) – dependent onF (z) analytical inΠ function. Number

ak,n =
F (n+k−1)(1)

(n + k − 1)!

349



J. Kirjackis, E. Kiriyatzkii

we call byk-th coefficient of functionF (z). Let us introduce the operator

Nn[F ] =
n!

F (n)(1)

(
F (z) −

n−1∑

k=0

F (k)(1)

k!
(z − 1)k

)
,

which we call bynormalizing operator. This operator transfers any function from

An(Π) to a function of class̃An(Π). Forn = 0 we set thatN0[F ] = F (z)/F (1).

Note thatNn[cF + P ] = Nn[F ], wherec 6= 0 andP , is a polynomial of the

degree no higher thann − 1 and thatNn

[
Nn[F ]

]
= Nn[F ].

Denote byA(D) class of analytical in domainD functions. Then-th order

divided difference of functionF (z) ∈ A(D) define (see [1,2]) by formula

[
F (z); z0, . . . , zn

]
=

1

2πi

∫

Γ

F (ξ)dξ

(ξ − z0) . . . (ξ − zn)
,

whereΓ is a simple closed contour, located inD and covering all the points

z0, . . . , zn ∈ D. In above formula among the pointsz0, . . . , zn ∈ D may occur

coincident. Denote byL a set of functions of shapew = tz, wheret > 0. Let us

arbitrarily choosew ∈ L and introduce omega-operator ofn-th order by formula

Ωw
n [F ] =

(z − 1)n
[
F (z); w(z),

n︷ ︸︸ ︷
t, . . . , t

]

1

n!
F (n)(t)

.

This operator for any fixedw = tz is defined on classAn(Π) and transfers every

function of classAn(Π) to the function of class̃An(Π). Let us introduce the

operators

µ2,n[F ] =
zF (n+1)(z)

(n + 1)F (n)(z)
, F (z) ∈ Ãn(Π),

νn[F ] = ln
F (n)(z)

n!
, F (z) ∈ Ãn(Π).

Note, that if one fix some function ofF (z) ∈ Ãn(Π), then above operators

became a functions ofz ∈ Π. If we will fix z ∈ Π, then these operators convert

to functionals, defined on class̃An(Π). The below lemma is nearly clear.

350



Linearly Invariant Classes

Lemma 1. The equations

µ2,n

[
F (z)

]
=

z

n + 1

d

dz
νn

[
F (z)

]
, νn

[
F (z)

]
=

z∫

1

n + 1

z
µ2,n

[
F (z)

]
dz

holds true.

2 Some properties of operatorΩw
n , w ∈ L

In this paragraph we remind some properties of operatorΩw
n introduced in paper

[3] and give some new properties of this operator.

Theorem 1. If F (z) ∈ Ã(Π) andw = tz ∈ L, then

Ωw
n

[
F (z)

]
= Nn

[
F (w)

]
,

where

Nn

[
F (w)

]
=

n!

F (n)(t)tn
(
F (tz)−P (z; t)

)
, P (z; t) =

n−1∑

k=0

F (k)(t)

k!
tk(z−1)k.

Let

Φn,a(z) = (z − 1)n +
∞∑

k=2

ck,n(z − 1)n+k−1,

where

cn,k =
n!

(n + k − 1)!
(n + 1)a

(
(n + 1)a − 1

)
. . .

(
(n + 1)a − (k − 2)

)

for k = 2, 3, . . .. Note thatc2,n = a. FunctionΦn,a(z) we call bymainone.

Theorem 2. The main function belongs to class̃An(Π) and is a fixed function of

operatorΩw
n , i.e.

Ωw
n [Φn,a] = Φn,a, ∀w ∈ L.

Let k-th coefficient of some functionF (z) ∈ Ãn(Π) is equal to numberbk,

wherek ≥ 2. If bk is thek-th coefficient of functionF (z; t) = Ωw
n

[
F (z)

]
for any

w ∈ L, thenk-th coefficient of functionF (z) we will call by invariant coefficient

of this function.

351



J. Kirjackis, E. Kiriyatzkii

Theorem 3. Let equation

n!

(n + k − 1)!

k−2∏

m=0

(
(n + 1)a − m

)
= bk

with respect toa hask − 1 of pairwise different rootsa1, . . . , ak−1. Then only

functions of form

F (z) =
k−1∑

m=1

cmΦn,am(z), c1 + . . . + ck−1 = 1

has numberbk as theirsk-th invariant coefficient.

Set of transformationsw = tz ∈ L is a group, if we define product of two

transformationsw1 andw2 by formulaw3 = w1(w2).

Theorem 4. Let w1, . . . , wk ∈ L and F2 = Ωw1
n [F1], F3 = Ωw2

n [F2], Fk+1 =

Ωwk
n [Fk]. ThenFk+1 = Ω

wk+1

n [F1], wherewk+1 = w1

(
w2(. . . (wk) . . .)

)
.

Proof. It is enough to prove the theorem fork = 2. Using properties of normali-

zing operator we get

F3(z) = Ωw2

n

[
F2(z)

]
= Ωw2

n

⌊
Ωw1

n

[
F1(z)

]⌋

= Ωw2

n

[
Nn

[
F1

(
w1(z)

)]]
= Nn

[
Nn

[
F1

(
w1

(
w2(z)

))]]

= Nn

[
F1

(
w1

(
w2(z)

))]
= Nn

[
F1

(
w3(z)

)]
= Ωw3

n

[
F1(z)

]
.

Theorem 5. If F1 ∈ Ãn(Π) andF2 ∈ Ãn(Π), whereF1 6= F2, then

Ωw
n [F1] 6= Ωw

n [F2], ∀w ∈ L.

Proof. Let, contrary to the statement of theorem, for somew = tz ∈ L the

identity Ωw
n

[
F1(z)

]
≡ Ωw

n

[
F2(z)

]
takes place. Using Theorem 1 we get identity

F1(z) = ϕ(t)F2(z) + R(z; t), whereϕ(t) 6= 0 andR(z; t) is a polynomial of

the degree no higher thann − 1. FunctionsF1(z) andF2(z) are normalized in

the half-planeΠ, soϕ(t) = 1 andR(z; t) ≡ 0. ThereforeF1 = F2. Obtained

contradiction proves the theorem.
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3 Definition of linearly invariant class

SetS of functionsF (z) of Ãn(Π) we will call by linearly invariant class ofn-th

order, if from belongingF (z) ∈ S follows Ωw
n

[
F (z)

]
∈ S for anyw ∈ L.

Let us give some examples of linearly invariant classes ofn-th order.

Example 1. Ãn(Π) is a linear invariant class. In fact, operatorΩw
n transfers

functionF (z) from Ãn(Π) to function of the same class̃An(Π), for anyw ∈ L.

Note also that̃An(Π) contains any of linearly invariant classes.

Example 2. Let us fix inÃn(Π) functionF (z) and make up the class of functions

Ψw(z) = Ωw
n

[
F (z)

]
, wherew vary over all setL. Due to Theorem 4 (on chain),

such class must be linearly invariant one. We will call this class assimple li-

nearly invariant class and denote it byR̃n(Π; F ). FunctionF (z) we will call by

generator of simple class. For simple class we have the following

Property 1. If F1(z) ∈ R̃n(Π; F ), thenF (z) ∈ R̃n(Π; F1) for any w ∈ L.

In other words, if functionF (z) is the generator of simple class andF1(z) ∈

R̃n(Π; F ), then functionF1(z) must be the generator of this simple class too.

Validity of this statement follows from construction of simple family together

with Theorem 4 (on chain). The following properties of simple family are near

clear.

Property 2. If pair of simple classes has a common function, then they are fully

coincident.

Property 3. Union of the simple classes is a linearly invariant class.

Theorem 6. Let functionF runs over whole set of functions from simple class

R̃n(Π; F0). Then functionΨ = Ωw
n [F ] for any fixedw ∈ L runs over whole set

of functions fromR̃n(Π; F0) too.

Proof. Let w ∈ L is arbitrarily fixed. SinceF ∈ R̃n(Π; F0), then Property 1

implies thatF (as well asF0) is the generator of class̃Rn(Π; F0). Therefore

Ψ = Ωw
n F ∈ R̃n(Π; F0). According to Theorem 5, two distinct functions of

R̃n(Π; F0) are reflected to pair of distinct functions of the same class. LetΨ0 is a

arbitrary fixed function of̃Rn(Π; F0). Generate functionF ∗ = Ωw∗

n [Ψ0], where
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w∗(w) = w0 ≡ z. As far asΨ0 ∈ R̃n(Π; F0), then keeping in mind Property 1

we have that functionΨ0 (as well asF0) is a generator of class̃Rn(Π; F0). Hence

F ∗ ∈ R̃n(Π; F0). Further, it is easily seen thatΨ0 = Ωw
n bF

∗c. By Theorem 5 we

get, that in class̃Rn(Π; F0) there is one and only one functionF ∗ corresponding

to functionΨ0 ∈ R̃n(Π; F0). So the proof of the Theorem 6 is complete.

Example 3. Simple linearly invariant class generated by main functionΦn,a(z)

consists only of one function.

This statement follows from Theorem 4.

Union of a set of linearly invariant classes ofn-th order denote bỹFn(Π).

Number

δF = sup
z∈Π

∣∣µ2,n[F ]
∣∣

we call byograndof functionF (z). Number

δ = sup
F∈F̃(Π)

δF

we call by ogrand of linearly invariant class̃Fn(Π). Simple class with ograndδ

we denote bỹRn(Π; δ). By using Theorem 6 one can establish validity of

Theorem 7. The ogrand of some function of simple class coincides with the

ogrand of simple class containing this function. In other words, the ograndtakes

up constant value on the set of functions of simple class.

Linearly invariant class with ograndδ we denote bỹFn(Π; δ). Let us de-

note the union of all linearly invariant classes with ogrand not greater thanδ by

Ũn(Π; δ) and call it byuniversalclass.

Denote byKn(D) class of analytic in domainD functionsF (z) such, that[
F (z); z0, . . . , zn

]
6= 0 for any set of pairwise distinctz0, . . . , zn ∈ D (see [4]).

Forn = 1 one has, as it easily seen, classK1(D) of all univalent inD functions,

which play a large role in conformal mapping theory and in geometrical theoryof

analytical functions [4,5].

By using definition of classKn(Π) and elementary properties of divided

differences [3], we get

354



Linearly Invariant Classes

Lemma 2. If F (z) ∈ Kn(Π), then

cF (z) + P (z) ∈ Kn(Π),

wherec 6= 0 andP (z) is a polynomial of the degree no higher thann − 1.

The following lemma is valid too [6]:

Lemma 3. If F (z) ∈ Kn(Π), thenF (n)(z) 6= 0 for any z ∈ Π. Conversely, if

F (n)(z) 6= 0 for all z ∈ Π, then for any pointξ ∈ Π there exists its neighborhood

(domain)O(ξ) such, thatF (z) ∈ Kn

(
O(ξ)

)
, i.e. F (z) ∈ Kn(Π) locally in Π.

Using Lemma 3 we arrive at conclusion, that in classKn(Π) one can evolve

a subclassK̃n(Π) of normalized functions. Lemma 3 shows that classK̃n(Π)

is the subclass of class̃An(Π). Furthermore, it is clear from Lemma 3, that if

F (z) ∈ Ãn(Π), thenF (z) ∈ Kn(Π) locally in Π.

Example 4. ClassK̃n(Π) – is a linearly invariant class.

In fact, let us fix arbitrarily transformationw = tz ∈ L and pointsz0, . . . , zn.

Let wk = tzk, k = 0, 1, . . . , n. By using properties of normalization operator and

elementary properties of divided differences, we get

1

n!
F (n)(t)

[
Ωw

n

[
F (z)

]
; z0, . . . , zn

]
=

[
F (w); z0, . . . , zn

]
. (1)

SinceF (z) ∈ K̃n(Π) andw0, . . . , wn ∈ Π, then right-hand member of (1) is

nonzero. But then left-hand member of (1) is nonzero too. Taking into account

the arbitrariness ofw = tz ∈ L andz0, . . . , zn ∈ Π, we get thatΩw
n

(
F (z)

)
∈

K̃n(Π). Thus, ifF (z) ∈ K̃n(Π), thenΩw
n

(
F (z)

)
∈ K̃n(Π) for anyw = tz ∈ L.

So, classK̃n(Π) is a linearly invariant class. In case whenn = 1 and domain

is unit discE linearly invariant classes were considered by Ch. Pommerenke [7]

and by V. Starkov [8,9].

4 Some tests of belonging to universal class

Theorem 8. F (z) ∈ Ũn(Π; δ) if and only if

δF ≤ δ. (2)
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Proof. Necessity immediately follows from the definition of classŨn(Π; δ) and

from definition of ograndδ. Let us establish sufficiency. Let functionF (z) satis-

fies the condition (2). By using this function generate simple classR̃n(Π). Then,

according to Theorem 7, ogrand of this class is equal toδF . HenceR̃n(Π) ⊂

Ũn(Π; δ) and consequentlyF (z) ∈ Ũn(Π; δ).

Corollary 1. If |a| ≤ δ, thenΦn,a(z) ∈ Ũn(Π; δ).

In fact, the ogrand of functionΦn,a(z) is equal to|a|.

Theorem 9. If Fm(z) ∈ Ũn(Π; δ), m = 1, . . . , k, then for any combination of

positiveλm, m = 1, . . . , k, such thatλ1 + . . . + λk = 1, one has

F (z) =

z∫

1

. . .

z∫

1

k∏

m=1

(
F (n)

m (z)
)λmdz . . . dz ∈ Ũn(Π; δ).

Proof. Note that

F (n)(z) =
k∏

m=1

(
F (n)

m (z)
)
, F (n)(z) 6= 0, ∀z ∈ Π

and thereforeF (z) ∈ Ãn(Π). Further

∣∣µ2,n

[
F (z)

]∣∣ =
∣∣∣

k∑

m=1

λmµ2,n

[
F (z)

]∣∣∣ ≤
k∑

m=1

λm

∣∣µ2,n

[
F (z)

]∣∣ ≤
k∑

m=1

λmδ = δ.

Finally, from Theorem 7 it yields, that Theorem 8 is valid.

5 This section deals with estimations of modules

We need in lemma, which has a number of applications.

Lemma 4. Let u(x) be a continuous in a certain interval[a, b] complex-valued

function of real argumentx. Equality

∣∣∣∣

b∫

a

u(x)dx

∣∣∣∣ =

b∫

a

∣∣u(x)
∣∣dx, (3)
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takes place if and only if all values of the function belong to segment of rayl(β)

which is outgoing from origin and inclined to real axis on the some angleβ, i.e. if

u(x) =
∣∣u(x)

∣∣eiβ, ∀x ∈ [a, b].

Proof. Let for mentioned functionu(x) the equality (3) takes place. Assume that

b∫

a

u(x)dx =

∣∣∣∣

b∫

a

u(x)dx

∣∣∣∣e
iβ .

Then equality (3) we can rewrite in the form

b∫

a

Re
{
e−iβu(x)

}
dx =

b∫

a

∣∣e−iβu(x)
∣∣dx. (4)

Further,

Re
{
e−iβu(x)

}
≤

∣∣e−iβu(x)
∣∣, ∀x ∈ [a, b]. (5)

FunctionsRe
{
e−iβu(x)

}
and

∣∣e−iβu(x)
∣∣ are continuous in any point of segment

[a, b]. Therefore from (4) and (5) it follows that

Re
{
e−iβu(x)

}
=

∣∣e−iβu(x)
∣∣, ∀x ∈ [a, b].

This implies that all values of functionu(x) belong to rayl(β).

Let conversely all values of functionu(x) belong to rayl(β). Then clear that

∣∣∣∣

b∫

a

u(x)dx

∣∣∣∣ =

∣∣∣∣

b∫

a

∣∣u(x)eiβ
∣∣dx

∣∣∣∣ =

b∫

a

∣∣u(x)
∣∣dx.

Theorem 10. For any functionF (z) ∈ Ãn(Π) the estimate

∣∣νn

[
F (r)

]∣∣ ≤
∣∣νn

[
Φn,δF

(r)
]∣∣ , ∀r > 0 (6)

holds true. Equality sign forr = r0 > 0, r0 6= 1 realize only main functions

Φn,a(z) from Ãn(Π).
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Proof. We have

∣∣νn

[
F (r)

]∣∣ =

∣∣∣∣

r∫

1

n + 1

r
µ2,n

[
F (r)

]
dr

∣∣∣∣ ≤
∣∣∣∣

r∫

1

n + 1

r

∣∣µ2,n

[
F (r)

]∣∣ dr

∣∣∣∣

≤

∣∣∣∣

r∫

1

n + 1

r
δF dr

∣∣∣∣ =
∣∣νn

[
Φn,δF

(r)
]∣∣

(7)

and inequality (6) is proved. Let for somer = r0 > 0, r0 6= 1 in (6) the equality

sign takes place, i.e.

∣∣νn

[
F (r0)

]∣∣ =
∣∣νn

[
Φn,δF

(r0)
]∣∣ . (8)

Then from (7) and (8) we get

∣∣∣∣

r0∫

1

1

r
µ2,n

[
F (r)

]
dr

∣∣∣∣ =

∣∣∣∣

r0∫

1

1

r

∣∣µ2,n

[
F (r)

]∣∣ dr

∣∣∣∣, (9)

∣∣∣∣

r0∫

1

1

r

∣∣µ2,n

[
F (r)

]∣∣dr

∣∣∣∣ =

∣∣∣∣

r0∫

1

1

r
δF dr

∣∣∣∣. (10)

From (10) and taking into account properties of ograndδF , we obtain, that

∣∣µ2,n

[
F (r)

]∣∣ = δF (11)

for any r between1 andr0. Applying Lemma 4 to equality (9) and taking into

consideration (11) come to conclusion, thatµ2,n

[
F (r)

]
= δF eiβ for any r be-

tween1 and r0. Sinceµ2,n

[
F (z)

]
is an analytical inΠ function, then, using

principle of analytic continuation, we get

µ2,n

[
F (z)

]
= δF eiβ , ∀z ∈ Π.

Solving the last equation with respect toF (n)(z) obtain

F (n)(z) = n!z(n+1)δF eiβ

= Φ(n)
n,a(z), (12)

wherea = δF eiβ is the second coefficient of functionΦn,a(z). This implies that

function realizing equality sign in (6) is of shapeΦn,a(z). Verify that function
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Φn,a(z) in fact realizes equality sign in (6). For that let us substitute this function

in (8). We have

∣∣∣∣ ln
Φ

(n)
n,a(r0)

n!

∣∣∣∣ =

∣∣∣∣ ln
Φ

(n)
n,|a|(r0)

n!

∣∣∣∣

or

∣∣ ln r
(n+1)a
0

∣∣ =
∣∣ ln r

(n+1)|a|
0

∣∣,

that is equivalent to evident equality

∣∣(n + 1)a
∣∣ =

∣∣(n + 1)|a|
∣∣.

So, we come to conclusion, that equality sign in (6) realizes only main functions

of shape.

Corollary 2. For any functionF (z) ∈ Ũn(Π; δ) the estimate

∣∣νn

[
F (r)

]∣∣ ≤
∣∣νn

[
Φn,δ(r)

]∣∣ , ∀r > 0

holds true. Equality sign forr = r0 > 0, r0 6= 1 realize only main functions

Φn,a(z) ∈ Ũn(Π; δ), where|a| = δ.

Theorem 11. If F (z) ∈ Ãn(Π), then

e−(n+1)δF | ln r| ≤

∣∣F (n)(z)
∣∣

n!
≤ e(n+1)δF | ln r|, ∀r > 0. (13)

Equality signs in(13) for r = r0 > 0, r0 6= 1 realize only main functions

Φn,±a(r) ∈ Ãn(Π), a > 0.

Proof. According to Theorem 9 we have

∣∣νn

[
F (r)

]∣∣ ≤
∣∣νn

[
Φn,δF

(r)
]∣∣ , ∀r > 0.

From here

−
∣∣νn

[
Φn,δF

(r)
]∣∣ ≤ Re

{
νn

[
F (r)

]}
≤

∣∣νn

[
Φn,δF

(r)
]∣∣ , ∀r > 0
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or

−

∣∣∣∣ ln
Φ

(n)
n,δF

(r)

n!

∣∣∣∣ ≤Re

{
ln

F (n)(r)

n!

}
≤

∣∣∣∣ ln
Φ

(n)
n,δF

(r)

n!

∣∣∣∣,

−
∣∣ ln r(n+1)δF

∣∣ ≤ ln

∣∣F (n)(r)
∣∣

n!
≤

∣∣ ln r(n+1)δF
∣∣,

−
∣∣(n + 1)δF ln r

∣∣ ≤ ln

∣∣F (n)(r)
∣∣

n!
≤

∣∣(n + 1)δF ln r
∣∣,

−(n + 1)δF | ln r| ≤ ln

∣∣F (n)(r)
∣∣

n!
≤ (n + 1)δF | ln r|,

e−(n+1)δF | lnr| ≤

∣∣F (n)(r)
∣∣

n!
≤ e(n+1)δF | ln r|,

and thus inequalities (13) are proved.

Let us investigate equality signs in (13). Let for somer = r0 > 0, r0 6= 1

and for some functionF (z) ∈ Ãn(Π) in the right part of (13) the equality sign

occurs, i.e.
∣∣F (n)(r0)

∣∣
n!

= e(n+1)δF | ln r| (14)

or

Re
{
νn

[
F (r0)

]}
= ln

∣∣F (n)(r0)
∣∣

n!
=

∣∣ ln r
(n+1)δF

0

∣∣ =

∣∣∣∣ ln
Φ

(n)
n,δF

(r0)

n!

∣∣∣∣. (15)

Using Theorem 10, we get

Re
{
νn

[
F (r0)

]}
≤

∣∣νn

[
F (r0)

]∣∣ ≤
∣∣νn

[
Φn,δF

(r0)
]∣∣ .

Due to (15), come to equality (8):

∣∣νn

[
F (r0)

]∣∣ =
∣∣νn

[
Φn,δF

(r0)
]∣∣ .

Again using Theorem 10 we conclude, that the functionF (n)(z) must be of the

shapeF (n)(z) = Φ
(n)
n,a(z). After substituting it in (14) we will get

∣∣Φ(n)
n,a(r0)

∣∣
n!

= e(n+1)|a||ln r0|,
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or
∣∣e(n+1)a ln r0

∣∣ = e(n+1)|a||ln r0|.

Hence it follows thata > 0. Analogously is established equality sign on the left

side of (13)

Corollary 3. If F (z) ∈ Ũn(Π; δ), then

e−(n+1)δ| ln r| ≤

∣∣F (n)(r)
∣∣

n!
≤ e(n+1)δ|ln r|, ∀r > 0.

Equality signs forr = r0 > 0, r0 6= 1 realize only main functionsΦn,±δ(z) ∈

Ũn(Π; δ).
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