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Abstract. This paper presents a two-dimensional-in-space mathematical model
of a sensor system based an array of enzyme microreactors immobilised on a
single electrode. The system acts under amperometric conditions. The model
is based on the diffusion equations containing a non-linearterm related to the
Michaelis-Menten kinetics of the enzymatic reaction. The model involves three
regions: an array of enzyme microreactors (cells) where enzyme reaction as
well as mass transport by diffusion takes place, a diffusionlimiting region
where only the diffusion takes place, and a convective region, where the analyte
concentration is maintained constant. Using computer simulation the influence
of the geometry of the enzyme cells and the diffusion region on the biosensor
response was investigated. The digital simulation was carried out using the
finite difference technique.
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1 Introduction

A sensor is a device that converts a physical or chemical quantity to an electrical

one [1]. The term biosensor refers to sensors that use biological components,

∗This work was supported by Lithuanian State Science and Studies Foundation, project
No. C-03048.
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usually enzymes, which catalyse the interaction with analyte [2]–[4].The ampero-

metric biosensors measure the faradaic current that arises on a workingindicator

electrode by direct electrochemical oxidation or reduction of the productsof the

biochemical reaction [5, 6]. In amperometric biosensors the potential at theelec-

trode is held constant while the current is measured. The amperometric biosensors

are known to be reliable, cheap and highly sensitive for environment, clinical and

industrial purposes [7, 8].

In some applications of biosensors, enzymes are archival and only available in

every limited quantity or are the products of commbinatorial synthesis procedures

and thus are only produced in microgram to milligram quantities. These include

point-of-care testing [9], high throughput drug discovery [10], detection of bio-

logical warfare agents [11], astrobiology [12] and others. Such applications of

biosensors requires high-density arrays of microvolume reaction vessels. Because

of this, miniaturization of biosensors is very important trend in biotechnology.

The application of arrays of microreactors is one way of the miniaturization.

Since it is not generally possible to measure the concentration of substrate

inside enzyme domain with analytical devices, starting from seventies various

mathematical models of amperometric biosensors have been developed and used

as an important tool to study and optimise analytical characteristics of actual

biosensors [13]–[16].The goal of this investigation is to make a model allowing an

effective computer simulation of a sensor system based an array of enzyme cells

(microreactors) immobilised on a single electrode.

The developed model is based on diffusion equations [17, 18], containing a

non-linear term related to the Michaelis-Menten kinetics of the enzymatic reac-

tion. The model involves three regions: an array of enzyme cells where enzyme

reaction as well as mass transport by diffusion takes place, a diffusion limiting

region where only the diffusion takes place, and a convective region, where the

analyte concentration is maintained constant. The enzyme domain was modelled

by identical right cylinders, arranged in a rigid hexagonal array and distributed

uniformly on the electrode surface. Using computer simulation the influence of

the geometry of the enzyme cells as well as the diffusion region on the biosensor

response was investigated. The computer simulation was carried out using the

finite difference technique [19].
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2 Principal structure of a biosensor system

Fig. 1 shows a biosensor system, where the enzyme microreactors are modelled

by identical cylinders of radiusa and heightc. The enzyme cylinders are arranged

in a rigid hexagonal array. The distance between centres of two adjacent cylinders

equals2b.
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Fig. 1. A principal structure of an array of enzyme microreactors immobilised
on a single electrode. The figure is not to scale.

We assume that the mass transport during the biosensor action obeys a finite

diffusion regime. A principal structure of the electrode and the profile of the

biosensor atz plane are depicted in Fig. 2.
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Fig. 2. A principal structure of the enzyme electrode (a) andthe profile atz plane
(b). d is the thickness of the diffusion layer.

Assuming the uniform distribution of the enzyme microreactors on the elec-

trode surface, the biosensor may be divided into equal hexagonal prisms with
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regular hexagonal bases. For simplicity, it is reasonable to consider a circle of

radiusb whose area equals to that of the hexagon and to regard one of the cylinders

as a unit cell. Due to the symmetry of the unit cell, we may consider only a half

of the transverse section of the unit cell. Very similar approach has been used

in modelling of partially blocked electrodes [20, 21] and in modelling of surface

roughtness of the enzyme membrane [22].

3 Mathematical model

A biosensor may be considered as an electrode, having a layer of enzymeapplied

onto the electrode surface. We consider a scheme of catalysed with enzyme(E)

substrate (S) conversion to the product (P) [4]

S
E

−→ P (1)

Fig. 3 shows the considered domain of the unit of the biosensor, presented

schematically in Figs. 1 and 2. In the profile, parameterb stands for the radius of

the entire cell, whilea stands for the radius of the enzyme microreactor.c is the

height of the enzyme microreactor. The fourth parameterd is the thickness of the

diffusion layer.

�

��

��

��

��

�� �

��

��

Fig. 3. The considered domain of the biosensor unit.

The diffusion region surrounding the enzyme cells is known as the Nernst

diffusion layer [23]. According to the Nernst approach, the diffusiontakes place

in a finite layer of the buffer solution. Away from it, the solution is in motion and

uniform in concentration. The thickness of the Nernst layer remains unchanged

with time. If substrate is well-stirred and in powerful motion, then rather often
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the Nernst diffusion layer is neglected [14, 24]. However, in practice,the zero

thickness of the Nernst layer can not be achieved [6, 23]. Because of this, we

assume that the mass transport during the biosensor action obeys a finite diffusion

regime.

Let Ω, Ω0 be open regions corresponding to the entire domain to be conside-

red and enzyme region, respectively, andΓ - the bulk solution/enzyme border.

Ω =
{

(r, z) : 0 < r < b, 0 < z < d
}

,

Ω0 =
{

(r, z) : 0 < r < a, 0 < z < c
}

,

Γ =
{

(a, z) : 0 ≤ z ≤ c
}

∪
{

(r, c) : 0 ≤ r ≤ a
}

.

(2)

Let Ω andΩ0 denote the corresponding closed regions. The dynamics of the

biosensor is described by the reaction-diffusion system (t > 0)

∂Se

∂t
= DSe

1

r

∂

∂r

(

r
∂Se

∂r

)

+ DSe

∂2Se

∂z2
−

VmaxSe

KM + Se

,

∂Pe

∂t
= DPe

1

r

∂

∂r

(

r
∂Pe

∂r

)

+ DPe

∂2Pe

∂z2
+

VmaxSe

KM + Se

, (r, z) ∈ Ω0,

(3)

∂Sb

∂t
= DSb

1

r

∂

∂r

(

r
∂Sb

∂r

)

+ DSb

∂2Sb

∂z2
,

∂Pb

∂t
= DPb

1

r

∂

∂r

(

r
∂Pb

∂r

)

+ DPb

∂2Pb

∂z2
, (r, z) ∈ Ω \ Ω0,

(4)

wherer andz stand for space,t stands for time,Se(r, z, t), Sb(r, z, t) (Pe(r, z, t),

Pb(r, z, t)) are the substrate (reaction product) concentrations in the enzyme and

bulk solution, respectively,DSe
, DSb

, DPe
, DPb

are the diffusion coefficients,

Vmax is the maximal enzymatic rate andKM is the Michaelis constant.

In the domain presented in Fig. 3,z = 0 represents the electrode surface,

andΓ corresponds to the bulk solution/enzyme interface. The biosensor operation

starts when the substrate appears over the surface of the enzyme region. This is

used in the initial conditions (t = 0)

Se(r, z, 0) = 0, Pe(r, z, 0) = 0, (r, z) ∈ Ω0 \ Γ,

Se(r, z, 0) = S0, Pe(r, z, 0) = 0, (r, z) ∈ Γ, (5)

Sb(r, z, 0) = S0, Pb(r, z, 0) = 0, (r, z) ∈ Ω \ Ω0,
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whereS0 is the concentration of the substrate to be analyzed.

The following boundary conditions express the symmetry of the biosensor

∂Se

∂r

∣

∣

∣

∣

r=0

=
∂Pe

∂r

∣

∣

∣

∣

r=0

= 0, z ∈ [0, c],

∂Sb

∂r

∣

∣

∣

∣

r=0

=
∂Pb

∂r

∣

∣

∣

∣

r=0

= 0, z ∈ [c, d],

∂Sb

∂r

∣

∣

∣

∣

r=b

=
∂Pb

∂r

∣

∣

∣

∣

r=b

= 0, z ∈ [0, d].

(6)

In the scheme (1) the product (P) is electro-active substance. The electrode

potential is chosen to keep zero concentration of the product at the electrode

surface. The substrate (S) does not react at the electrode surface. This is used

in the boundary conditions (t > 0) given by

Pe(r, 0, t) = 0,
∂Se

∂z

∣

∣

∣

∣

z=0

= 0, r ∈ [0, a],

Pb(r, 0, t) = 0,
∂Sb

∂z

∣

∣

∣

∣

z=0

= 0, r ∈ [a, b],

Pb(r, d, t) = 0, Sb(r, d, t) = S0, r ∈ [0, b].

(7)

On the surfaceΓ we define the matching conditions (t > 0)

DSe

∂Se

∂n

∣

∣

∣

∣

Γ

= DSb

∂Sb

∂n

∣

∣

∣

∣

Γ

, Se

∣

∣

Γ
= Sb

∣

∣

Γ
,

DPe

∂Pe

∂n

∣

∣

∣

∣

Γ

= DPb

∂Pb

∂n

∣

∣

∣

∣

Γ

, Pe

∣

∣

Γ
= Pb

∣

∣

Γ
,

(8)

wheren stands for the normal direction.

We introduce the concentrationS of the substrate S and the concentrationP

of the reaction product P in entire domainΩ as follows (t ≥ 0):

S(r, z, t) =

{

Se(r, z, t), (r, z) ∈ Ω0,

Sb(r, z, t), (r, z) ∈ Ω \ Ω0,

P (r, z, t) =

{

Pe(r, z, t), (r, z) ∈ Ω0,

Pb(r, z, t), (r, z) ∈ Ω \ Ω0.

(9)

Both concentration functions:S and P are continuous in the entire domain

(r, z) ∈ Ω, t ≥ 0.
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In a special case whena = b, the model (3)–(8) describes an operation of the

membrane biosensors [3, 4, 25].

The measured current is accepted as a response of a biosensor in a physical

experiment. The current depends upon the flux of the electro-active substance

(product) at the electrode surface, i.e. on the borderz = 0. Consequently, a

densityi(t) of the biosensor current at timet can be obtained explicitly from the

Faraday’s and Fick’s laws

i(t) =
neF

πb2

2π
∫

0





a
∫

0

DPe

∂Pe

∂z

∣

∣

∣

∣

z=0

rdr +

b
∫

a

DPb

∂Pb

∂z

∣

∣

∣

∣

z=0

rdr



 dϕ =

=
2neF

b2



DPe

a
∫

0

∂Pe

∂z

∣

∣

∣

∣

z=0

rdr + DPb

b
∫

a

∂Pb

∂z

∣

∣

∣

∣

z=0

rdr



 ,

(10)

whereϕ is the third cylindrical coordinate,ne is a number of electrons involved

in a charge transfer,F is the Faraday constant,F = 9648 C/mol.

We assume, that the system (3)–(8) approaches a steady-state ast → ∞

i∞ = lim
t→∞

i(t). (11)

i∞ is assumed as the steady-state biosensor current.

4 Computer simulation

Close mathematical solutions are not usually possible when analytically solving

multi-dimensional non-linear partial differential equations with complex bound-

ary conditions. Therefore, the problem was solved numerically [17, 24].

The finite difference technique was applied for discretization of the mathe-

matical model [19]. We introduced an uniform discrete grid in all directions:

r, z and t [22, 25]. Using the alternating direction method, an implicit finite

difference scheme has been built as a result of the difference approximation of the

model. The resulting systems of linear algebraic equations were solved efficiently

because of the tridiagonality of their matrices. Having a numerical solution of the

problem, the density of the biosensor current was calculated easily. The software

was programmed in Fortran language [26].
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The mathematical model as well as the numerical solution of the model

were evaluated for different values of the maximal enzymatic rateVmax, substrate

concentrationS0 and the geometry of the enzyme microreactors.

We assumed the upper layer of the thicknessδN = d − c from the enzyme

region as the Nernst diffusion layer. The thicknessδN of the Nernst layer depends

upon the nature and stirring of the buffer solution. Usually, the more intensive

stirring corresponds to the thinner diffusion layer. In practice, the zerothickness

of the Nernst layer can not be achieved. In a case when the solution to beanalysed

is stirred by rotation of the enzyme electrode, the thicknessδN of the Nernst

diffusion layer may be minimized up to0.02 mm by increasing the rotation speed

[6, 23]. That thickness of the Nernst layer,δN = d − c = 0.02 mm, we used to

simulate the biosensor action changing other parameters.

The following values of the parameters were constant in the numerical simu-

lation of all the experiments:

DSe
= DPe

= 3.0 × 10−10 m2/s,

DSb
= 2DSe

, DPb
= 2DPe

,

KM = 0.1 mol/m3 = 100µM,

δN = d − c = 0.02 mm, ne = 2.

(12)

The steady-state biosensor currenti∞ (the biosensor response) as well as

the time moment of occurrence of the steady-state current (response time) were

assumed and analysed as ones of the most important characteristics of biosensors.

In digital simulation, the biosensor response time was assumed as the time

when the absolute current slope value falls below a given small value normalised

with the current value. In other words, the time

tR = min
i(t)>0

{

t :
1

i(t)

∣

∣

∣

∣

∂i(t)

∂t

∣

∣

∣

∣

< ε

}

(13)

needed to achieve a given dimensionless decay rateε was used.

Consequently, the currentiR = i(tR) at the biosensor response timetR was

assumed as the steady-state biosensor currenti∞, iR ≈ i∞. In calculations, we

usedε = 10−6.

Figs. 4 and 5 show the substrate and product concentrations at steady-state

conditions (tR = 67 s) acceptinga = c = 0.1 mm,b = 2c = 0.2 mm,d = c + δN

= 0.12 mm,Vmax = 100µM/s, S0 = 20µM.
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Fig. 4. The concentrationS of the substrate at steady-state conditions,tR = 67 s,
a = 0.1, b = 0.2, c = 0.1, d = 0.12 mm,Vmax = 100µM/s, S0 = 20µM.

5 Results and discussion

Using numerical simulation, the influence of the geometry of the enzyme microre-

actors on the steady-state current was investigated.

Firstly, we calculate valuesi of the the biosensor current at different radiuses

of the enzyme reactor keeping all other parameters constant. Fig. 6 showsthe

dynamics of the biosensor current at six values of the radiusa. The parametera

varies from0.1b to b. All other parameters are the same as in Fig. 4.

Fig. 6 shows that the parametera significantly effects the steady-state current

iR as well as the response timetR. In the case of the continuous membrane

(a = b), the biosensor currenti is a monotonous increasing function of timet. At

all other cases whena < b, i is a non-monotonous function oft. However, the

maximal relative difference between the maximal current and the steady-state one

only reaches about6% ata = 0.12 mm.
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Fig. 5. The concentrationP of the reaction product. All the parameters are the
same as in Fig. 4.

One can see in Fig. 6, that the maximal and steady-state currents are non-

monotonous functions of the radiusa of the enzyme cell. To investigate that

effect in details we calculate the steady-state currentiR at different values of the

radiusb of entire cell changing the radiusa with a small step.

Fig. 7 shows the steady-state currentiR versus the ratiok = a/b at four

values of the radiusb : 0.1, 0.2, 0.4 and0.8 mm. Fig. 7 shows thatiR is a non-

monotonous function of the ratiok at all values ofb. In the case ofb = 0.1 mm, the

relative difference betweeniR atk = 0.7 and another one atk = 1 exceeds 13%.

The case whenk = 1 corresponds to a membrane biosensor. Since the heightc of

enzyme reactor was the same in all the calculations, then the volume of enzyme

microreactor is directly proportional to ratiok. Although, the biosensor, based

on an array of microreactors, is of less enzyme volume than the corresponding

membrane one, the array biosensor can generate even higher steady-state current
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Fig. 6. The dynamics of the biosensor currenti at different values of the radius
a (mm) of the enzyme cell, other parameters are the same as in Fig. 4.

than the membrane one.

The biosensor response considerably depends on the fact either enzyme ki-

netics or the mass transport predominate in the biosensor response [3, 4,27]. The

biosensor response is known to be under mass transport control if the enzymatic

reaction in the enzyme layer is faster than the transport process. In the case of

the membrane biosensors (a = b), the diffusion modulus (Damköhler number)σ2

essentially compares the rate of enzyme reaction (Vmax/KM ) with the diffusion

through the enzyme layer (DSe
/c2) [13, 18]

σ2 =
Vmaxc2

DSe
KM

, (14)

wherec is assumed as the thickness of the enzyme membrane. Ifσ2 < 1, the

enzyme kinetics controls the biosensor response. The response is under diffusion

control whenσ2 > 1. The model (3)–(8) applies to the enzyme membrane

biosensors whena = b is assumed.

At values ofDSe
andKM given in (12),c = 0.1 mm, andVmax = 100µM/s

the diffusion modulusσ2 equals approximately33.3. Consequently, Figs. 4–7

show the biosensor behaviour in the case when the response is under diffusion
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Fig. 7. The steady-state currentiR versus the ratiok = a/b at four values of the
radiusb : 0.1, 0.2, 0.4 and0.8 mm, other parameters are the same as in Fig. 4.

control.

To investigate the dynamics of the current in the case when the enzyme

kinetics controls the biosensor response, we calculate the biosensor current at 10

times thinner enzyme cells,c = 0.01 mm, keeping other parameters unchanged.

In the case ofc = 0.01 mm, the diffusion modulusσ2 equals approximately0.33.

Results of calculations are presented in Fig. 8. One can see in Fig. 8, that the

steady-state currentiR increases with increase of the ratiok at all values of the

radiusb.

The steady-state biosensor current is very sensitive to changes of themaximal

enzymatic rateVmax and substrate concentrationS0 [3, 4, 25, 27]. Changing

values of these two parameters, the steady-state current varies even in orders of

magnitude. Because of this, we investigate the influence of the geometry of the

biosensor cell on the biosensor response at different values ofVmax andS0. Due to

the sensitivity of the biosensor response to changes ofVmax andS0, we normalise

the steady-state biosensor current to evaluate the effect of the geometryof the

cell on the biosensor response. LetiR(k) be the steady-state current of an array

biosensor atk = a/b. ThusiR(1) corresponds to the steady-state current of a
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Fig. 8. The steady-state currentiR versus the ratiok at the thickness
d = 0.03 mm of the diffusion layer, other parameters and notation arethe same

as in Fig. 7.

membrane biosensor (a = b). We express the dimensionless normalised steady-

state biosensor currentiRN as the steady-state current of the array biosensor

(a < b, k < 1) divided by the steady-state current of the corresponding membrane

biosensor (a = b, k = 1)

iRN (k) =
iR(k)

iR(1)
, k = a/b, 0 < k ≤ 1. (15)

Fig. 9 shows the normalised steady-state currentiRN versus the ratiok at two

maximal enzymatic ratesVmax : 10, 100 µM/s and three substrate concentrations

S0 : 1, 10, 100 µM. In these calculations all other parameters are the same

as in Fig. 4. One can see in Fig. 9,iRN is a non-monotonous function ofk

at Vmax = 100µM/s while it is a monotonous function atVmax = 10µM/s.

The diffusion modulusσ2 equals approximately33.3 at Vmax = 100 andσ2 ≈

3.33 at Vmax = 10µM/s. Consequentially, the steady-state current is the non-

monotonous function ofk only in the cases when the biosensor response is sig-

nificantly under diffusion controlσ2 � 1. The substrate concentration effects the

normalised biosensor response slightly only.
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Fig. 9. The normalised steady-state currentiRN versus the ratiok = a/b
at different enzymatic ratesVmax: 100 (1-3), 10 (4-6)µM/s and substrate
concentrationS0: 100 (3,6), 10 (2, 5), 1 (1, 4)µM, other parameters are the

same as in Fig. 4.

6 Conclusions

The mathematical model (3)–(8) can be successfully used to investigate regular-

ities of the response of biosensors based on an array of enzyme microreactors

immobilised on a single electrode, where the identical microreactors are arranged

in a rigid hexagonal array.

In the cases when the biosensor response is significantly under diffusion

control (diffusion modulusσ2 � 1), the steady-state current is a non-monotonous

function of the ratiok of the radiusa of the microreactors to the half distanceb

between centres of two adjacent microreactors (Figs. 7, 9). Otherwise,the steady-

state current is a monotonous increasing function ofk (Figs. 8, 9).

In the cases whenσ2 � 1, the biosensor, based on an array of microreactors,

is able to generate a greater steady-state current than a correspondingmembrane

biosensor of the enzyme layer thickness being the same as the height of microreac-

tors (Figs. 7, 9). This feature of array biosensors can be applied in design of novel

highly sensitive biosensors when the minimization of the enzyme volume is of
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crucial importance. Selecting the geometry of microreactors allows to minimize

the volume of enzyme without loosing the sensitivity.
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