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Abstract. This paper investigates finite difference schemes for sgla sys-
tem of the nonlinear Schrédinger (NLS) equations. Sevgmdd of schemes,
including explicit, implicit, Hopscotch-type and CrankeKolson-type are de-
fined. Cubic spline interpolation is used for solving tintefting part of equa-
tions. The numerical results of the different solution noelth are compared
using two analytical invariant properties.
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1 Introduction

The nonlinear Schrodinger (NLS) equations describe many importarsigathy
phenomena and have applications in fluid dynamics, plasma physics and nonli-
near optics [1]. Recently considerable attention has been paid to theiaradlys
different finite difference methods for solution of the NLS equations[{fB]The
comparison of various methods forspecific applications of the NLS equatisn
performed in [5]-[7].

In this paper we investigate a system of NLS equations widely used to de-
scribe the nonlinear effects of the type Il second harmonics generatiboydical
parametrical amplification of laser pulses in a nonlinear medium [8]. Thersyste
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consists of three nonlinear differential equations involving complex funstiq,
Ay and As:
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Here A;(r, t, z) are complex-valued functions;, b;, ¢;, d; andk; are real con-
stants]=1, 2, 3;d3 = d; + ds.

The system of equations (1)—(3) should be solved in a rectangular domain
Q=1[0,R]x[0,T]x[0,Z] C RxRxR,wherer € [0,R],t €[0,T],z € [0, Z],
with the following initial condition:

2 _¢,)2
—r —2m2 Y

Art,z=0)=A e “I" .e T, AlecC. (4)

The functions4,(r, ¢, z) also satisfy the following boundary conditions:

Ai(r=R,t,z) =0, A(r,t=—00,2)=0,
OAr=062) _ prt = 4o0,2) = 0. ®)
or

Note, that the terms, containing partial derivativesbyn the equations
(2)—(3), correspond to the second-order Laplacians, expresseaar coordi-
nates. The equations (1)—(3) do not contain the polar angle varialoia,de we
are assuming radial symmetry. This assumption is also used in the derivation
of the invariants, where all the integration indomain is performed in polar
coordinates, premultiplying all the integrated expressions. by

The purpose of this work is to investigate four finite different schemes for
solving the system of NLS equations (1)—(3) and to evaluate their perfamena
and conservation of known analytical invariants. Some of these scheeres w
used to solve similar problems in [9] and we apply them to the system of equations
(2)—(3) here.

The paper is organized as follows. In the next Section 2 we describvethieo
presented difference schemes will be compared. Four finite differssteames
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will be introduced in Section 3. The conservation properties used foraimpa-
rison, will be presented in Section 4. Sections 5 and 6 describe the cimosk
problem and the performed numerical simulation. The discussion and esnatys
the obtained numerical results will be given in Section 7.

2 Comparison of finite difference methods

One of the problems when solving a system of differential equations is the lar
requirement on the computational resources. We can try to decrease tétiime
numerical computations by decreasing the number of the grid points. Butcafome
finite difference methods (usually explicit) have some analytical requirensants
the ratio of the grid steps. If we break these requirements, or come neairto th
limit, the precision of the resulting solution may suffer.

In the case of the presented system of equations (1)—(3), it is difficult to
derive the analytical restrictions on grid step ratios for a particular finiterdifice
scheme. Furthermore, we do not know the precise solution of the coedider
system of equations. So we are comparing different finite differerfoenses by
performing a series of numerical experiments with different grid step siads
comparing the invariant properties which we are able to derive analytically.

We chose to perform the comparison by using the numerical simulation of
the laser pulse compression using the type Il second harmonics gengriagion
nomenon [10]. First we choose some fixed number of temporal and sidjzd,
required for this application. These steps will be common for all experiments.
Then, we perform a series of experiments with increasing number of lsgtatis.

In total, four series of experiments were performed, one for each fiifizahce
scheme: explicit, Hopscotch-type, implicit and Crank-Nicholson type. At the
end we try to compare three quantitative characteristics of each finiteetitfer
scheme: computation time, total energy and the movement integral.

3 Finite difference schemes

We consider four types of finite difference schemes for the solution ofyke
tem of NLS equations (1)—(3): explicit, implicit, Hopscotch-type and Crank-
Nicholson-type. First, let us introduce a uniform grid with the staps At and
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Az in the domainy and the following notations on this grid:

Ar=R/N,, r;=1iAr, i=0...N,, (6)
At=T/N,, t;=jAt, j=0...N, 7)
Az=Z7/N,, zy=kAz, k=0...N,. (8)

Let us also define the set of notations for the grid functions on two subséq
grid layers byz. All grid functions are defined equally for all functiont;, A
and As, therefore in the following definitions we will omit the indéx= 1, 2, 3.
The index will also be omitted in constariis ¢; andd;. So please keep in mind
that every grid function and constant symbol denotes three diffesetibns or
constants corresponding to the equations (1)—(3).

p=p" =p7(2) = Ai(ri, tj, 2), 9)
p¢=pY, if i+ isanevennumber (10)
p°=pY, if i+j isanoddnumber (11)

p=7p" =p"(z+ Az), (12)

Pt~ 2p 4 pi!
L 13
Pt AL2 ) (13)
ri1 (@ =p)—r_i(p—p)
DPrr = +2 2 ) (14)
B Ar2
Y= SOU = ¥1 (Al (Th tja Z)a A2(’ria t]7 Z)? Ag(’f‘i, t]v Z)) . (15)

Herey; are nonlinear functions, representing the nonlinear terms dftthequa-
tion:

Y1 = A;Agefmz, P2 = ATAgefmz, Y3 = AlAzemz. (16)

We will also need grid functions on the intermediate layes: p/ = p¥/(z+
Az/2).

When defining the finite difference schemes for the solution of the system of
NLS equations (1)—(3), we will replace differential operators of theagigns by
the corresponding finite-difference approximations, except the termtigtfirst

derivative byt: a; %
The termSal% represent the time-shifting components of the equations

(1)—(3). Many implementations of the NLS equation solvers use the fasigFou
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transform (FFT) to solve the time-shifting equati%é + a%—‘;‘ = 0. We found

that FFT method does not work well when combined with some finite difference
schemes [10]. Instead of FFT, we chose to approximate the time-shifting usin
a the cubic spline interpolation [11]. To incorporate the time-shifting componen
into the solution of the system of equations (1)—(3), we will perform cuplics
interpolation after each step of finite-difference calculations.

3.1 Explicit finite difference scheme
We will consider the following explicit finite-difference scheme:

Pl gy + Spir = ide. (17)
Az r
When applying this scheme to the system of equations, we compute the
values of the grid functiong on the next layer by using the values of the grid

functionsp which are already known.

3.2 Implicit finite difference scheme

The implicit scheme looks quite similar:

pP—p , . ic. .
A, Tibpat b = ido. (18)
z r
To compute the values of the grid functiopiswe need to solve a system of
nonlinear equations, because the grid functiprese used as arguments of the

nonlinear functions.

3.3 Crank-Nicholson-type scheme

The Crank-Nicholson-type scheme is also an implicit finite difference scheme
which uses the average approximations compared to the simple implicit scheme
(18):

id , .

p—p ib_ o~ ic_ o id
A + 2(ptt+ptt)+2r(prr +pir) = — (P + p). (29)
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3.4 Hopscotch-type scheme

Hopscotch-type difference scheme splits the computation of new valuesinto f
steps:

e €

9P —zp + ibpf, + i?cpﬁr = idp®, (20)
o P e 4 %Cﬁ,zr — idg°, (1)
Sl U ibp?, + %ﬁo = idg°, (22)
o7 A‘f i ibps, + %ﬁe = id@". (23)

According this scheme, even and odd grid points are computed separately.
First, using known values gf, the values at even grid points on the intermediate
layer (p¢) are computed. This system of difference equations (20) is explicit, since
it uses only the known values on the previous layand the grid functiop occurs
only in linear expressions. After solving this system of equations, we laticdive
even values and the values on the border of the intermediategdayer

The second system of difference equation (21) defines the way thgrintid
pointsp° are computed using odd points of the lower layer and already known
even points of the intermediate layer. Here we have to solve the system-of non
linear equations with three variables, because the unknown variablas iocc
nonlinear expressiong. We solve this system of equations using the method
of simple iterations.

The third and the fourth system of difference equations are used to tempu
grid points of the upper layep). They are equivalent to the first ones with the
exception to the order the grid points are computed: first the odd and themahe
ones.

Let us note that the finite difference scheme (20—23) leaves out thexippr
mation of the time-shifting termsl%. So we should keep in mind that after
the numerical application of each of the steps (20-23) we should petfeem

approximation of the time-shifting terms.
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4 Analytical invariants

Now that we have described different solution methods, let us definaéhgiaal
invariants which will be used for comparison of these methods.

4.1 Total energy conservation law

Energy conservation law can be obtained from the system of differewfigitions
(1)—(3). First we multiply every’'th equation by the corresponding conjugate
function A7, then add the corresponding conjugate equation multipliedipy
Then, by adding three resulting equations and integrating the sum in theifalow
domain:r € [0, R], t € [—o0, o], polar angles [0, 27|, we get the expressions
which are constant for all values ef Let us denotel; = }oﬁAl\Qrdrdt. Then

—o000

we get the following total energy conservation law:
I =1 + I + I3 = const. (24)

4.2 The movement integral

The movement integral can be obtained performing similar procedures t® thos
used to get energy conservation law. If we multiply evEtly equation by the
corresponding conjugate function’s first derivative zb% and then add the
corresponding conjugate equation multiplied %ﬂ then after integration we
get the following invariant:

>~ R
[ Ai]* O
J //;< T rdrdt = const (25)
—000

Hereg, is an argument of the complex functiod; = | 4;|e’?". Also note that for
real-valued initial conditions (4)onst = 0.

5 The model problem

To see how the precision of the particular method depends on the grid w&ps,
chose to perform a numerical simulation of the second harmonic generatian u
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ultrashort laser pulses with inter-pulse delay (see [10]). The followargmeters
in equations (1)—(3) correspond to this particular model problem:

a; = 1.02665, as = 1.0, as = 1.01544,
by = 1.1455 - 1075, by = —1.148 - 107, by = —6.9125 - 1079,
c1 = —2.83146 - 1078, ¢y = —2.89722-107%, 3= —1.43866- 1075,
dy = 0.2425, dy = 0.2481, ds = 0.4906,

x = 0.0.

The initial values (4) were chosen as follows:

AY =03, AY=03, AJ=00,
t1 =2.0, to=27 t3=27,
71 =10, m=1.0, m3=10,

w; =03, wy=0.3, w3=0.3,
S =2

6 Results of the numerical simulation

The finite domain with the upper rangé&s= 1.0, T' = 40.0 andZ = 40.0 was
used (see definitions (6)—(8)). Since the functions with the initial condidyn (
form Gaussian-like structures, their absolute values outside some [fEd&;]
are very small and do not need to be taken into account. Therefore weedo
computations only in a fixed-sized randéy — Ty = 5.0 and we shift that range
[Tv, Tn] accordingly when moving to the next step by Thus when computing
we use the following temporal step:

At' = (Tn — To)/Ny, t;=To+kAz+jAt', j=0...N. (26)

The radial and temporal step numbers of the performed simulations were
chosen accordinglyV, = 100 and N/ = 1000. These were the minimum
numbers to be able to analyze the obtained solution of the particular application
(the compressed pulse). The simulation was performed along the spatial axis
For every differential scheme we performed 6 experiments with differemtoer
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of steps along the axis. with N, = 200, N, = 400, N, = 600, N, = 1000,
N, = 2000 and N, = 4000. Figs. 1-4 show the conservation of the total energy
and the movement integral for each finite-difference method.

0.0505 - 0.01
NZ=201 ——
0.05045 r NZ=401 — b 0
0.0504 | NZ=601 - - ] -0.01
NZ=1001 002 |
0.05035 | NZ=2001 ------- 1 E
0.0503  NZ=4001 ------- ] -0.03 ¢
0.05025 | W 0.04 ¢
: -0.05 |
0.0502 | 006
0.05015 .07 |
0.0501 | -0.08 f
0.05005 | -0.09 |
0.05 S 0.1 : : : : : : :
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
z z

Fig. 1. Explicit finite difference method: total energy {)edind movement inte-
gral (right) with different step numbers.
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0.05016 0

0.05014 | -0.002 |

0.05012 | -0.004 |

0.0501 | -0.006 |

0.05008 | -0.008 | NZ=201 ——

0.05006 | 001 Nomeor

0.05004 f -0.012 | NZ=1001

0.05002 | -0.014 | NZ=4001 -~

0.05 R -0.016 L —
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
z z

Fig. 2. Hopscotch-type finite difference method: total ggeteft) and move-
ment integral (right) with different step numbers.

Although the number of grid points between the different experiment series
was equal, there were also huge differences in computation times required to
perform the computations. Table 1 shows the computation time in seconds for
each performed experiment. The computations were performed on a 2.4 MHz
Intel Pentium 4 processor based workstation. The algorithm for solufidimeo
equations was programmed in programming language C++ using Blitz [12] — a
library for arrays in C++.
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Fig. 3. Crank-Nicholson-type finite difference method:atatnergy (left) and
movement integral (right) with different step numbers.
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Fig. 4. Implicit finite difference method: total energy ¢ledind movement inte-
gral (right) with different step numbers.

7 Analysis and discussion

According to the data in Table 1, the explicit finite-difference method is thedas
method for the solution of the system of equations (1)—(3). Its drawbabkist
has the worst conservation of the movement integral (Fig. 1, right) in cosgpa
with all other methods in consideration. The conservation of total enerdgas a
not very good at low number of grid points, but it gets better at higher eusnb
(Fig. 1, left).

The Hopscotch-type finite difference method is a mixed method. It uses both
explicit and implicit steps in the computation process. Therefore itis slightly more
computationally-intensive than the explicit method. But it conserves the total
energy and the movement integral much better (Fig. 2). With the high numbers
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Table 1. Computation times in seconds

N, Explicit Hopscotch  Crank-Nicholson  Implicit
200 903 1483 6622 4691
400 1805 2893 9952 7082
600 2722 4241 13571 9261
1000 4610 6723 19335 13719
2000 9171 11838 35793 23783
4000 18300 23117 60263 43341

of grid points (VZ = 4000) it even comes near to the precision of the implicit
methods (Figs. 3and 4).

The computations using the Crank-Nicholson finite difference scheme are
most computationally intensive, but they are also most precise accordihg bo
considered invariants. They are equally conserved even at the leabess of the
grid point numbers (Fig. 3).

The implicit-type method is faster than the Crank-Nicholson-type. But when
decreasing number of grid points, the solution starts to lose its total energy
(Fig. 4, left).

8 Conclusions

As the summary of the characteristics of the considered difference ssheene
can say that:

e Methods which use explicit computations (explicit and Hopscotch-type) are
generally faster, but provide considerably worse precision for atrqular
application. Because of their speed they could be successfully usgabfor
typing and testing of the simulation programs. The fastest one is the explicit
method.

e Ifthe precision is of major concern, the implicit methods should be used. The
Crank-Nicholson-type method is the most precise one.

e The other two methods (Hopscotch and implicit) can be recommended for
other cases with special requirements. They are in the middle according to
the precision and speed scale.
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