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Abstract. A new information transmission concept based model of aktzt

media with continuous outputs of the model's cells and \@eigexcitation

time is proposed. Continuous character of the outputsgags infinitesimal
inaccuracies in calculations. It generates countless purabthe cells’ ex-

citation variants that occur in front of the wave even in tleenlogenous and
isotropic grid. New approach allows obtain many wave pragiag patterns
observed in real world experiments and known simulatiodisgli The model
suggests a new spiral breakup mechanism based on tensidngractually

deepening clefts that appear in front of the wave caused éyampropagation
speed of curved and planar segments of the wave. The anhlgsisthat the

wave breakdown and daughter wavelet bursting behavioiilggss inherent

peculiarity of excitable media with weak ties between thiscshort refractory

period and granular structure. The model suggested isdddatween cellular
automaton with discrete outputs and differential equabbesed models and
gives a new tool to simulate wave propagation patterns ifiepgisciplines. It

is also a new line of attack aimed to understand wave burgtiregpagation and
annihilation processes in isotropic homogenous media.

Keywords: arrhythmia, bursting, cellular automatons, chaos, dargtavelets,
spirals, wave breakdown.

Introduction

Excitable media are spatially distributed systems which have the ability to pro-
pagate signals without damping. Such system can be considered aspao§rou
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individual elements tied to each other. Each element can transfer the itii@nma
to its neighbors. A signal over a certain threshold initiates a wave of activity
moving across the excitable media [1, 2]. Traveling waves have beenvellse

in autocatalytic chemical reactions, biological cells and tissues, ecologypimete
rology, cosmology and seismology [2]-[8]. In real world applicatiomsnputer
simulations and experiments performachumerocan yield information that can-
not be obtained in any other way [9].

Despite the obvious differences, signal propagation in all excitable media
share many characteristics. Underlying mathematical modes to analyze kexcitab
media in chemistry and biological tissues are systems of differential equations
and cellular automata (CA) [1, 3, 5, 9, 10]. Helpful systematization of ighy/s
phenomena as well as computerized numerical models of the wave propagatio
uniform and turbulent wave processes in excitable media have beemfwésn
monograph [3] and especially in Chapter 12 written by Winfree. Goodwesfe
modern cellular automaton based models is presented in Gil Bub thesis [2].

Mathematical models of excitable media can be formulated as systems of
differential equations or finite difference equations which characteheerate
of change of certain variables over the time. Differential equations die iva
absolutely homogeneous media. Very popular are Fitzhugh-Nagumo dygamic
and Hodgkin-Huxley [9, 10] systems of differential equations originallygested
to analyze a quantitative description of the membrane current in nerve.

Accurate simulation of traveling waves becomes computationally expensive
as complexity of the underlying models increases. If a large number of kypatia
discrete points are required, simulations may require a prohibitive amoaobof
puter time [9, 11]. In addition, the variables of the model are mutually dep¢nde
Changing one variable can change more than one characteristic of thé. mode
Therefore, complex models are not appropriate for generating albpenmgsults
applicable to all excitable media. Moreover, real media is hot homogeneous.
Therefore, often excitable media is simulated using discrete time models, called
cellular automatons [1, 11]. These models consist of a grid of nodes.rstn fi
models, each element in the node (cell) could exist in one of three stattisgres
excited or refractory. There is a set of rules that determine future sihtbg
cells in the grid based on the present state of the grid. A resting cell updates
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its state in reliance on the activity of its neighbors. The excited and refyactor
cells renew their state based on the element’s history. A resting cell remains at
rest until a certain number of neighboring cells become excited. In sws#) ca
the cell becomes excited in the next time moment. The excited cells become
refractory and the refractory cells return to rest. Thus, cellular autormatmlels
simplify the dynamic description of a system by mapping the systems behavior
onto a few discrete states. It is a level of abstraction over differentiztens

as a number of underlying variables are encompassed into a single stag. Th
are more intuitively transparent and computer simulations run far fastee Th
simplicity of cellular automata makes them popular as models for physical and
biological systems [1, 2].

Cellular automatons research in excitable media was first investigated in a
biological context by Wiener and Rosenblueth [6], who modeled wavesimg
around the obstacles in models of excitable cardiac muscle. The first campute
simulations were performed by Farley [12], who laid out virtual neuralvoek
(NN) on the rectangular grid, utilized 0 or 1 outputs of each cell and medsur
time in periodic time moments. Moe, Rheinbolt and Abildskov [13], Balakhovskij
[14], Krinsky [15], Greenberg and Hastings [16] developed the @Araach
further. In later research, models where a number of excited statesemtiem
than one and more than one neighbor must be active in order to induckng res
cell to the excited state were developed. A weighing function where cdlitve
contribution to excitability decreases as a function of distance from the wave
front and the relative refractory period (where cells have a higheshimid than
resting cells but can still be excited) were introduced. Gerhardt andagolés
[11, 17] make an excitation threshold a decreasing function of time. Mardis
Hess [18] and Kurrer and Schulten [19] randomize the grid in circulaqaare
neighborhoods. To diminish difference between the differential equsatoal
cellular automata approaches continuous differential equation models tzelge
used in each element of the CA grid [2, 20, 21].

Differential equations and cellular automata methodologies allow to model
a number of signal propagation patterns observed experimentally in sagal
excitable media: regular uniform of wave propagation outwards fromnéece
of starting excitation, spiral waves (rotors) generation after their initiatown,
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hitting the wave a non-conductive obstacle, disorganized activity, brolees
propagation in one or several directions, annihilations of two colliding wanel

their breakdown as they reach border of excitable media or near a tip of the
spiral. It was found that wave propagation speed depends on rgcive of

the medium. The speed near the spiral tip is influenced by a shape of the tip
and excitability of the media. The wave speed depends on a curvaturevedviee
front. Relationships between spiral core size and period for statiopaatswere
established analytically [22]. A number of realistic 2D and 3D models that expla
regular and chaotic phenomena in chemical reactions and mammalian heart wer
developed [8].

Nevertheless, in spite of great number of CA and differential equatisada
models a number of important questions remain to be unsolved. Practical appli-
cations of wave research have had little therapeutic impact to date in théharrhy
mia problems [23]. Most of the spiral solutions assume that excitation occurs
much faster than recovery, which is not valid in real systems [11]. lthgfic
models, the spiral birth are caused only by specially planned artificial &roisa
[24]-[26], assigning a random probability for non refractory gridnp® to fire
output signal [1, 2], a presence of non-conductive obstacleshoorogeneities
in refractory period, the excitation threshold or conductance of excitabldia
[6, 7, 27]. In practice, however, spontaneous birth and terminatiopixzi svaves
was observed. Mechanisms of wave bursting and break up, hovievert, well
understood [23, 28, 29].

One of possible ways to increase explanation of numerous experimental ob
servations of the wave propagation patterns is utilization of different mygdes
to simulate the same behavior of the wave initiation, propagation and breakdown
Possibly, a large number of models could suggest diverse mechanisnesef th
phenomena. Another way is to develop models that are intermediate between CA
and differential equation based models.

Characteristic peculiarity of excitable media is that, not the physical signal,
however, the information transmitted from one media element to other ones is
very important. An objective of present pap& to consider the wave initiation,
propagation and breakdown from a point of view of information transmissio
Granular artificial neural network [30] based models will be consideCeatrary
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to standard CA approach with discrete outputs of the automaton, we utilize sin-
gle layer perceptron (SLP) with smooth sigmoid function that gives contsuou
outputs.

The SLP is the nature inspired model of information processing and trans-
mission. Continuous cells’ outputs, varying magnitudes of the weights (connec-
tion strengths between the neurons) used to calculate weighted sums rafl seve
adjacent cells, the smooth activation function award the SLP certain salitgr
properties [31]. Only in a limit where the weights are large, the activatioctiom
saturates and begins to behave like a discrete threshold function with oQtputs
and 1. Theory shows that magnitudes of the weighs are very importarfinmde
properties of classification and prediction rules obtained while training thie SL
[32]-[34]. An increase in perceptron weights also affects the nesvabiity to
learn new information [35]. Encouraged by these findings | tried not toemov
away too far from basic neuron model in constructing cellular models dticdate
media. One of important particularities of present analysis is utilization of very
simple idealized 2D models that assuaBomogeneous and isotropic medium.

The paper is organized as follows. In the second section 2D cellular media
model is introduced and used to analyze stimulus propagation. In third séction
analyze an influence of the magnitude of the weights, refractory permdther
media’s parameters. New explanation of the curvature effect, sponiamewve
birth, development of the wave fronts and breakdown in isotropic honmagen
grid is suggested. The fourth section summarizes the model and its features.

2 Two dimensional excitable media model

Basic model of CA consist of a grid of nodes spaced on a regular gmd. |
new model, each element (cell) in the node is represented by the SLP. Cell-ce
interaction is limited to adjacent neighbors. The SLP has a numberpjsafy
inputsxy, z2, ..., z,, ONe outpuib and performs operation = f(arg), where

p
arg = Y w;z; is a weighted sum of inputs, and, wo, . .., w, are the weights

=1
(connection strengths between the cells).
In isotropic excitable media model, the weights are equal among themselves,
lL.e. w; = wy = ... = wp, = w. In anisotropic model some of the weights can
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differ. Here coefficient (weights); determines the connection strength between
s-th node and its neighbor ifxth direction. Itis assumed that bilateral connection
strengths are equal. In the hexagonal maglet, 6. It means that each cell transfer
their output signals to six neighboring ones. Exceptions are cells on alagun

of the grid. Activation (transfer) functionf(arg), is a non-linear soft-limiting
transfer function which saturates at its both ends. We will make use of sigmoid
function f(arg) = 1/(1 + exp(—arg)) habitually utilized in artificial neural
network studies. This function is bounded from underneath and on topsid
equal or close to zero if the weighted suimg, is strongly negative, and is close

to 1 if this sum is large positive.

The non-linear character and saturation of activation function are very
important elements of the mathematical model. To make use of this model to
simulate and analyze signal propagation in excitable media, we assume ghat
can take onlypositive values For this purpose a humber of alternatives of the
function were considered. In this paper we report results obtained tilitation
of following function:

Ja/(T+exp(=Bxarg—7)) —n if arg> A*,
flarg) = {O otherwise @)

whereA* > 0 is asensitivity threshold.

Constantsy = 1.333, 8 = 5, v = 0.4 andn = —1.333 were selected
specially to have the weights varying betweer) and1. Then, we have simple
interpretation of the transfer strengtta, This function gives the output signal
almost zero if argumentrg, is small andA* = 0. We have the output signal
close tol, if the weighted sunarg is large (Fig. 1). Following observations from
physics and biology a sensitivity threshald is introduced which gives an addi-
tional handle that can help to control the wave propagation processcitalgle
media model, output signal from theth elementos = f(args), is multiplied
by weightw, and after time moment;,..¢, productso; x w, (s =1,...,p) are
transmitted tgp neighbors. In new model the signal transmission time depends on
strength of output signab. To definet;...st, We followed observations of Spach
[36, 37]: “the longer is delay in transfer of the depolarization phaseehttion
potential across the gap junction, the greater the cell-to-cell chargdetnaats
via the gap junction”. Similar observations can be found in chemistry (see e.g.
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Fig. 1. Dependence of output and delay in firing output signdhput, weighted
sumarg.

Chapter 13 written by Bowers and Noyes in [3]). Therefore, in new madidel,

we assume that the cell discharges its output signal after certain time pexiasl th
proportional to output signal;(arg). This particularity indicates that we have a
“negative feed-backthe larger is excitation signakrg, the later the cell will fire

out its output signale. In cellular automata models, signal transfer timg,.s,

is discrete. Therefore, the cell’'s output signat 1 corresponds to maximal delay

in effective transmission timen. The output’s signal intervaD, 1) is splitintom
equal intervals, corresponding to time moments, 2, . .. ,m— 1. Minimal trans-
mission time is equal to, i.e. the cell does not transmit signalfifarg) < 1/m.
Minimal transmission time may affected also iy. Discrete time measured

in signal propagation steps apdoportionality of the time delay to the strength
of the signalare important elements of the model. The experiments showed
that utilization of other schema (fixed or negative) of the time delgy,ss, on
output,o, changes the characteristics of the model essentially. Direct dependenc
however, allows obtain many of the wave propagation patterns descritigd in
literature. To speed up the calculations maximal interval of variations of cell
inputs (0, p) was split into1000 x p values and a look-up table was used to
find o = f(arg). The look-up table produces one more additional stochastic
component.
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An important parameter traditionally used in all cellular excitable media mo-
dels is the refractory period,.;;, a time when after excitation, the cell in the
node cannot be excited. After the refractory period ends, the nadbecaxcited
again. In order expose all features of the media model with continuoustsutpd
varying signal transmission time, we consideaggriori fixed absolute refractory
period, t,.¢, purposefully. In this paper we did not consider presence of relative
refractory period.

Below we enumerate parameters used to determine the model:

e p, andp,, dimensions of 2D model,

e p, a number of neighbors, and the grid’s shape,

e wi,ws,...,wp, the connection weights,

e concrete parameters of transfer functioa: f(arg),

e A*, sensitivity threshold,

e argsiart, Starting excitation, and position of starting cell (or cells) in the grid,
e m, maximal delay in effective signal transmission time,

e t.f, refractory period,

e arule used to determine excitation ting, .

Contrary to a large number of ionic currents, typically utilized in differential
equations based models of biologic tissues, the parameters enumeratetiammyv
clearer interpretation for a layman.

lllustration. In Fig. 2 we depicted first4 steps of wave propagation in a
hexagonal homogeneous media model composdd of 7 elements withw =
0.72. A central nodeS, on bottom border (marked by “star”) is excited. In this
and other experiments reported in this papetys..,t+ = 0.744 and excitation
of the starting cell (or cells) is performed only once. After four time moments
(transt = 4) the starting cell S, fires its output signab = f(0.744) = 0.8279.
This signal is transmitted to four neighbor celis,3, v, n, marked by “points”.

All four cells are exited at the same time moment by signals of the same strength,
o x w = 0.8279 x 0.72 = 0.5961. After next four time steps, cells, 5,v,n

fire out their output signale = f(0.596) = 0.6909. These signals excite
simultaneously seven neighboring nodes marked by “pluses”. Foursrmate

of seven new ones are excited by single neighboring cells. Three &elbsand

C, however, are excited by outputs of two adjacent cells (excitation is mémked
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Fig. 2. First14 time steps of signal transmission in hexagonal grid congoe
11 x 7 nodes.

arrows in Fig. 2) and accumulate double starting excitation,= 2 x 0.6909 x

0.72 = 0.9949. Each of remaining four cells are excited by one single cell,
arg = 0.6909 x 0.72 = 0.4974. It means that the three cella (B and C)

fire out their excitation after five time moments {,ss = 5), and remaining four
ones {4, B, C, D) — earlier, after three time moments,..st = 3). Thus, the four
nodes mentioned excite ten neighboring cells marked by “circle” simultaneously
These ten cells fire their outputs simultaneously after next two time moments
and become refractory. Thus, outputs of cellsB and C were outflown by
neighboring ones. This time, the outputs of cellsB and C did not affect
neighboring cells. The ten next cells (marked by circles) excite 13 following
cells @, o, ...,l,p) after two time moments. Four cells, e, i andp, are excited

by outputs of the single cells and fire their outputs just after one time moment
(tiranst = 1). Each of remaining nine cell$, ¢, d, f, g, h, j, k, andl (marked

by “pluses” and “squares”) get their excitation from two neighboringscand
produce their outputs later, after four time moments.

This example illustrates that in the simplest hexagonal homogeneous media
model, just at the very start we already can haweast variety of variantsf the
nodes’ excitation times and the signal strengths. With an increase in radhss of
wave, a humber of the variants are increasing. Additional stochastic cwm{so
are introduced by the inaccuracies caused by the calculations, orgatizn
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cycles in computer calculations, utilization of the look-up tables to determine
outputs,o = f(arg), and the cells’ firing out time moments.

3 Signal propagation in homogeneous 2D media

3.1 Irregular propagation speed and the curvature effect

Summation of continuous cells’ outputs, nonlinearity of the transfer function,
o = f(arg), and dependence of firing out time on the cell’s excitation strength
are very important differences of new cellular excitable media model in compa
son with known ones. Information transmission principle based apprdagisa
obtain many wave propagation patterns observed in real world experigeats
simulation studies: single, letter," shaped and multi-armed spirals initiated
by temporary obstacles, nhon-homogeneities in conduction strengthesctosfr
period, wave breakup, e.t.c. Our main concern is elucidation of waveagesp
tion mechanisms that cause spontaneous birth, development and breaddow
traveling waves.

The illustration in Fig. 2 shows that in direction of the angles of the hexagonal
fragment of the grid, onlpne celltransmits its excitation further. On a straight
line between the angles of hexagonal figureo cellsaffect an unexcited cell
ahead of the wave front. Dependence of the excitation time on the strength
of output signal (Fig. 1) causes that signal propagation time along the ahg
hexagonal figure should be higher as on the line connecting two anglasider
the model withw = 0.95 andm = 6. Let the cells’ output be = 0.9. Since
m = 6, it fires its output signal aftef;...sr = 5 time moments irrespective was
this cell excited by one or by the two cells. df = 0.72, the cell fires its output
after t,.anst = 3 time moments if it was excited by one cell. If this cell was
excited by two neighboring cells, then the signal transmissiontjme: = 4. In
this way, the differences in the wave propagation speed along divieessiohs
cause a curvature effect.

Fig. 3ab demonstratéise curvature effedh isotropic hexagonal model. Here
a number of cellsS, situated on a straight line, was excited at the start. We see the
wave fronts (just excited cells are marked by bold points) and the tails catpos
of refractory cells (marked by small points) after 99 time steps. If connetits
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(the weights) between the cells in the grid are stromg=£ 0.95, A* = 0.6),
excitation propagates uniformly outwards along four directions determiged b
geometry of the grid and the excitation lise(Fig. 3a). Wave propagation speed
in all direction is the same. Strict geometry of the wave is being kept. No cuevatu
effect is observed. In a mid of the excitation line, we have two planar wines
propagate upwards and downwards. If the connection ties betweerlthenc

101

Fig. 3. Demonstration of curvature effect in isotropic hgaal grid when a line
of cells (S) was excited: alv = 0.95, terr = 54, A* = 0.6; b) w = 0.72,
tretr = 54, A* = 0.3 (m = 6).

the grid are weakeru{ = 0.72, A* = 0.3), the differences in excitation time

of the cells appear. Differences in the excitation time shatter strict geometry
of the wave (Fig. 3b). In such circumstances, weak ties between the oells a
“broken”. Variations of wave propagation speed cause small clefts invéve’s
front. Even in homogeneous and isotropic grid we obtain speedy ahadist
wave propagation Two planar waves propagate upwards and downwards from
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the mid of the excitation line approximatelys times slower and have the same
velocity as in the example 3a with = 0.95.

3.2 Angular spread of the excitation

More details of radial wave propagation are explained in Fig. 4. In Fige 4ee

slow speed

t

_/ fast
%} very slow

Fig. 4. Wave after = 208 time moments in isotropic hexagonal grid when
central cell 6) was excitedq@ = 0.9, A* = 0.6, t,orr = 24, m = 6). Wave
propagation speed depends on local configuration of the.wave

a wave aftet = 208 propagation steps in isotropic hexagonal grid with rather
strong weights (connection strengths between the grid's elements) whealce
cell, S, was excited® = 0.9, A* = 0.6). Large weights, resist the “tension

due differences in wave propagation speed” and are trying to maintairritte s
geometry of the wave. In six angles of the wave caused by hexagonetust of

the grid, the wave has a tendency to move outwards quicker as in the middle be-
tween two adjacent corners. In an example of Fig. 3a, a little bit strongghtge

(w = 0.95) succeeded to keep the geometry strict. In present example, however,
the weaker weights{ = 0.9) cannot resist the tensions due to the differences in
the wave propagation speed. Continuous character of the cells’ ougndsages
numerous cell excitation patterns that occur in front of the wave. THati@rs

in cells’ excitation strengths cause different wave propagation speeel wave

front is breaking from time to time. In Fig. 4 we see multiple breaks. If refrgcto
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period is small, the break of the front can cause gradually deepenirigrctee
wave. The cleft helps the wave excitation to penetrate backwards, békindve
and trigger daughter wavelets. In such situations, instead of “brokgHeirce of
a castle” shaped wave we obtain beautiful “snowflakes”, “gearwhests

3.3 Two mechanisms of “omega” wavelets

In case of small and moderate weights, we have multiple clefts. Therefere, w
obtain almost radial wave propagation outwards of the starting cell. Hewfry
period is sufficiently short, we have gradually deepening cleft. Excitateamep
trates backwards and triggers spontaneous burst of a secondazy wa

Fig. 5abc illustrates three early moments of this phenomenon. Airdw
Fig. 5a points to small cleft in the wave’s front. Arrol& points to a single
excited cell inside of the refractory cells behind the front of the waveowin

50 60 70 80 90 50 60 70 80 90 50 60 70 80 920

Fig. 5. The wave breakup and daughter wave initiation inrignt hexagonal
grid with weak connection weights between the celis£ 0.729, A* = 0.3,
trefr = 54, m = 6): a) the wave after = 312 time steps, b} = 316; ¢) ¢t = 343.

Fig. 5b indicates two excited cells that peer behind the refractory cellstainn
spreads forwards and to both sides of the excitation stem. New waveleb(ig

is composed of a pair of mirror-image spiral waves and reminds letteot a
“mushroom of the smoke” one observes after an explosion of a poWsnbe.
Therefore, we will call it'an omega wavelet’ Fig. 5¢ shows that in the daughter
wave, the cells’ excitations propagate backwards up and down. In fotieo
simulation studies, we considered the models where signals of the cells excitation
signals during two time moments were accumulated. In such models, we observed
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more smooth symmetric patterns of the omega wavelets.

In further wave development, both spiral of the letter’ ‘shaped wavelet
contact, annihilate each other and instigates another cleft. The new clgérgig
one more omega wavelt, e.t.c. Simulations show that irrespective to the lengths of
refractory period, this part of excitable media becomes a pacemakewahedet
generation period mainly is determined by refractory period of the media.

3.4 The wave’s breakup

The information transmission model suggests two cleft birth mechanisms that
cause wave breakup. First of them is based on gradually deepenits)inle

the wave caused by uneven propagation speed of curved and ptgmaerss

of the wave and short refractory period. The second one is baséie@hape

of the omega wavelet composed of two spirals. In both cases, the clefitaifac

the excitation signal penetrate through layer of refractory cells and initiate th
daughter wavelets.

At boundaries of the grid, the cells are connected to smaller number of adja-
cent ones. Therefore, after colliding with the boundaries the waveashualfithe
omega wavelet emerges close to the boundary of the grid, the boundeaputa
out one part of the spiral. In such case, we obtain one armed spirah.l6&we
have spiral wave started by the cleft in original wave in a vicinity of the lefftdim
edge of the grid. In figure we see: original waug,triggered by excitation of a
single cell close to left bottom corner of the grid, two loops of secondgainals
wave, A, instigated by the cleft in wave® front near the bottom edge of the grid.

In Fig. 6a we see also the third spiral (waBethree loops in left bottom corner

of the grid). This wave was initiated by the cleft in front of the second lobp o
wave A. At the very edge of the left border, we observe a birth of fourth §pira

C. Later the fronts of the wavelets’ are breaking further producingriegation

and complicating the activation pattern. The region of chaotic behavioughgd
extends to the whole medium, leading to complex patterns composed of many
wavelets of various sizes (Fig. 6b). The analysis hints that the wavkdoea

and the daughter wavelet bursting behavior possibly is inherent petyulidr
excitable media with weak ties between the cells, direct dependence of thaé sign
transmission time on the cell's output, the short refractory period and lgranu
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Fig. 6. a) — a wave after= 312 time steps initiated by initial wave breaks close
to the edges of isotropic hexagonal grid; weak connecteslietween the cells
(w = 0.6, A* = 0.1, tyery = 28, m = 6): O — original wave initiated by
excitation of single cell close to left bottom corner of thédg A — two waves
of secondary spiral that initiated third spiral waB€three loops in left bottom
corner of the grid)C — birth of fourth spiral on edge of left border of the grid;
b) — development of Fig. 6a — the wave after 3380 time steps: spontaneous
wave initiations at borders and inside the grid, their mesing) and break-down.

structure.

4 Discussion

New cellular model of excitable media with continuous outputs and varying cells’
excitation time was proposed. The model suggested gives insights cimgcern
the spiral wave formation in isotropic homogeneous excitable media. In @alys
of the wave birth, propagation and destruction, we think basically in terms of
information. It is the information that is important, regardless of the manner
in which it is acquired. Therefore, the single layer perceptrons were utilized
to simulate information transmission from of one element of the grid to other
ones. Contrary to known cellular automaton models of excitable media with
discrete outputs of the cells, in the new model we have continuous outpuss. Th
factor produces countless number of local excitation patterns in fraheafave.
Infinitesimal calculation inaccuracies initiate minute differences and can trigge
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spiral waves and produce chaotic wave propagation in the media. Gaarcas
allows guess that bursting behavior caused by minuscule inaccuracidscaih
differences in wave propagation speed is inherent peculiarity of ekeitagédia
with weak ties between the cells, short refractory period and cellulartstauc

In our research we performed hundreds of wave propagation stuitie$D,
2D and 3D hexagonal or rectangular grids, randomized them by adalipm
shifts, size of the grid, considered various shapes of obstaclesanbasd vari-
able refractory periods, different characters of activation functf@darg), sets
of parametersv,, wa, . . ., wy, A%, m, p, argsiart, €.1.c. We found that larger size
of the grid creates more variants and higher probability that occasioritd tle
the wave front will permit the excitation signal to penetrate behind the teimac
cells.

Whenw is large andn is small, our model degenerates to simple CA model
with discrete valued outputs where only one cell is sufficient to excite anothe
neighboring cell. We see that like in artificial neural network analysis ¢f pa
tern recognition and prediction algorithms, investigation of aging phenomena in
chaatically changing environments [31]-[35], in the excitable media relsghe
magnitudes of the weights are of primary importan&rong ties between the
elements of the grid make the waves propagation patterns as a subtle crystal.
Possibly, new model could be useful in crystallography. Diminution of wsigh
causes occasional clefts if front of the wave and makes the wave pedtiah
If refractory period is small, spontaneous wave birth can be obser&uath
situations are more characteristic to plasma physics, biology, meteorology, etc
Usually an increase in connection weighis, requires simultaneous increase in
A*. Particular character of the waves is determined by combination of parameter
W1, W2, . . ., Wp, A*, M, trefr, P, AT gstart- ADOVE arguments advocate theamntinu-
ous outputs of the cells in the model and varying cells’ excitation time introduce
a new quality.

The contribution of the new information transmission concept based model is
two-fold. First, it gives a new tool to model excitable media behavior in applied
disciplines such as physics, biology and social sciences. Secondnivslie of
attack aimed to understand wave bursting, propagation and annihilaticzspesc
Together with differential equations based and CA approaches it vaal neew,
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so far unidentified peculiarities of the excitable media.

The new model is located between cellular automaton with discrete outputs
and differential equation based models. The differential equation basdéls
possibly are too “precise” and do not reflect cellular structure of thumddnce
of real excitable medias. The CA based models work in discrete cells’ outputs
space and also do not point to birth of the clefts in front of the propagatavg
[2, 37]. The model with continuous outputs succeeds to come across fte cle
problem and explain radial character of the wave propagation in strictggomal
grid, spontaneous birth of daughter wavelets, e.t.c. From the point of afiew
calculation speed, the new model stands between cellular automaton baked on
set of rules that determine future states of the cells in the grid and the CA models
based on coupled differential or difference equations used to simuldie iagior
of the single cell.
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