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Abstract. In present paper the properties of the operator introduced by
authors, which is defined on special class of n-normalized analytic in the
half-plane functions are investigated. This operator is closely related with
automorphism of a half-plane. Close connection of this operator with di-
vided difference ofn-th order is shown. The fixed points of the operator
were found. Some other invariants, related with operator are under conside-
ration.
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1 Major notational conventions, definitions and auxiliary state-
ments

Let Π is a half-planeRe z > 0, An(Π) – class of analytical inΠ functions

F (z) with conditionF (n)(z) 6= 0, ∀z ∈ Π. Ãn(Π) – class of analytical inΠ

functionsF (z) fromAn(Π), which are normalized by conditions:

F (1) = F ′(1) = . . . = F (n−1)(1) = 0, F (n)(1) = n! . (1)

Obviously, that for any fixedm ≥ 2 every functionF (z) of Ãn(Π) can be

represented in form

F (z) = (z − 1)n +
m∑

k=2

ak,n(z − 1)n+k−1 + Ψm(z),
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where Ψm(z) – dependent onF (z) analytical in Π function. Number

ak,n =
F (n+k−1)(1)

(n+ k − 1)!
we call byk-th coefficient of functionF (z).

Let us introduce the operator

Nn[F ]=

F (z)−F (1)−F ′(1)(z−1)−. . .−
1

(n−1)!
F (n−1)(1)(z−1)n−1

1

n!
F (n)(1)

which we call by normalizing operator. This operator transfers any function

from An(Π) to a function of class̃An(Π). For n = 0 we set thatN0[F ] =

F (z)/F (1). It is obviously that:

1. Nn[cF + P ] = Nn[F ], wherec 6= 0 andP is a polynomial of the degree

no higher thann− 1;

2. Nn

[
Nn[F ]

]
= Nn[F ].

Denote byA(D) class of analytical inD functions. Then-th divided

difference of functionF (z) ∈ A(D) define (see [1, 2]) by formula

[
F (z); z0, . . . , zn

]
=

1

2πi

∫

Γ

F (ξ)dξ

(ξ − z0) . . . (ξ − zn)
, (2)

whereΓ is a simple closed contour, located inD and covering all the points

z0, . . . , zn ∈ D. In formula (2) among the pointsz0, . . . , zn ∈ D may occur

coincident. For pairwise different pointsz0, . . . , zn ∈ D for n-th order divided

difference, the formula

[
F (z); z0, . . . , zn

]
=

n∑

m=0

F (zm)

η′n(zm)
, (3)

where

ηn(z) =
n∏

p=0

(z − zp)

is valid ([1, 2]).

118



On Some Properties of the Omega-Operator

For arbitrarily fixed pointsz0, . . . , zn ∈ D divided difference[F (z);

z0, . . . , zn] represents a linear functional, defined on classA(D). Note, that

[
P (z); z0, . . . , zn

]
= 0, ∀z0, . . . , zn ∈ D,

if P (z) is a polynomial of the degree no higher thann − 1. The following

statement is valid ([3]):

Lemma 1. If
[
F (z); z0, . . . , zn

]
6= 0, for pairwise differentz0, . . . , zn ∈ D,

then
[
F (z); z0, . . . , zn

]
6= 0 for all z0, . . . , zn ∈D (i.e among pointsz0, . . . ,

zn ∈ D may occur coincident). In particular, forz0 = z1 = . . . = zn = ζ

relationship

[F (z); z0, . . . , zn] =
1

n!
F (n)(ζ) 6= 0, ∀ζ ∈ D

holds true.

Note, that ifn = 1 and[F (z); z0, z1] 6= 0 for all distinctz0, z1 ∈ D, then

[F (z); z0, z1] =
F (z0) − F (z1)

z0 − z1
6= 0, ∀z0, z1 ∈ D,

henceF (z0) 6= F (z1), ∀z0, z1 ∈ D, so we get a class of univalent in the

domainD functions ([4, 5]).

Denote byKn(D) class of analytical inD functionsF (z), such that[
F (z); z0, . . . , zn

]
6= 0 for all pairwise differentz0, . . . , zn ∈ D. Forn = 1,

as it was shown above, classK1(D) is a class of univalent inD functions,

which play a large role in conformal mapping theory and in geometrical theory

of analytical functions ([4, 5]). From Lemma 1 and definition of classKn(D)

we get

Lemma 2. If F (z) ∈ Kn(D), thenF (n)(z) 6= 0 for all z ∈ D. Taking into

account elementary properties[1] and definition of classKn(D), we will get

the following

Lemma 3. If F (z) ∈ Kn(D), then

cF (z) + P (z) ∈ Kn(D),

wherec 6= 0, P (z) is a polynomial of the degree no higher thann− 1.
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It is obvious, that statement formulated above stay true in case, when

domainD is a half-planeΠ. Using Lemma 3 we arrive at conclusion, that in

classKn(Π) we can evolve a subclass̃Kn(Π) of normalized functions, which

satisfy the condition (1).

We need a theorem, having also an independent interest.

Theorem 1. LetF (ξ) ∈ A(D0) and linear-fractional function

ξ =
az + b

cz + d
, ad− bc 6= 0,

maps domainD onto domainD0. Let also

ξk =
azk + b

czk + d
, zk ∈ D, ξk ∈ D0.

Then
[
F (ξ); ξ0, . . . , ξn

]

= (ad− bc)−n

n∏

k=0

(czk + d)

[
(czk + d)n−1F

(
az + b

cz + d

)
; z0, . . . , zn

]
.

Proof. For derivative of functionηn(z) we have an expression

η′n(z) = (ad− bc)−n

n∏

k=0

(czk + d)(czm + d)n−1η′n(ξm). (4)

Using formula (3) for pairwise differentξ0, . . . , ξn ∈ D0 we will get

[
F (ξ); ξ0, . . . , ξn

]
=

n∑

m=0

F (ξm)

η′n(ξm)

= (ad− bc)−n

n∏

k=0

(czk + d)
n∑

m=0

(czm + d)n−1F
(azm + b

czm + d

)

η′n(zm)

= (ad− bc)−n

n∏

k=0

(czk + d)

[
(cz + d)n−1F

(
az + b

cz + d

)
; z0, . . . , zn

]
.

Having realized limit process we ascertain, that Theorem 1 holds true in case,

when there exists coincident points amongξ0, . . . , ξn ∈ D0.
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LetL is a set of all linear functions of shapew = tz, t > 0. For any fixed

t > 0 functionw = tz univalently maps half-planeΠ onto itself. Theorem 1

implies

Corollary 1. Letw = tz ∈ L andwk = tzk, k = 0, 1, . . . , zn. Then
[
F (w);w0, . . . , wn

]
= t−n

[
F (tz); z0, . . . , zn

]
.

Let us arbitrarily choosew ∈ L and introduce omega-operator ofn-th order

by formula

Ωw
n [F ] =

(z − 1)n
[
F (z);w(z),

n︷ ︸︸ ︷
t, . . . , t

]

1

n!
F (n)(t)

.

This operator for any fixedw = tz ∈ L is defined on classAn(Π) and

transfers every function of classAn(Π) to the normalized function of class

Ãn(Π).

Remark 1. Letw = tz ∈ L is arbitrarily fixed. Then operatorΩw
n transfers

functionF (z) of classÃn(Π) onto function of the same class, moreover this is

one-to-one transfer.

Remark 2. Basing on the Lemmas 2 and 3 we conclude, thatKn(Π) ⊂

An(Π). Applying Corollary 1 we will get, that operatorΩw
n is defined on

classKn(Π) and for any fixedw = tz ∈ L transfers every function ofKn(Π)

to the normalized function of̃Kn(Π).

On the ground of Remarks 1 and 2 we will call the classesÃn(Π) and

K̃n(Π) by linearly invariant classes. In case when domain is unit disk similar

linearly invariant classes were considered in papers [6]–[10].

2 The following theorem demonstrates the close connection be-
tween operatorsΩw

n and Nn

Theorem 2. For arbitrarily fixedw = tz ∈ L the equality

Ωw
n

[
F (z)

]
= Nn

[
F (tz)

]

holds true.
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Proof. Let us represent normalization operator for functionF (tz) in the form

Nn

[
F (tz)

]
=
F (tz) − P (z; t)

1

n!
F (n)(t)tn

,

whereP (z; t) is a polynomial:

P (z; t) = F (t) +
1

1!
F (t)t(z − 1) + . . .

+
1

(n− 1)!
F (n−1)(t)tn−1(z − 1)n−1.

(5)

Let wk = tzk, andzk = 1 for any integerk from the interval[1, n]. Then

wk = t for any integerk from the interval[1, n]. Using Corollary 1, we will

get

[
F (w);w,

n︷ ︸︸ ︷
t, . . . , t

]
= t−1

[
F (tz); z,

n︷ ︸︸ ︷
1, . . . , 1

]
.

Note, that

[
F (w);w,

n︷ ︸︸ ︷
t, . . . , t

]
=

[
F (z);w,

n︷ ︸︸ ︷
t, . . . , t

]
.

By using properties of normalization operator and taking into account elemen-

tary properties ofn-th divided difference ([1, 2]), we obtain

[
F (z);w,

n︷ ︸︸ ︷
t, . . . , t

]
=

1

n!
F (n)(t)

[
Nn

[
F (tz)

]
; z,

n︷ ︸︸ ︷
1, . . . , 1

]
,

and so

[
F (z);w,

n︷ ︸︸ ︷
t, . . . , t

]

1

n!
f (n)(1)

=
[
Nn

[
F (tz)

]
; z,

n︷ ︸︸ ︷
1, . . . , 1

]
= (z− 1)−nNn

[
F (tz)

]
.

Multiplying both sides of last equation by(z − 1)n, we will get statement of

Theorem 2.
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3 Let us find the fixed functions of operatorΩw
n

It is clear, that functionF (tz) is representable in the form

F (tz) = P (z; t)+
F (n)(t)

n!
tn(z−1)n+

F (n+1)(t)

(n+ 1)!
tn+1(z−1)n+1+Ψ(z; t),

whereΨ(z; t) is analytical inΠ function with parametert, andP (z; t) is a

polynomial (5). IfF (z) ∈ Ãn(Π), then

Ωw
n

[
F (z)

]
= Nn

[
F (tz)

]
= (z−1)n+a2,n(t)(z−1)n+1+ϕ(z; t) ∈ Ãn(Π),

where

a2,n(t) =
tF (n+1)(t)

(n+ 1)F (n)(t)
and ϕ(z; t) =

ψ(z; t)
1

n!
F (n)(t)tn

. (6)

Let s be certain complex number ands 6∈ {0, 1, 2, . . . , n − 1}. Represent

functionzs ∈ An(Π) (assume1s = 1 for any complexs) in the form

zs = Ps(z) +
m∑

k=1

1

(n+ k − 1)!
s(s− 1) . . .

(
s− (n+ k − 2)

)
(z − 1)n+k−1 + Ψs,m(z),

where

Ps(z) = 1 +
1

1!
s(z − 1) +

1

2!
s(s− 1)(z − 1)2 + . . .

+
1

(n− 1)!
s(s− 1) . . .

(
s− (n− 2)

)
(z − 1)n−1

andΨs,m(z) is an analytical inΠ function.

Theorem 3. Only functionΦn,a(z) = Nn[zs], where

s = (n+ 1)a+ n, a =
Φ

(n+1)
n,a (1)

(n+ 1)!
,

is a fixed point of operatorΩw
n for anyw ∈ L, i.e.

Ωw
n [Φn,a] = Φn,a, ∀w ∈ L. (7)

This function belongs to class̃An(Π).
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Proof. Assume, that there exists functionF∗(z), satisfying condition

Ωw
n [F∗] = F∗, ∀w ∈ L. (8)

Represent functionF∗(z) in the form

F∗(z) = (z − 1)n + a(z − 1)n+1 + Ψ(z),

whereΨ(z) is analytical inΠ function. Further

Ωw
n

[
F∗(z)

]
= (z − 1)n + a2,n(t)(z − 1)n+1 + Ψ(z; t).

Requirement (8) implies thata2n(t) = a, ∀t > 0. Using formula (6), we

obtain

tF
(n+1)
∗ (t)

(n+ 1)F
(n)
∗ (t)

= a.

ConsequentlyF (n)
∗ (t) = n!t(n+1)a, ∀t > 0. SinceF (n)

∗ (t) is an analytical in

Π function, then, using principle of analytical extension, we will get

F
(n)
∗ (z) = n!z(n+1)a. (9)

Integrating (9)n times, we obtain

F∗(z) = czs + P (z),

wherec – nonzero coefficient, andP (z) is a polynomial of the degree no higher

thann − 1. Moreover, functionF∗(z) must be normalized by conditions (1).

Thus, if certain function is satisfying condition (8), it must be of form

Nn[F∗] = Nn[czs + P ] = Nn[zs].

Prove now, that any functionΦn,a(z) = Nn[zs], which we will call bymain,

is satisfying condition (7). Basing on properties of normalization operator,we

will get

Ωw
n

[
Φn,a(z)

]
= Nn

[
Φn,a(tz)

]
= Nn

[
Nn

[
(tz)s

]]

= Nn

[
(tz)s

]
= Nn[tszs] = Nn[zs] = Φn,a(z).

SinceΦ(n)(z) = n!z(n+1)a 6= 0 for any z ∈ Π, thenΦn,a ∈ Ãn(Π). The

theorem is proved.
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Remark 3. Main functionΦn,a(z) can be represented in form

Φn,a(z) = (z − 1)n +
m∑

k=2

ck,n(z − 1)n+k−1 + Ψs,m(z),

where

ck,n =
n!

(n+ k − 1)!
(n+ 1)a

(
(n+ 1)a− 1

)
. . .

(
(n+ 1)a− (k − 2)

)

andΨs,m(z) – analytical inΠ function.

4 Let us raise a question on invariant coefficients

Let k-th coefficient of certain functionF (z) of classÃn(Π) is equal to number

bk, i.e. ak,n = bk, wherek ≥ 2. If numberbk is thek-th coefficient of function

F (z; t) = Ωw
n

[
F (z)

]
for anyw ∈ L, then we will call this coefficient by

invariant (fixed) coefficient of functionF (z). It follows from Theorem 3 that

every coefficient of main functionΦn,a(z) is an invariant one. The below

theorem allows to establish all of the functions with a previously fixedk-th

coefficient.

Theorem 4. Let equation

n!

(n+ k − 1)!

k−2∏

m=0

(
(n+ 1)a−m

)
= bk (10)

with respect to a hask − 1 pairwise different rootsa1, . . . , ak−1. Then only

function of form

F (z) =
k−1∑

m=1

ckΦn,ak
(z), c1 + . . .+ ck−1 = 1, (11)

has numberbk as itsk-th invariant coefficient.

Proof. With a purpose of finding functions with fixedk-th coefficient we need

to solve differential equation

n!tk−1F (n+k−1)(t)

(n+ k − 1)!F (n)(t)
= bk.
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Replacing real variablet by complex onez, convert last equation to linear

homogeneous differential equation

n!zk−1F (n+k−1)(z) − (n+ k − 1)!bkF
(n)(z) = 0 (12)

of (n+ k− 1)-th order with respect toF (z). Equation (12) is easily converted

to well-known Euler’s differential equation with respect to functionϕ(z) =

F (n)(z). Since numbersa1, . . . , ak−1 are roots of equation (10). Then it easily

to check up that every function

1, z, . . . , zn−1,Φn,a1
(z), . . . ,Φn,ak−1

(z) (13)

satisfies the equation (12). These functions make up the fundamental system

of solutions of equation (12). Any linear combination of functions (13) satis-

fies the equation (12). Since functions representable by such linear combina-

tion satisfies the normalization condition (1), then functions1, z, . . . , zn−1 are

omitted, so only functionsΦn,a1
(z), . . . ,Φn,ak−1

(z) will remain. Taking into

account normalization conditions, we will get only linear combinations (11).

The proof is complete.

Corollary 2. If in Theorem 4 we assume thatbk = 0, then only for function of

form

F (z) =
k−1∑

m=0

cmΦn,am
(z), where

k−1∑

m=0

cm = 1 and am =
m

n+ 1
,

numberbk = 0 is its invariant coefficient.

Remark 4. Rootsai, i = 1, . . . , k − 1 of equation(10) are the second

coefficients of expansion of corresponding functionsΦn,ai
(z), i=1, . . . , k−1,

about the pointz = 1, i.e.

Φn,ai
(z) = (z − 1)n + ai(z − 1)n+1 + . . . , i = 1, . . . , k − 1.

Remark 5. Let us investigate separately equation(10), which we can rewrite

in the form

χ(λ) − c = 0, (14)
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where

c =
bk(n+ k − 1)!

n!
, λ = (n+ 1)a, χ(λ) =

k−2∏

m=0

(λ−m).

Let us denoteχc(λ) = χ(λ) − c. It is obvious thatχc(λ) is a polynomial of

(k − 1)-th order. We can state that any root of polynomialχc(λ) has the

multiplicity no higher than two. Indeed, polynomialχ0(λ) hask − 1 pairwise

different roots. According Rolle’s theorem derivativeχ′

0(λ) of such polynomial

hask − 2 pairwise different roots, among which there are no roots of polyno-

mial χ0(λ). In other words, every root of polynomialχ′

0(a) is of multiplicity

one. Assume thatλc is a root of polynomialχc(λ) of the multiplicity three.

Then polynomialχ′

c(λ) ≡ χ′

0(λ) has the rootλc of the multiplicity two that

is impossible. Thus, equation(14) and then, equation(10) have no root with

multiplicity greater than two.
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