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Abstract. In present paper the properties of the operator introduged b
authors, which is defined on special class of n-normalizedyén in the
half-plane functions are investigated. This operator ésely related with
automorphism of a half-plane. Close connection of this ajmerwith di-
vided difference ofn-th order is shown. The fixed points of the operator
were found. Some other invariants, related with opera®uader conside-
ration.
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1 Major notational conventions, definitions and auxiliary state-
ments

Let IT is a half-planeRe z > 0, A, (II) — class of analytical idl functions
F(z) with condition (") (z) # 0, Vz € II. A,(II) — class of analytical il
functionsF'(z) from A,,(II), which are normalized by conditions:

F)=F1)=...=F"Ya)y=0, F™1)=n!. (1)

Obviously, that for any fixedn > 2 every functionF(z) of A,(II) can be
represented in form

F(z2)=(z= 1"+ apnlz = )" 4 0,(2),
k=2
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where V¥,,(z) — dependent onF(z) analytical inII function. Number
F(n+k71)(1)
(n+k—1)!
Let us introduce the operator

appn = we call byk-th coefficient of function(z).

F(z)-F(1)-F'(1)(2—1)—...— (n_ll)[
1

mF<n)(1)

F(n—l)(l)(z_l)n—l

No[F] =

which we call by normalizing operator. This operator transfers anytimmc
from A, (II) to a function of class, (II). Forn = 0 we set thatNy[F] =
F(z)/F(1). Itis obviously that:

1. N,[cF + P] = N,[F], wherec # 0 and P is a polynomial of the degree
no higher tham — 1;

2. N, [N,[F]] = Ny[F].

Denote byA(D) class of analytical inD functions. Then-th divided
difference of functionf'(z) € A(D) define (see [1, 2]) by formula

S P(€)dg
[F(2); 20, 2] 2m/(5—zo)...(5—zn)’ 2)

whereTl is a simple closed contour, located ihand covering all the points
20,..-,2n € D. Informula (2) among the points, ..., 2z, € D may occur
coincident. For pairwise different points, . . ., z,, € D for n-th order divided
difference, the formula

[F(2);20,...,2n] = Z 72((27:1)), (3)

m=0

where

is valid ([1, 2]).
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For arbitrarily fixed pointszo,...,z, € D divided difference[F(z);
20, - - -, 2n) represents a linear functional, defined on cld$®). Note, that

[P(z);zo,...,zn] =0, Vz,...,2n €D,

if P(z) is a polynomial of the degree no higher than- 1. The following
statement is valid ([3]):

Lemma 1. If [F(2);20,...,2,] # 0, for pairwise differentz, ..., z, € D,

then [F(z); z0, ..., 2, #0 for all z,...,z, € D (i.e among pointsy, . . .,
zn € D may occur coincident). In particular, fotg = 21 = ... = 2z, = (
relationship
1
[F(2); 20, 2] = —FO(Q) #£0, ¥CeD
holds true.

Note, that ifn. = 1 and[F'(z); z0, z1] # 0 for all distinctzg, z; € D, then

F(z0) = F(z1)

F(2): -
[ (Z)ﬂz()?Zl] 20 — 21

7&07 VZO,ZleD,

henceF(zy) # F(z1), V20,21 € D, so we get a class of univalent in the
domainD functions ([4, 5]).

Denote by K, (D) class of analytical inD functions F'(z), such that
[F(2); 20, ...,2n] # 0 for all pairwise differentz, ..., z, € D. Forn = 1,
as it was shown above, clags (D) is a class of univalent iD functions,
which play a large role in conformal mapping theory and in geometrical theory
of analytical functions ([4, 5]). From Lemma 1 and definition of cl&sg D)
we get

Lemma 2. If F(z) € K,(D), thenF™)(z) # 0 for all z € D. Taking into
account elementary properti¢s] and definition of clasg(, (D), we will get
the following

Lemma 3. If F(z) € K,,(D), then
cF(z)+ P(z) € Kn(D),

wherec # 0, P(z) is a polynomial of the degree no higher than- 1.
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It is obvious, that statement formulated above stay true in case, when
domainD is a half-plandl. Using Lemma 3 we arrive at conclusion, that in
classK, (II) we can evolve a subclai%n(ﬂ) of normalized functions, which
satisfy the condition (1).

We need a theorem, having also an independent interest.

Theorem 1. Let F'(¢) € A(Do) and linear-fractional function

az+b
g—m, ad—bc#(),

maps domairD onto domainDy. Let also

azr +b

gk:czk—kd’ zp €D, & € Dy.
Then
[F(&)iéos- .-, &n)
— -n - n—1 az+b .
= (ad — be) kl;[o(czk—i-d) [(czk+d) F<02+d>,zo,...,zn].

Proof. For derivative of function,(z) we have an expression

n

i (2) = (ad = be) ™" T [ (ezk + d)(ezm + d)" 11, (Em). (4)
k=0
Using formula (3) for pairwise differery, . . ., &, € Dy we will get
~ F(&m)
F(&);&,..., & =
[ (g)v&]a 75 ] mZ:On;Z(gm)

n (czm + d)”_lF(

:(ad—bc)*”ﬁ (czp +d) Z
k=0 m=0

= (ad — bc)™" czk+d[cz+d”1F<az+b);zo,...,zn].

azm + b)
Czm +d

M (2m)

cz+d

Having realized limit process we ascertain, that Theorem 1 holds trueén cas
when there exists coincident points amagg. . ., &, € Dy. O
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Let L is a set of all linear functions of shape= tz, ¢t > 0. For any fixed
t > 0 functionw = tz univalently maps half-planH onto itself. Theorem 1
implies

Corollary 1. Letw =tz € Landwg = tzx, k=0,1,...,z,. Then
[F(w);wo, ..., wy] =t "[F(tz); z0,. .., 2]

Let us arbitrarily choosev € L and introduce omega-operator efth order
by formula

(z—1)"[F(z);w(z),t,...,t].

OV[F)] =
n 1
a0

This operator for any fixedv = ¢tz € L is defined on classi, (II) and
transfers every function of clas$, (II) to the normalized function of class
A, (II).

Remark 1. Letw = tz € L is arbitrarily fixed. Then operatof?’ transfers

functionF(z) of classA,, (II) onto function of the same class, moreover this is
one-to-one transfer.

Remark 2. Basing on the Lemmas 2 and 3 we conclude, tRa{Il) C
Ay (II). Applying Corollary 1 we will get, that operatdr is defined on
classK, (IT) and for any fixedv = ¢tz € L transfers every function df, (II)
to the normalized function df,, (I1).

On the ground of Remarks 1 and 2 we will call the clasdgsIl) and
f(n(H) by linearly invariant classes. In case when domain is unit disk similar
linearly invariant classes were considered in papers [6]-[10].

2 The following theorem demonstrates the close connection be
tween operatorsQ2? and N,

Theorem 2. For arbitrarily fixedw = tz € L the equality
QY [F(2)] = No[F(t2)]

n

holds true.
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Proof. Let us represent normalization operator for functioftz) in the form

N, [F(tz)] = —F(f;(;)];i;t)
n!

whereP(z;t) is a polynomial:

Plait) = F(t) + %F(t)t(z L

' (5)
@ _1 1)‘F(”_1)(t)t”_1(z — 1)~ 1

_.I_

Let wy = tz, andz; = 1 for any integerk from the interval[l,n]. Then
wy, = t for any integerk from the interval[1, n]. Using Corollary 1, we will
get

By using properties of normalization operator and taking into account elemen
tary properties ofi-th divided difference ([1, 2]), we obtain

[F(z);wjt,...,t] = %F(")(t)[NH[F(tz)};z,l,...,1],
and so
,—/nk n
[F(Z)l?wvtw“’t] _ [Nn [F(tz)};z,i,...,r} = (2= 1)"N, [F(t2)].
mf(”)(l)

Multiplying both sides of last equation Ky — 1)", we will get statement of
Theorem 2. O
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3 Letus find the fixed functions of operator(2}’

It is clear, that functiorF'(¢z) is representable in the form
F(n+1)( )
(n+1)!

where¥(z; ¢) is analytical inII function with parametet, and P(z;t) is a
polynomial (5). IfF(z) € A,(II), then

FM)(t)

n!

F(tz) = P(z;t)+ t"(z—1)"+ T 2= 1) W (258),

Q2 [F(2)] = Na[F(t2)] = (2= 1)"+a9,0(t)(z— 1)+ p(231) € Ay(10),

where
(n+1) .
asnlt) = o ang () = 25D ©)
(n + 1)F (t) —_F®) (t)tn
n!
Let s be certain complex number and¢ {0,1,2,...,n — 1}. Represent

functionz® € A, (II) (assumd® = 1 for any complexs) in the form

+;n+k_1 (s—1)...
(s—(n+k—2)(z—1)"F1 + 0, ,(2),

)

where
Pz )—1+%s(z—l)—l—%5(8—1)(2—1)2—1—...
1 o
+ms(s—1)...(3—(n—2))(z—1) !

and¥; ,,(z) is an analytical i1 function.

Theorem 3. Only function®,, ,(z) = N, [2°], where
ol (1)
(n+ 1)

is a fixed point of operato®2?? for anyw € L, i.e.

s=Mm+1la+n, a=

Q@0 = P4, VYwe L. (7

This function belongs to class, (I1).
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Proof. Assume, that there exists functidfi(z), satisfying condition
QV[Fy] = F., Ywe L. (8)
Represent functiof(z) in the form
Fu(2) = (2= 1)" +a(z = )" + ¥(2),
where¥(z) is analytical inlI function. Further
QY[Fi(2)] = (2 = )" + agn(t)(z — 1) + T(z;).

Requirement (8) implies thaty, (¢) = a, ¥t > 0. Using formula (6), we

obtain
(n+ 1) E™ (1)

Consequentlyn™ () = nlt+Da vt > 0. SinceF\™ (t) is an analytical in
IT function, then, using principle of analytical extension, we will get

F*(n)(z) = nlz(nthe, )
Integrating (9)n times, we obtain
F.(z) =cz® 4+ P(z),

wherec —nonzero coefficient, anBl(z) is a polynomial of the degree no higher
thann — 1. Moreover, functionF(z) must be normalized by conditions (1).
Thus, if certain function is satisfying condition (8), it must be of form

No|F.] = Nylez® + P) = Ny[2°].

Prove now, that any functiof?,, ,(z) = N,[2°], which we will call by main,
is satisfying condition (7). Basing on properties of normalization operator,
will get

08 [@y,.0(2)] = No [®a(tz)] = N, [Nn [(tz)ﬂ
= N, [(t2)°] = Np[t°2°] = Np[2°] = @y, 0(2).

Since®(™ (z) = nlz(**Da = ( for any z € II, then®, , € A,(Il). The
theorem is proved. O

124



On Some Properties of the Omega-Operator

Remark 3. Main function®,, ,(z) can be represented in form
m
D, 4(2)=(z—1)"+ Z Chn(z — D)L LW (2),
k=2

where

Chn = m+2—'_1)'(n+ Da((n+1)a—1)...((n+1)a— (k—2))

and ¥, ,,,(z) — analytical inII function.

4 Let us raise a question on invariant coefficients

Let k-th coefficient of certain functiof'(z) of classA, (I1) is equal to number
by, i.e.ay, = by, wherek > 2. If numberb, is thek-th coefficient of function
F(z;t) = QU[F(z)] foranyw € L, then we will call this coefficient by
invariant (fixed) coefficient of functio#'(z). It follows from Theorem 3 that
every coefficient of main functio®,, ,(z) is an invariant one. The below
theorem allows to establish all of the functions with a previously fiketti
coefficient.

Theorem 4. Let equation

k—2
n!
with respect to a hag — 1 pairwise different rootsi;,...,ax_1. Then only
function of form
E—1
F(2) =Y ®na(2), c1+...+e1=1 (11)
m=1

has numbeb, as itsk-th invariant coefficient.

Proof. With a purpose of finding functions with fixédth coefficient we need
to solve differential equation

n!tkle(’ankfl) (t)
(n+k — DIF®™ (1)

= bg.
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Replacing real variablé by complex onez, convert last equation to linear
homogeneous differential equation

PV FTRD () — (04 k— D) FM(2) = 0 (12)

of (n+ k — 1)-th order with respect té’(z). Equation (12) is easily converted
to well-known Euler’s differential equation with respect to functiofx) =
F(™)(2). Since numbers;, . . ., a;_, are roots of equation (10). Then it easily
to check up that every function

1,2,...,2"° 4 D0, (2), .o Prg,, (2) (13)

satisfies the equation (12). These functions make up the fundamentahsyste
of solutions of equation (12). Any linear combination of functions (13) satis
fies the equation (12). Since functions representable by such lineair@mb
tion satisfies the normalization condition (1), then functions . .., 2"~ ! are

omitted, so only function®,, 4, (2),. .., ®p q, ,(z) will remain. Taking into
account normalization conditions, we will get only linear combinations (11).
The proof is complete. O

Corollary 2. Ifin Theorem 4 we assume thiat = 0, then only for function of
form

k—1 k—1
m
F(2) =Y tm®Pna,(z), where > c,=1 and an= T
m=0 m=0
numberb, = 0 is its invariant coefficient.
Remark 4. Rootsa;, i« = 1,...,k — 1 of equation(10) are the second
coefficients of expansion of corresponding functibps, (z), i=1,...,k—1,
about the point =1, i.e.
Bpo(2)=CE—-1)"4+a(z—1D)"" 4., i=1,....k—1

Remark 5. Let us investigate separately equatidm®), which we can rewrite
in the form

X(N) = e =0, (14)
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where
k—2
bp(n +k —1)!
c:¥, A= (n+1)a, X(A):HO()\—m).

Let us denote.(\) = x(A) — ¢. Itis obvious thaty.(\) is a polynomial of

(k — 1)-th order. We can state that any root of polynomjal(A) has the
multiplicity no higher than two. Indeed, polynomjaj(\) hask — 1 pairwise
different roots. According Rolle’s theorem derivatig \) of such polynomial
hask — 2 pairwise different roots, among which there are no roots of polyno-
mial xo(A). In other words, every root of polynomig,(a) is of multiplicity
one. Assume that. is a root of polynomialy.(\) of the multiplicity three.
Then polynomial.(A\) = x{(A) has the root\. of the multiplicity two that

is impossible. Thus, equatiqh4) and then, equatioiil0) have no root with
multiplicity greater than two.
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