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The Method for Calculation the Hall Effect Parameters
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Abstract. A method for calculating the values of specific resistivity
as well as the produgiy B of the Hall mobility and magnetic induction
on a conductive sample of an arbitrary geometric configomatvith two
arbitrary fitted current electrodes of nonzero length arsldeen proposed
an grounded. During the experiment, under the constanévalof voltage
and in the absence of the magnetic field effd8t £ 0) on the sample,
the current intensitie$(0), Ix(0) are measured as well as the mentioned
parameters under the effect of magnetic fiellls B, (B; # Bs), i.e.
Ig(BD), 1(39), i = 1,2. It has been proved that under the constant dif-
ference of potential& and sample thickness the parameters(0), Iz (0)
andIg(3@), 1(3%), i = 1,2 uniquely determines the values of the product
1y B and specific resistivity of the sample. Basing on the conformal map-
ping method and Hall's tensor properties, a relation (aesysdf nonlinear
equations) between the above mentioned quantities hasdnemth
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1 Introduction

When investigating the Hall effect one often has to solve the problem af@ind
the produciuy B of the Hall mobility and magnetic induction as well as spe-
cific resistivity p of as sample. A widespread way of solving such a problem
is the Van der Pauw method [1]: four “point” electrodes are fitted on a plane
sample circuit the first two of which are charged with current and thewest
are meant for measuring the emerging difference of potentials. Thetadean
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of this method consists in the fact that the only geometric parameter to be
known is thicknessl of a sample, while there are no restrictions on the shape
of the sample. This method has serious drawback ([2]—[4]) appeariimgyma
due to the fact that real contacts are not “point like”, they are of aicerta
nonzero length.

Later on (in [5, 6]) there were some attempts to improve the Van der Pauw
method when investigating the samples whose form configuration is exactly
defined bounded and has second — or fourth order direct or inggnsmetry
axes (perpendicular to the plane of the sample). In these works, magings
the regions with the shape of the sample were applied into regions in which
it is easy to calculate the distribution of electric potential and the value of
current (similar method were applied in Van der Pauw’s work mentioned [1])
The reasons for errors emerging while applying these methods are ineiesu
in the arrangement of a real sample geometric shape and contacts as well as
inexact calculation of the integrals that realize the mapping.

The authors of this work have proposed a method [7] for solving the prob
lem considered on a sample of an arbitrary shape with two current elestrod
arbitrarily arranged on its contour. To carry out an experiment we heed
samples of the same substance but of different geometric shape. By aognbin
them in parallel (Fig. 1) and after measuring current intensities undefféo e
of the magnetic field (perpendicular to the plane of the sample) and in the
absence of, it is possible to calculate the parameters in quest. In applying this
method, one has to calculate the integral for many times

Standard

le(B)

Fig. 1. Parallel connection of the samples.
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1
F(B,k) = /ta(1 —t)* (1 - (1—k)t) “dt, (1)
0

wherea = /7 + 0.5, 8 = arctg(ug B).

To calculate integral (1), the authors have proposed and grounded an
ficient algorithm [8] that does not differ in calculation volume and acaourac
from the usual for algorithms calculating the elementary function values.

It should be mentioned that, employing this method during the experi-
ment, the errors of the measured quantities, especially with current elestrod
of short length have a tangible influence on the calculated quangitesd
wB. In order to diminish the influence of measurement errors, we can pre-
pare an experiment by using the standard sample (made from the substance
specific resistivityp of which is known). In this case, the number of unknown
parameters decreases, and therefore the measurement errorsfavillence
on the calculation results.

2 Determination of the parameters .y Bp and p by using the stan-
dard sample

Let a standard and a tested sample be of an arbitrary geometric shape and
each have two current contacts of any length. During the experimengy und
a parallel connection of the samples (Fig. 1), the intensBesB, (B, #
Bs), of currents flowing through the samples are measured under the affect
magnetic fielddz (3®), 1(3%),i = 1,2 andIg(0), I(0), of distinct intensity,
and when there is no magnetic fieB & 0). Note that during the experiment
the values ofB;y, B, and that of Hall mobility of the standard sample are
unknown.

It has been proved in [7] that the currefit3), present in the sample can
be calculated:

p F(Bk)

Hered is the sample thicknesg,is a dimensionless quantity € k£ < 1),
dependent on the geometric shape of a sample, the length of contacts and

1(B) cos 3. 2
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their arrangement in the contour. Therefore, for the valyg®), I (6™1),
I5(8@) of currents —I5(0), Ip(3M), Ix(8?), obtained during the experi-
ment we can make up a system of nonlinear equations:

P pe F(0kg)
vd F(BW,1 -k
IE(ﬂJ(El)) =— WCOSBSK (3)
PE  F(By’,kE)
(2)
~ vd F(3P,1—k
\ pE F(/BE 7kE)

The system (3) is solved in such a way. The first equation of the system
is uniquely solved with respect tbg, and the second and third equations
(after replacing the unknowhy in them by the solutiork ) with respect to
ﬁE ) ﬁE ([9, 10]). Having solved them, i.e., having fourg, BE , and
ﬁE , we calculate the ratio of magnetic inductions:

_ By _ tgfy

=2 =258 4)

After replacing the values of the sample currek(®), 1(31)), 1(5®) by
those obtarned in the experimef(0), 1(8), I(3?), denoting their ratios:
51 = 1(BM)/1(0), 3, = 1(3®)/1(0) and making use of (2), we have

F(BW, 1 —k) 0~ FO,1-k)

T TV R, ©)
FEO1-F) o FO1-K)
W COSﬁ — SQW = U.

Each of these equations is uniquely solved with respegt(to< k& < 1)
for any fixed valuegs; therefore system (5) is equivalent to two functional
equations whose solutions are:

B =0k, 0<k<l1, i=1,2 (6)
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ie.,
F(BYV(k),1— k) F(0,1—k)
’ W)y~ 2 —
F(BU (), k) cos R) =S —p o = O
F(BD(k),1 - k) F(0,1—k)
’ B (E) — gy M
F(ﬂ@)(k), k) cos B9 (k) — 59 FOR) - 0.
Making use of relation (4), we have the equation for the paranketer
tg 84 (k) = wig BV (k), (7)

having solved it and replacing the parametdn system (6) by the solution

k, to equation (7), we find that®) = 3 (k) and 33 = A (k). If we
know these quantities, we can easily calculate the Hall effect parametesvalu
in quest:

_ Vd F(0,1—k)
- I(0) F(0,k) ®)

prBi = tg Y, ugBy = tg 5.

3 Iterative procedurefor calculating parameters

We present a method that can help to calculate the specific resistigityl
quantitiesi. ;7 B of the sample.

In the first stage, by using the current values of the standard sample, we
find the ratio of applied fields magnetic inductioBs, B,. The current of the
standard sample under the inactive magnetic field is equal to

~ Vd F(0,1 —kg)

o) = RO Fe)

wherelz(0) —is the current obtained in the experiment. Let

(B, k,I) = I(B)ppF(0,k) — VAF(0,1 — k),

(9)

then the equatio® (0, kz, TE(O)) is equivalent to equation (9). By applying
an iterative scheme

kpo = 0.5,
ke; =kgj-1— 2~ (+1) sgn@((), kEyj_l,]A'E(O)),
j=1,2,...,N
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we can find the geometric parametes =k y of this sample. Now, if we
know &z, from the equation® (3 M) kg, 184 ))):0, (8 @) kg, 1( (2))) =0,
by applying a similar iterative scheme (as 1 and: = 2)

5;5)0 = /4,
BY. =88 2 Ursgn (B, ke, 1(5Y)),
j=1,2,...,N,

we find the parameters;, 5 5S)N andp) = 5§>N of the standard sample
as well as the ratio of magnetic inductions

By  pppBy  ppBy  tg (Bg)) _ tg(B¥)

i — - = 5/
B puyBi puBi tg(Bg)) tg (BL)

(10)

In the second stage, the curref(8), 7(3®),i = 1,2 of the tested sam-
ple, obtained during the experiment, are used. The rati6€))/1(0) of these
currents and equation (10), using the notation

F(3,1—k) 1(8) F(0,1— k)

)\ ) =—=

BED="FEm P10 Fok
are defined by the system

(W, k, 1(3W)) =0,
(B3, k,1(8?)) =0,

whose solution3(V), 3k — are the parameters of the sample. To solve
this system, an embedded iterative process (small braces indicate anlinterna
iterative process for calculating the parametgs, 32, at each step in of the
external iterative process, i.e.,as= k,,) has been created:

os 0 —

ko = 0.5,
D _ 5{(}2) — 7T/4,
I T
5§2) _ 5](2—)1 n 2_(j+2)7TSgn\Il(ﬁ](2)1,k [(5( ))) (11)
j=1,2,...,N,
B = ki + 270" sgn (tg B — wtg BY) sgn (1 — w),
m=0,1,...,N.

134



The Method for Calculation the Hall Effect Parameters

If we calculate®) = ](Vl), 52 = ﬂ](\?), k = kxy we determine the key
parameters:
Vd F(0,1—k)

p== =,
1(0) F(0,k)
inB; = tg Y, i=1,2.
At each step of the iterative procedures described we have to calculate

singular integral (1), therefore we present a simple enough but oflgigilracy
calculation algorithm [5] of integral (1).

Let
1 a—a?
ap =/ cos 3, an:an,1<1——+72), n=1,...,3p,
n n
1 n—1
by = , by ="0bn_ , m=2,...,p,
75+ R T, p
o Oé2n_1
— 2 — _ . _
il =a—a, Cn_cn_l_’n?—n,zlc’“ n_27"'7p7
1=

dp =cp/n, n=1...,p,
ep=dp, ep=dy,—uept1, n=p—1,...,1, u=k/(1-k),

Then, with the absolute error not exceediig? (1 < p < 18), we have
3p
F(B,k) =) an(1+k)" = Ry,
n=0

P (1—k) 4
(1+ueq) <1nk:+z T) —|—(1—]<;)3P2bnem k < 0.5,

n=1 n=1

0, k>0.5.

In conclusion we present particular results calculated by the iterative pro
cess (11): Fig’s 2 and 3 show the absolute errors of the paraniéters® |

ABY =130 = V|, AR = (3D — 8P|, Ak = [k — k],

and Table 1 illustrates the parameters values obtained in iterations.
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Fig. 2. Absolute errors of the parametérg?(t), 52
(iteratives process (11j,> 10).

Fig. 3. Absolute errors of the parametérg?(t), 5(2)
(iteratives process (11),< 10).
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Table 1. Parameters values obtained in iterations

5

k;

0.98402857310047
0.92751348306746
0.89345085703169
0.86977250728670
0.85215958356268
0.83850157958122
0.82759456126279
0.81868588952346
0.81127596167587
0.81545111205499
0.81352135372481
0.81244574881883
0.81187384975953
0.81216287994797
0.81201915494602
0.81197349393447
0.81197351606102
0.81197351841196
0.81197351852865
0.81197351852527
0.81197351852520

0.50000000000000
0.25000000000000
0.12500000000000
0.06250000000000
0.03125000000000
0.01562500000000
0.00781250000000
0.00390625000000
0.00195312500000
0.00292968750000
0.00244140625000
0.00219726562500
0.00207519531250
0.00213623046875
0.00210571289063
0.00209608674049
0.00209609139711
0.00209609189187
0.00209609191643
0.00209609191572
0.00209609191570

Van der Pauw L.J. “A method of measuring specific resistiand Hall effect

of discs of arbitrary shapePhil. Res. Rep., 13, 1958

Kutys E.Galvanomagnetic effects and investigations methods, Moscow, 1990

j s
1 0.63020009957643
2 0.58530926374514
3 0.56002053440066
4 0.54314810945795
5 0.53094614931435
6 0.52167613774475
7 0.51438714713206
8 0.50850484604846
9 0.50365863173432
10 0.50638417771731
11 0.50512281798257
12 0.50442096770147
13 0.50404814227124
14 0.50423653315316
15 0.50414284500550
25 0.50411308374136
30 0.50411309816279
35 0.50411309969507
40 0.50411309977112
45 0.50411309976891
50 0.50411309976887
References
1.
2.
(in Russian)
3.

Boerger D., Kramer J., Pattain L. “Generalised Hall dffeceasurement
geometries and limitations of Van der Pauw-type Hall effeetasurements”,

J. Appl. Phys., 52(1), p. 267-274, 1981

137



J. Kleiza, V. Kleiza

10.

Chwang R., Smith B., Crowell C. “Contact size effects om Yan der Pauw
method for resistivity and Hall coefficient measuremes8tiljd Sate Electron,
17(12), p. 1217-1227, 1974

Versnel W. “Analysis of circular Hall plate with equal fieicontacts”,Solid
Sate Electron, 24, p. 63, 1981

Versnel W. “Analysis of symmetrical Hall plates with fimitontacts”J. Appl.
Phys., 52(7), p. 4659, 1981

Kleiza J., Kleiza V. “Investigation of the Hall effect imsples of an arbitrary
form with contacts of non-zero lengthLithuanian Physics Journal, 33(3),
p.163-171, 1993

Kleiza J. “The calculation of an integral connected withnductivity of
anisotropic media”Mathematical modelling and complex analysis, Vilnius,
Technika, p. 47-48, 1996

Kleiza V., Kleiza J., Zilinskas R. “Opredelenie tenzoraymdimosti ploskoi
anizotropnoi sredy’DAN SSSR, 320(5), p. 1093-1096, 1991

Kleiza V., Kleiza J. “Metod rascheta tenzora provoditifipsDAN SSSR,
325(4), p. 711-715, 1992

138



