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Abstract. In this paper, laminar natural convection flow from a pernteab
and isothermal vertical surface placed in non-isotherroalosindings is
considered. Introducing appropriate transformatiorsting boundary layer
equations governing the flow derives non-similar boundaygit equations.
Results of both the analytical and numerical solutions hem tpresented
in the form of skin-friction and Nusselt number. Numericalwions of
the transformed non-similar boundary layer equations btaiwed by three
distinct solution methods, (i) the perturbation solutiémssmall ¢ (i) the
asymptotic solution for large (iii) the implicit finite difference method for
all £ where is the transpiration parameter. Perturbation solutionsifaall
and large values of are compared with the finite difference solutions for
different values of pertinent parameters, namely, the dRtarumber Pr,
and the ambient temperature gradient

Keywords: porous surface, non-isothermal surroundings, body force

I ntroduction

Thermal boundary layer non-similarity may result from various casehaps

the most common cause is the non-similarity of the velocity boundary layer.
In turn, there are various factors, which may give rise to velocity boynda
layer non-similarity, among which are: (i) stream wise variations in the free
stream velocity, (ii) surface mass transfer (iii) transverse curvatuide(igh
non-isothermal surroundings. Also thermal boundary layer can beinailar
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even when the velocity boundary layer is similar, as will occur when stream
wise variations in the surface temperature, surface heat flux or voluate he
generations are not restricted to certain simple forms. Thus, there are many
classes of non-similarity in thermal boundary layer. The different ctaste
thermal boundary layer non-similarity are generated by mathematical systems,
which differ in various details one from other. Sparrow and Yu [1] uted

local non-similarity method to solve the thermal boundary layer equation for
the steady flow with uniform free stream velocity in the presence of srfac
mass-flux, transverse curvature, stream wise variations of the fesarstre-
locity, and stream wise variations of the surface temperature. Kao [Bgdpp

the shooting method technique as described by Nachtsheim and Swigert [3]
solve the non-similarity boundary layer and thermal boundary layer eqsatio
for the forced convection along a flat plate with arbitrary suction or injection
at the wall.

Many free convection processes occur in environments with temperature
stratification. A room that is heated by electrical wires embedded in the ceiling
may be thermally stratified. A room fire with an open door or window through
which fresh air is supplied near the bottom is another example of a thermally
stratified situation. Several attempts have been made in recent years to in-
vestigate the problem of natural convection over a vertical wall in a stehtifie
medium due to its obvious importance. Early studies were focused on seeking
similarity solution because the similar variables can give great physical tnsigh
with minimal efforts. Yang [4] first presented a general approachiitaining
similarity solutions to a class of problems for a non-isothermal vertical wall
surrounded by an isothermal atmosphere. For laminar free convectiog alo
a vertical plate, Cheesewright [5] obtained similarity solutions dealing with
various types of non-uniform ambient temperature distributions by using the
technique of Yang [4]. None of the variety of cases presented byseheight
[5] and Yang et al [6] included a case in which the wall was isothermatlznd
ambient atmosphere had a linearly increasing temperature distribution. Fuijii
et al. [7] presented both analytical and experimental results for a temperature
stratification in which the ambient temperature distribution varies witRiau
[8] carried out a study in which both the plate temperature and the ambient
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temperature varied with power of Later, Eichhorret al. [9] presented ex-
perimental heat transfer results for isothermal spheres and horizglitalers.

Chen and Eichhorn [10] concluded that a similarity solution of the prob-
lem of an isothermal heated wall in a linearly stratified stable atmosphere was
not possible and hence used the local non-similarity approach to solve the
problem. Non-similarity solutions dealing with various types of non-uniform
ambient temperature had also been Venkatachala and Nath [11] in which the
local variable introduced depending on the stratification of the media had also
produced temperature.

Very recently, Chamkha and Khaled [12], investigated the problem of
steady, hydro magnetic simultaneous heat and mass transfer by mixed-conve
tion flow over a vertical plate embedded in a uniform porous medium with a
stratified free stream and taking into account the presence of thermetslmp
is investigated for the case of power-law variations of both the wall temperatu
and concentration by using local-similarity form.

A problem of interest and importance in some applications concerns the
effect of blowing and suction in a natural convection boundary laydris T
situation would arise, for instance, if heat transfer from a porousisenivere
being investigated and fluid were being added to or removed from the flow.
For the flat plate with suction Emmons and Leigh [13] found solutions of
the momentum equation, while the corresponding heat transfer resultefor th
isothermal porous plate were presented by Schilichting and Bussemdnn [14
and Hartnett and Eckert [15]. These later investigations also includad he
transfer and skin-friction result for an isothermal plane-stagnatiaomegith
wall suction. A problem of greater practical applicability is that of a uniform
blowing or suction velocityy. But this does not give similarity. Sparrow and
Cess [16] considered this case for an isothermal surface. They esdptoy
perturbation technique. Merkin [17] obtained asymptotic expansiom, -as
oo, for temperature and velocity. Clarke [18] obtained the next approxima-
tion to the solution of the Navier-Stocks equations for large Grashof number
and considered density variations, avoiding the Boussinesq approximation
Aroesty and Cole [19] also considered strong blowing for bodies oéiggn
shape.
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In this paper, we have considered a permeable vertical surface, which
immersed, in a thermally stratified medium. Here the ambient temperature
is assumed to be power function of Using appropriate transformations
the boundary layer equations for momentum and heat transfer aresgethic
non-similar partial equations which arises due to the transpiration parameter
&. Solutions of these equations are obtained, for all valueg efhich em-
ploying the finite difference method together with the Keller-box elimination
technique. Appropriate perturbation solutions are also obtained for snahll a
large values of which then compared with the finite difference solutions for
different values of pertinent parameters, such as, the Prandtl niandeihe
ambient temperature gradient. Results are presented graphically in terms of
local skin-friction as well as the local Nusselt number.

2 Mathematical formulation

Let us consider the steady two-dimensional viscous incompressible fluid on
a vertical porous surface immersed in non-isothermal surroundings.x Le
denotes distance along the surface from the leading edge enithe normal
distance from the surface. The wall temperature is considered asrarafor
6., and the ambient temperatutg, (x) is assumed to vary as'.

The flow configuration and the co-ordinate system are shown in Fig. 1.
With respect to the co-ordinate system, the equations of continuity, momentum
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Fig. 1. The flow configuration and co-ordinate system.

and energy, which govern the flow and heat transfer in a laminar bognda
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layer in the presence of a body force are respectively,

ou Ov

i 1
8x+8y 0 @
ou ou 1dp 0%u
= = 2 Qv 2
u8x+v(9y pd:z:Jr +V(9y2’ 2)

2

L0000 K % -

ox 0y pe, 02

wherew andv are the fluid velocity components along and y-axis which
are parallel and normal to the plate respectivélyis the body force term in
boundary layer equatiom,is the kinematic viscosity is the temperature, is
the pressurey is the densityx is the thermal conductivity(, is the specific
heat capacity.

If consideration is restricted to a region of plate, having a temperature
everywhere greater than or equal to that of its surroundings, we ciém w
QQ = —g. It should be noted that for cases in whigh — 6., decreases
with distance up the plate, the above restrictions lead to the consideration of a
region of limited extent rather than the semi-infinite region usually considered
in boundary-layer problems.

Outside the boundary layer equation (2),

Qo 1 dp
o—F + —— =0 4
Yoo 5 +,oood;v+g @)

whereu,, the free stream velocity. Since we can consider pure free convection
flow, uo, = 0. From (2) and (4),

@_i_ @4_%—_(_ )+@ (5)
P\ar Tz T8y ) T IV T Pl THG 2

Following Ostrach [20], property variations are assumed to be importint on
in so far as they affect the body force term, and the density variation tie-rep
sented by,

p=po[l—pB(0—06)]

where pq is the density at an arbitrary reference temperatigre 5 is the
coefficient of cubical expansior (1 for a perfect gas). Now equation (5)
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becomes
ou ou 0%u
Now the equations are,
ou ou
ou ou 0%u
a . 0 — 000 a 9 8
00 00 K 0%0
The corresponding boundary conditions
u=0 v=-v, 6=860, at y=0,
0 Yy (10)

u=0, 6=60y(z) as y— .

For suctiony is positive and for injection it is negative.

It may be noted that equation (8) is identical with the corresponding equa-
tion for the casd,., = const. The above derivation has been given because it
is not felt that this identity is obvious.

The continuity equation (7) is automatically satisfied when a stream func-
tion ¢ is introduced, i.e.

u—a—w v = oy
Oy’ - Oz’

Now the equation (8) and (9) become,

oY 0% O O*Y 93
. St i — O — 11
Oy 0x0y Oz Oy? 95(0 = Ooc) +v oy? (11)
0pos Yoo _ k 0% (12)
oy dx  Ox dy  pcp Oy?’
It is convenient to make these equations dimensionless by writing

x=% y_Y¥ g_¥

L , L v , (13)
o 9L (0 —0o) G — 96L (Boo — 60)

N V2 ’ < v2
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wherelL is characteristic length. Now equation (11) and (12) become,

ov 9?0 ov 92T oA\
Yy 0X9Yy o9Xoy2
ov oG  9vIG 1 9*G
Y 0X 9XdY Proy?

with the boundary conditions,

(14)

(15)

Uy =0, TUy=s, G=G, at Y =0,

(16)
Uy =0, G=G(x) as Y — oc.

3 Transformation of the equations

We may introduce the new transformation:

n+3 G G n—1
U= X" [f(n,&) £ €], ®(,6) = ——= n=Y X"

(17)
G — Goo = X7,

Thus the momentum and energy equations are,

n+3ff//_ f,2+(I):|:§f/,

f //%
e - 1'%) 4o

—<1>”+—fc1>/—nf’(<1>— 1) + €9/

Pr
Lo (00 0f
=1 ( P as) (19)

with the boundary conditions,

f///

f=f=0, =1 at =0,

(20)
ff=0, ®=0 as n— oo.

From solving equations (18) and (19), we find the valug’tf0) andé’(0).
Now dividing f”(0) by v/2 and multiplyingd” (0) by v/2 and compare these
results with the Cheesewright [5] result in Table 1.
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Table 1. Numerical values ¢f’(0) andg”(0) taking Pr=0.708 and¢ =0.0

/" (0) 0'(0)
n Cheesewright Present Cheesewright Present
[5] [5]
—0.15 0.65949 0.65817 —0.55423 —0.55371
—0.30 0.64099 0.64097 —0.50414 —0.60413

Here we are proposing to find solutions of the equations (18) and (18y alo
with the boundary conditions (20) employing the three different solution meth-
ods, namely (i) the series solution for smgf(ii) the asymptotic solution for
large¢ and (iii) the implicit finite difference method together with Keller-box
method for all¢.

4 Physical quantity

The important physical quantities are wall shearing stress fagio@nd the
heat transfer rate(z).
The magnitude of,, andq(z) may be defined as,

ou 00
m—uGg%O,q@w=«<@)yd (21)

The dimensionless shearing stress factor or the skin-fricignmay be
expressed as follows:
2Ty
VN2’
(3)
x
Using the quantity of equation (21) and the transformation (17) in equa-
tion (22), we investigate the local skin-friction in terms of the dimensionless
shearing stresg,/;, given as

C
@§4=ﬂwf» (23)

Cy = (22)

We may define a non-dimensional coefficient of heat transfer in terms of
nusselt numbeNu,, which is known as,

_q(x)z
Nuz = =5 o (24)
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Substituting the transformation (17) and (21) in (24), we obtain the rate of
heat transfer, in terms of the dimensionless Nusselt number, given as,

Nug

E;E:—@m@) (25)

5 Solution methodologies

We are proposing here to find solutions of the equations (18) and (19) alo
with the boundary conditions (20) employing the three different solution
methods: namely (a) the series solution for sradh) the asymptotic solution
for large¢ and (c) the implicit finite difference method together with Keller-
box method for alk.

5.1 Perturbation solution for small £ (PS)

We assume the following expansions for the functigramd® for small&

n n

F0,0) =Y (£ filn), @0, &) =D (££)'Pi(n). (26)

i=0 i=0
Substituting the expression (26) into the equations (18)—(20) and equating
the coefficient of various powers gf the following sets of equations can be
obtained:

n+3 n+1
o + 1 fofo — 2 02+ =0, (27)
1 n+3
P—rq’8+Tfo<I>6—nf6(<I>o—1) =0 (28)

boundary conditions are,
f0:f(/):01 (1)0:1 at 77:07

(29)
fo=0, ® =0 as n— cc.
The higher order equations, foe> 1,
1 [
M+ 1 Z [(n +3)+(1— n)r] i,
=0 (30)

1< 1—n
—5Z[<n+1>+ | e+ @ =0,
r=0

159



S.C. Saha, C. Akhter, M.A. Hossain

1 1<
Pr® @t D[4 3) + (L= n)r] 2,

Pr
i (31)
—n / ’
— Z |: 7“:| fi*’r‘(b"' + nfz == O
r=0
boundary conditions are,
i=f{=0, ®&=1 at n=0,
fi=Ff n (32)

fi=0, ® =0 as n— oc.

We know the solutions for the functionfs andé; (i = 0, 1, 2) and their
derivatives from the above sets of equations, we obtain the values lafcidie
skin friction.

Cy

(?r2/4

_ // O 5 Zfzfn (33)

The Nusselt number is defined as,
Nuy / it
i = =-0'(0,¢) = Zg A (34)

For example, taking Prandtl numbBy = 0.708 andn = 0.3, the above
series (33) and (34) can be written as

C
L =0.99290 + 0.19379¢ — 0.11206€2,
Gri/4
Ty
Nuy, 9
T 0.28559 + 0.31559¢ + 0.11505¢2.
(?r;/4

Substituting the particular value of the suction paramegef(i.e.
¢ = 0.1) in the above expression, we obtain the numerical values of the skin-
friction and heat transfer are 1.0111584 and 03182995 respectBiaijlarly,
for the different values of suction parameteand the ambient temperature
gradientn we can find the values cdff/Gr,?;/4 andNu/GrfE/4 by using above
expression. The result of these for different values of Prandtl eunfiave
been compared that of the other methods in Table 2 and for differentsvalue
of ambient temperature gradient n, have been compared the other methods in
Fig. 2.
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Table 2. Numerical values of the (a) skin-friction and (bateansfer
obtained by different methods for different valuegafhile Pr = 0.1
andPr = 0.708 atn = 0.3

(a) Skin-friction

Cy/Gri* = £(0,¢)
¢ Pr=01 Pr =0.708
PS & AS FD PS & AS FD

—1.0  0.72449p  0.75159  0.68035p  0.73300
—0.6  0.90024p  0.90928  0.83240p  0.85065
—0.2 1.08294p  1.09077  0.94402p  0.95891
00  1.17690p  1.18382  0.98467p  0.99612
0.6  1.46921p 148230  1.04596p  1.04522
1.0 167278  1.67284  1.03627p  1.01265
2.0 2.04193 0.68269
4.0 2.11506 0.34165
50  1.92312¢  1.88208  0.28257a  0.27344
200 0.49992a 050266  0.07062a  0.07418
60.0  0.16667a  0.16665  0.02354a  0.04967
100 0.10000a  0.09576  0.01412¢  0.03673

(b) Heat-transfer

Cy/Gry™* = 17(0,€)

13 Pr=0.1 Pr =0.708
PS & AS FD PS & AS FD
—1.0 0.09482p 0.09089 0.08754p 0.07047
-0.6 0.11274p 0.10836 0.13965p 0.12961
—0.2 0.13185p 0.12770 0.23018p 0.22122
0.0 0.14185p 0.13846 0.28982p 0.28391
0.6 0.17364p 0.17192 0.52624p 0.53625
1.0 0.19633p 0.19488 0.73178p 0.74797
2.0 0.25759 1.42883
4.0 0.41250 2.85938
5.0 0.50218a 0.50524 3.54141a 3.56709
20.0 2.00003a 2.00349 14.1600a 14.2685
60.0 6.00000a 5.99973 42.4800a 43.6236
100 10.0000a 9.99501 70.8000a 70.8295

*Here p stands for perturbation solution and a stands for asymptotic solution
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-0 1 2 3
$

Fig. 2. (a) Dimensionless skin-friction and (b) dimensasd heat-transfer
for different values of¢ as well asn with the selected Prandtl number
Pr =0.708.

5.2 Asymptotic solution for large ¢ (AS)

Now, attention has been given to the behavior of the solution of the equations
(18) and (19) wheq is positively large. The following substitutions for the
asymptotic solution are introduced:

F,6) =€73F(@,€), @(n,€)=T(H,€), 7==en. (35)

Substituting the transformation (35) to the equation (18)—(20) we get the fol-
lowing equations,

P+ ne - 7H + @

-~

_1-n af 2 0f

S (PG Tg) 9
1 I3 / A
P—rcb + o' +n&™ (f<I> ( )A)

1-n 8_(I>_ _f

= (1 V) G0

with the boundary conditions,

f=f=0, =1 at 7=0

~ 38
ﬁ:(), ®=0 as 7 — o0 (38)

162



Natural Convection from a Plane Vertical Porous Surface

We assume the following expansions for the functiﬁr&md&) are of the form
for large¢.

=D EVR@), [,€) =D 1), (39)
=0 =0

Substituting the expression (39) into the equations (36)—(38) and eqtating
coefficients up to th¢s—*), we obtain the followings equations:
Forf0 =1,
)+ Ji + @ =0, (40)
ﬁ@{{ + <I>{) =0 (41)
boundary conditions are,

fo=fl=0 dy=1 at 7=0,

~ (42)
%:0, ®y=0 as 1 — oc.
For&—4,
fil' + 1+nwﬁ fo?) + @1 =0, (43)
ﬁcp'{ @) +n[fo®) — f3 (@ —1)] =0 (44)
boundary conditions are,
fi=fi=0, & =1 at 7=0,
E N - 1 n (45)
fi=0, & =0 as 17— 0.
The solutions of the equations (40)—(45) yields
~ 1 e_ﬁ e_Prﬁ
— — 46
Jo Pzt Pr(1—Pr) Pr2(1-Pr)’ (46)
- —Pro42Pr* —7Pr3+3Pr—1 Pr¥i-Pr+1_ .
fi=n - ne™"
Pr4(1+ Pr)?(1 — Pr)3 Pr3(1 — Pr)?
Pr’+ Pr® —3Pr® —10Pr* + 6Pr* —4Pr+1
Pri(1+ Pr)?(1— Pr)3 ¢
B 1 FePri —Pr'+6Pr’ —2Pr+1 p.
Pr2(1 — Pr)? Pri(1+4 Pr)(1— Pr)3
4
P’I" +P7"+167(1+PT,);7\ ' (47)

B Pri(1+ Pr)3
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And
By = eI, (48)
o 1 1 —Priy 1 ~ —Pry
fl_n[{1+Pr (1P7")2}€ +17Prne
1 N 1 .
I —(+Pr) | 49
+(1—Pr)26 1+ Pre ] (49)
Finally one can find the local skin friction for largeas.
Cf _ =1 i
Grad/* Pr

4 [n(PrT+Pr—3Pr5—10Pr*+6Pr3—4Pr+1)
+e { Pri(l+ Pr)2(1— Pr)?
n(Pr* —6Pr3 +2Pr —1) Pr3+Pr+1
- Pri(1+Pr)(1—Pr)3  Pri(l1+Pr)
2Pr® 4+ 2Pr? — 2Pr + 2
Pr3(1 — Pr)? H

(50)

whenPr # 1.

From equation (50), we can see that the skin-friction depends on suction
parameter and Prandtl numbBr. But when¢ is asymptotically large (i.e.
¢ — 00), the value of the skin-friction approaches to zero. We have compared
the solutions obtained from the equation (50) in terms of the skin-friction with
that of the other methods in Fig. 2a.

The Nusselt number is obtained as

Nu
From equation (51), we can see that the Nusselt number depends octiba s
parametef and Prandtl numbefPr. We have compared the solutions obtained
from the equation (51) in terms of the heat-transfer with that of the others
methods in Fig. 2b.

— —4_ "
_g[PrJrg 1+Pr]' 5D

5.3 Finitedifference solution for all £ (FD)

We have employed a most efficient solution method, known as implicit finite
method, which was first introduced by Keller [21] and widely used by Hinss
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et. al. [22, 23]. In this paper, the solutions are obtained famd the numerical
results are shown in both the tabular as well as graphical form.

To apply the aforementioned methods we first convert the equations (18)
and (19) into first order system of partial differential equations.

Now the system of linear equations together with the boundary conditions
can be written in matrix/vector form where the coefficient matrix has a block-
tridiagonal structure. Such a system is solved using a block-matrix vesgion
the well-known Thomas or tridiagonal matrix algorithm. The whole procedure,
namely reduction to first order form followed by central differencerapima-
tions, Newton’s quasi-linearisation method and the block-Thomas algorithm,
is known as the Keller Box method and it was first introduced by Keller [21].
To initiate the process with = 0, we first prescribed the guess profiles from
the exact solutions of the equation (27)—(29). These profiles are thglowed
in the Keller-Box scheme with second order accuracy to march step by step
along the boundary layer. For the givérihe iterative procedure is stopped
to give the final velocity and the temperature distribution when the difference
in computing these functions in the next procedure becomes lesd @han
i.e. [0f'| < 1072, where the superscript denotes the number of iterations.
Throughout the computations, non-uniform grids in thdirection have been
incorporated, considering; = sinh ((j — 1)/a) wherej = 1,2,3,...,N
with N = 254 anda = 100, to get the quick convergence and thus save
computational time and space.

6 Resultsand discussions

Investigation of a problem on natural convection flow from a plane vértica
isothermal porous surface placed in non-isotherm surroundingsdessre-
sented here by employing three distinct solution methodologies, namely, the
perturbation method for smaf] asymptotic solution for largeand the Keller-
box method for all values df.

While n = 1, the ambient temperature distributions are linear.Fer 0,
the ambient temperature decreases withThe former of these is the more
likely to occur in practical situations because this would in general represe
a stable situation, i.e. a lighter fluid lies over a heavier one. 16t 0,
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the ambient temperature remains constant. This case is very rarely achieved
Whenn > 0, the ambient temperature increases withThis case may not
occur in practical situations because this would in general represansgable
situation, i.e. a lighter fluid lies below a heavier one.

For fluids of Prandtl number’r (Pr = 0.708 for air and Pr = 0.10
for mercury) takes: = 0.3 the numerical values of the local skin friction,
Cy/Grz®/* and heat transferyu/Grz'/* obtained by perturbation solution
for small and large values of the transpiration paramgteare depicted in
Table 2 for comparison with the finite difference solution. When the Prandtl
number increases the table shows that the skin friction coefficient desrea
and the rate of heat transfer coefficient increases.

Fig. 2(a) and 2(b) show the influence of ambient temperature gradient
on the skin friction and local heat transfer rate. As before, the congparis
shows excellent agreement between the solutions obtained by the piéoturba
method for small transpiration parameter and the asymptotic solutions for large
transpiration parameter with the implicit finite difference solutions. From these
figures we may, further, observe that an increase in the value of thenpter
n leads to increase in the value of the skin-friction and decrease in value of
the rate of heat transfer. Here we also observe that for each valu¢hefre
is a local maxima for skin-friction near the leading edge and then its value
decreases to the asymptotic value as the valugintreases. The numerical
values show that fon = —0.9, the maximum value of the local skin-friction
is 084307 at¢ = 0.54375. The maximum value of skin-friction fat = —0.3
is 0.94194 which occurred at = 0.54375. Forn = 0.0 the maximum value
is 1.00621 at{ = 0.58973, for n = 0.3 this value is1.06333 atz = 0.63665
and forn = —0.9 this value is1.10552 at{ = 0.68459. This implies that an
increase in the value of leads to increase in the momentum boundary layer
thickness.

Now attention is given to the effect of pertinent parameters on the non-
dimensional velocity and the temperature distribution in the flow field. The
non-dimensional velocity and the temperature distribution are shown graphi-
cally in Fig. 3(a) and 3(b) only by the finite difference method. Thesedigur
show that the influence of the ambient temperature gradiemd the transpi-
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ration parameteg on the velocity and the temperature distributions.

Fig. 3. (a) The velocity distribution and (b) the temperatdistribution for
different values of with the selected Prandtl numbBy=0.708 andn =0.6.

The curves fort = 0 are found to be identical with those obtained by
Cheesewright [5].

From Fig. 3 we can see that an increase in the value of the parameter
n leads to increase in the velocity profile and the temperature profile and
the velocity and the temperature profiles decrease with the increase of the
transpiration parametef. The curves forn = 0 are identical with those
obtained by Henkes and Hoogendoorn [24]. Therefore the preesunlts
are in excellent agreement with those obtained by them. It can also be seen
that at each value of the transpiration paramétdahere exists a local max-
imum value of velocity profiles in the boundary layer region. The maxi-
mum values are obtained &s34603, 0.31004, 0.09524,0.02469 at h =
2.08265, 1.43822, 0.68459, 032549 andx = —1.0, 0.0, 2.0, 4.0.

Fig. 4 shows the velocity and temperature profiles for suction. When
n increases the velocity and temperature increases. Fig. 5 shows a region
with small backflow and temperature deficit is found in the outer part of the
boundary layer in a stably stratified & 0) environment. There is no backflow
or temperature deficit in an unstably stratifiedX 0) environment.

The comparison shows that both the skin friction and the velocity pro-
files are increases with the increase of the ambient temperature gradient
The Nusselt number decreases and the temperature profile increasésewith
increasen, which are expected.
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Fig. 4. (a) The velocity distribution and (b) the temperatdistribution for
different values of, with the selected Prandtl numbgr = 0.708, £ = 2.0.

(@) 0.35f
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Fig. 5. (a) The velocity distribution and (b) the temperatdistribution for
different values of. with the selected Prandtl numbBr =0.708 and¢ =0.6.
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