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Abstract. This paper briefly surveys the history of primality tests.eTh-
cently discovered deterministic polynomial time primalitest due to
Agrawal, Kayal and Saxena is presented and some improvermenshortly
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1 Prime numbers and their global distribution

Prime numbers are rather old objects in mathematics, however, they did not
loose their fascination and importance. Invented by the ancient Greelain an
logy to theindivisible atoms in physics, primes are the multiplicative atoms
of the integers. Their properties are studied in number theory but they occ
in many other subfields of mathematics. In the last decades prime numbers
entered the real world in many applications, e.g. as generator for keys-in mo
dern cryptographical algorithms.

An integern > 1 is called prime if it has no other positive divisors than
1 and itself (within the set of integers); otherwisds said to be composite.
Every integer has a unique factorization into powers of distinct prime nusnber
Euclid was the first who proved that there are infinitely many primes. His
simple proof is now taught at schoolif, . . . , p,,, are prime, then the number

q:=p1 ... pm+1
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is not divisible by any of the;’s. Thusq has a prime divisor different from
p1,- -, pm (Which can bey itself). This construction of aewprime number

out of an arbitrary finite collection of given primes implies the infinitude of
prime numbers. For other, partially astonishing proofs of this basic fact we
refer to [7].

The celebrated prime number theorem gives information how the primes
are distributed. On the first view the prime numbers seem to appear in the
sequence of positive integers without any visible rule. However, agcon
tured about two hundred years ago by Gauss (at the early ag®) aind
first proved about hundred years ago by Hadamard and de la Valléssin
(independently) on the base of outstanding contributions due to Riemawn, the
satisfy a distribution law. Roughly speaking, the numbeér) of primes less
than or equal ta: is

w(x) = / du + error term Q)

) log u

the appearing logarithmic integral is asymptotically equat tdog «, where
log z is here and in the sequel the natural logarithm. The error term in the
prime number theorem is small in comparison withlog x and is closely
related to the zero distribution of the Riemann zeta-function

c@)—i%—l}(%%)l, @

wheres has to be regarded as a complex variable and the product is taken over
all primes; the series, and so the product, converges absolutely for-Re
The identity between the series and the product is nothing else than the analytic
version of the unique factorization of integers, and provides anotloef for
the existence of infinitely many prime numbers which is due to Euler: assum-
ing that there are only finitely many primes, the product converges thoatigh
the complex plane, contradicting the fact that the series reduces=fot to
the divergent harmonic series.

The Riemann hypothesis claims that the complex zerog(f all lie
on the so-called critical line Re = 1/2 in the complex plane. This fa-
mous conjecture was stated by Riemann in 1859 and is still unproved. Its
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value for mathematics is outstanding and so it is one of the seven millenium
problems for which the Clay Institute awardédmillion US-Dollars (see

htt p: / wwww. cl aymat h. org/ M | | enni um Pri ze_Pr obl ens/). If

the Riemann hypothesis is true, the error term in the prime number theorem is
as small as possible, namely z'/21og z, and so the prime numbers are dis-
tributed as uniformly as possible! For details on this fascinating link between
elementary number theory and complex analysis we refer once more to [7].

2 The local decision problem: prime or not prime?

It is easy to check tha97 is prime and99 is not, but it seems much
harder to answer the same question for the numb@f$0 000 000 097 and
10000 000 000 099, at least in the same time. Indeed, a fundamental problem
in number theory is the decision problem

Primes: given a positive integet, decide whether is prime or not!

This problem became very important by developments in cryptography in the
late1970s. Itis easy to multiply two large prime numbers but it is much harder
to factor a given large integer; at least there are no factoring algoritheadie-
fying speed known so far. This simple observation led to so-called public key-
cryptosystems where the key, a large intelyeof about two hundred digits, is
public knowledge (as the telephone number) but its prime factorization is the
secret of its owner. This idea is attackablé\ifsplits into small primes, but if
N is the product of two (carefully chosen) primes with about hundred digits,
the factorization ofV is a nearly unsolvable task with present day computers;
for more details we refer to [4]. For generating such keys one needsdo fi
large prime numbers or, in other words, one needs to hdestprimality test,
wherefast means that the running time depending on the size of the number
to be tested ismall Notice that a factoring algorithm and a primality test
are different things: a numbercan fail a primality test and the test does not
tell us any of its divisors, whereas a factoring algorithm gives the complete
factorization ofn.

One of the first ideas for testing a given numbeof being prime might
be trial division, i.e., to try all positive integers /n whether they divide:
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or not. Obviously, if there is no divisor of among them, them is prime.
This strategy is not very useful if is large. For example, it would take
about10°° arithmetic operations to test an integer with0 digits; if now
10'9 operations can be performed by a computer within one second, then this
test would take about0*® seconds which is still much more thag billion
years, the estimated age of the Universe. However, hypothetical gouantu
computers, that are computers which compute with quantum states, if once re-
alized, would solve this factorization problem within a fraction of a secoeel (s
http://ww. qubit.org/library/intros/cryptana. htm for
more information). The simple idea of trial division leads to the sieve of Er-
atosthenes (due to the ancient greek Eratosthenes who was the firsstrenea
approximately the circumference of the Eagtso B.C.). If one deletes out
of a list of integersl < n < z all multiplesn of the primesp < /z, then
only the prime numbers in betweegpiz andz remain. This gives a list of
all primes under a given magnitude (and this is up to slight refinements still
the best algorithm for this aim). Moreover, we obtain the factorizatioradl of
integers in the list. For a primality test, this is a lot of superfluous information
and we might ask for faster algorithms for detecting primes.

For numbers of special shape primality tests of satisfying speed are known
for quite a long time. For instance, the Mersenne numbers, invented by the
monk Mersenne in644, are defined by

M, =20 —1,

wherep > 3 is prime; it is easily seen that composite exponents cannot
produce primes of this form. 10750 Euler corrected Mersenne’s erroneous
list of Mersenne prime numbers by use of the following criterionp i a
prime number of the formp = 4k + 3, theng = 2p + 1 is a divisor of M), if

and only ifq is prime; primes of the forrgp + 1 for primep are called Sophie
Germain-primes (in honour for the French mathematician Sophie Germain and
her work on Fermat's last theorem). For examplg,; = 2047 = 23 - 89 is

not prime as it was stated by Mersennel®78 Lucas found a simple arfdst
primality test for Mersenne numbers (but only1i®35 Lehmer gave the first
proof of the underlying mathematical theorem). His algorithm makes use of
the congruence calculus. Given a positive integeend arbitrary integers
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andb, we say that is congruent td modulon and write
a=bmod n

if n dividesa — b. The set of integer$ satisfying the above congruence
forms the so-called residue classnodulon, and we denote the smallest non-
negative integer of this set ymod n; this number is the remainder of ahy
from this residue class by division with With this notation the Lucas-Lehmer
test can be described as follows:

Input: a primep > 3. Output: M), is PRIME Of COMPOSITE
1. Puts=4.
2. For j from 3to p do s := s? — 2 mod M,
3. If s =0, return prIME; otherwise return COMPOSITE.

A proof can be found in [4]. The first iterations (without reducing modulg)
are

s=4 — 14=2.7 — 194 — 37634=2-31.607,

which yields the first two Mersenne priméds = 7 and M5 = 31. The
world recordamong prime numbers, i.e., the largest known prime number, is
a Mersenne prime, namely

Maogg6011 = 2°09900H — 1.

This number has more than six million digits and if these digits are typed in
the size of this text, this world record would have a length of approximately
17 kilometers. This huge Mersenne prime was found by M. Shafer in Novem-
ber2003 within the GIMPS-project GreatinternetMersennd’rime Search);
initiated by G. WoltmanGIMPS is a huge parallel computer connecting PCs
and workstations worldwide via the internet (more details can be found unde
http://ww. ner senne. or g). Itis an open question whether there are
infinitely many Mersenne primes. With a bit heuristics we can be optimistic.
We may interpret the prime number theorem (1) as follows: a positive integer
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is prime with probabilityl / log n. Then the expectation value for the number
of Mersenne primes/,, withp < x is

Z 1 1 Zl loglog x
= log(2P — 1)  log2 P log 2

which tends withx to infinity; the last asymptotic identity relies on taking
the logarithm in (2). Note that this fits pretty well to the number of detected
Mersenne primes.

3 Efficiency and Fermat’s little theorem

First generalprimality tests superior to trial division (which actually is a fac-
toring algorithm) were found rather late. One of the reasons might be that this
guestion was not of striking importance in the early age of mathematics (which
mainly was geometry and simple algebra). With the rise of number theory in
the middle ages primality testing and factoring became fundamental problems
in mathematics. Gauss wrote in his famalisquisitiones arithmeticaom

1801 (see [6], article329):

“The problem of distinguishing prime numbers from compaosite hum-
bers and of resolving the latter into their prime factors is known to be
one of the most important and useful in arithmetic). Nevertheless

we must confess that all methods that have been proposed thus far are
either restricted to very special cases or are so laborious and prolix
that (.. .) these methods do not apply at all to larger numbers.”

About two hundred years before the computer age, this quotation points ou
the bottle neck of applying mathematics to the real world. Trial division yields
the factorization of any integer aftesometime and thus it is the theoretical
solution of the factoring problem. It works pretty well fsmall integers in
particular, but it is hopeless if applied to integers with more than ten digits.
The solution of a theoretical problem with respect to applications is only as
good as its realization in practice!

For our later purpose we have to introduce a measufficiency Rough-
ly speaking, a primality test ifastif its running time is polynomial in the

176



Recent Breakthrough in Primality Testing

input data. To be more precisely, we adopt now a bit from the language
of complexity theory of computations. In computer science, the dragsé
problems solvable in polynomial time is of special interest. By definition, a
decision problen® lies in the classP of polynomial time problems if there
exists a polynomigp and an algorithm such that if any instancePdfias input
length< m, then the algorithm answers the question correctly in titmgm).
Despite of its definition, it is a priori not clear th&tis the class of problems
whichin practicecan be solved rapidly. An algorithm with polynomial running
time m!'% is slowlier than another algorithm with exponential running time
exp(m/10000) until m is greater than about ten million. However, experience
shows that whenever an interesting problem was shown to Be then there

is also an algorithm for it whose running time is bounded lsyrall power of

the input length. What is the input length in the decision probRrimes? In
view of the binary expansion of integers,

n:a0+a1-2+a2-22+...+am‘2m with ajE{O,l},

we needn + 1 < C'log n bits to describe an integer, whereC' is an absolute
constant, independent ef Thus, a primality test for. is of polynomial time
if its running time is bounded by some absolute constant times a fixed power
of log n; we shall denote this b§ ((logn)°).

If we are satisfied with a primality test which gives withigh probability
the correct answer, then we can easily do better than trial division. Esrma
little theorem from1640 states that i is prime andu is not a multiple ofp,
then

a?1'=1 mod p. 3)

For our later purpose, we shall have a closer look on Fermat’s little theorem.
The residue classesmod n obey a lot of algebraic structure, more precisely,
they form a ring (that means roughly that they are closed under additabn an
multiplication) and we denote this ring traditionally By nZ. If a is coprime

with n, the residue class mod n possesses an inverseZinZ which can

be found by solving (with the Euclidean algorithm) the linear diophantine
equation

aX +nY =1.
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Such residue classes are called prime residue classes and they formlthe mu
tiplicative group(Z/nZ)*; its cardinality is denoted by(n). The order of
an element, € (Z/nZ)*, denoted by, (a), is the smallest positive integér
for whicha* = 1 mod n. If there are no divisors of zero, the ring of residue
classes has even more structure. The FrigZ is a field (which means that
every non-zero element has a multiplicative inverse) if and ontyi&f prime.
This can be regarded as a characterization of prime numbers but it does n
give a practicable primality test. In this group-theoretical setting, Fermat’s
little theorem is nothing else than the statement that the order of each element
of the multiplicative group of the finite field /pZ is a divisor ofp — 1, the
number of elements (resp. the order) of the multiplicative gréufpZ)*.

The converse implication of Fermat's little theorem is not true as the
following example shows:

2340 = 1 mod 341 and 341 =11-31.

But how can we quickly compute congruences with such big numbers? The
trick is called fast exponentiation and works in the above example as follows:
taking into account the binary expansion

340=1-256+1-64+1-16+4+1-4,
we may easily compute
9340 _ 9256 964 916 ot _ o4 (94y2, ((24)2)2 ) (((24)2)2)2
=16-256-64-4 mod 341

by iterating(2¥)? = (2¥ mod 341)? mod 341. Fast exponentiation uses only
smallintegers, in our case non-negative integerg41, and so the computa-
tion of congruences with powers is a simple task.

Composite numbers for which
" 1=1 modn 4)

holds true are called pseudoprimes to basktegersn that are pseudoprime
for all basesa > 2, coprime withn, are called Carmichael numbers (after
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their discoverer Carmichael it912); the first one is61 = 3 - 11 - 17, and
there are infinitely many of them. Fortunately, Carmichael numbers do not
appear too often if compared with primes (see [2]). Thus one can darive
probabilistic primality test from Fermat's little theorem as follows: an integer
n is with ahigh probabilityprime if (4) holds forl < a < m, wherem < n
is a parameter; note that increasimggives a higher probability forn being
prime. In view of fast exponentiation this isfast algorithm for generating
prime candidates for public keys in cryptosystems. However, once fewctd
a candidate for being prime, often we needkterministiqorimality test, i.e., a
test which gives theorrectanswer whether a given integelis prime or not,
and not only an answer whichvery likely correct

In the 1970s Miller found a primality test in polynomial time under as-
sumption of the truth of the unproved Riemann hypothesis (more precisely, of
the analogue of the Riemann hypothesis for Diricllefunctions). Miller’s
test is based on an extension of Fermat’s little theorem. If one is not willing to
accept any conditional result, there is the Jacobi sum test which hasiagu
time

0 ((log n)cloglogn) ,

wherec is a positive absolute constant; the exponent is tending so slowly
with n to infinity, that this running time isiearly polynomial for the range

of numbers with which humans compute. For more details concerning these
tests we refer to [4].

4 Recent breakthrough: the AKS-algorithm

It was an unexpected breakthrough when the Indian computer sciegtisAl
together with his students Kayal and Saxena published in A@gggtonline
a preprint [1] entitled Primes is in P’ in which they gave a first deterministic
primality test in polynomial time without assuming any unproven hypothesis.
Surprisingly, the test and its mathematical proof are quite simple.

The main idea of this new primality test, the so-called AKS-algorithm, is
the following extension of Fermat's little theorem to polynomials: a positive
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integern > 1 is prime if and only if
(x4+1)"=2"+1 (5)

in the ring of polynomials with coefficients froid/nZ. For example, the
Carmichael numbet = 561 leads to the polynomial

(x+1)0 =250 ¢ 4512 4. 41 mod 561,

The proof of (5) is rather simple and makes only use of Fermat’s little theorem
(3) and divisibility properties of binomial coefficients. However, this ear
terization would not give a polynomial time primality test since for testing
one has to compute aboutcoefficients for the polynomial on the left hand
side of (5). It was the ingenious idea of Agrawal and his students toaepla
the polynomial identity (5) by a set @feakercongruences

(r—a)"=2"—-a mod (n,z" —1), (6)

where thea's have to be small residue classes moduland ther is a small
positive integer. However, to assure that switching from the polynomiatide
tity (5) to the set of congruences (6) still yields a characterization of prime
numbers, one has to consider quite mafsyandr’s. On the contrary, these
congruences can be checked much faster than (5) since it sufficesyute
with polynomials of degreec 2. The right balance leads to a deterministic
primality test with polynomial running time.

Theorem 1 (Agrawal, Kayal, Saxena).Let s, n be positive integers. Suppose
that ¢ andr are primes such that dividesr — 1, n"=1/¢ £ 0,1 mod r, and

(‘HS - 1) > 2V,

S

If forall 1 < a < s, a coprime withn, the congruence (5) holds to be true,
thenn is a prime power.

We give a sketch of proof following Bernstein’s shortened argumgdnt [3
Let p be a prime divisor of.. Consider numbers of the fortp = n’*pi* with
0 < ig,jx < [/r], where, as usualg| denotes the largest integer z. The
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pigeonhole principle shows that at least two distinct pairs of exporiénts; )
lead to numberg;, lying in the same residue class moduloWithout loss of
generality,

t1 =ts mod r. @)

Fermat’s little theorem (3) implies that

ti

(r—a)* =2 —a mod (p,z" — 1)

holds for alll < a < p andk = 1,2. In view of (7)2" — 1 dividesz!* — z2,
and thus

t2

(r—a)* =2 —a mod (p,z" —1).

It follows that g'* = g2 for all elementsg of the multiplicative subgroup
G generated by the linear factofs, — a) inside the cyclotomic field over
Z/pZ, generated by adjunction of theh roots of unity¢, (this step needs
some fundamentals from algebra). Consequently, ¢ is a multiple of the
group order of7. Sincea is coprime withn, and since

p(r_l)/q #0,1 mod n,

G has at Ieas(q+§_1) elements (this step requires some elementary number
theory). In view of the condition of the theorem

= bl < ()7 <2 < (47T,

Since this is a lower bound for the group orderfit follows thatt; = ¢
which impliesn = p™ for some non-negative integet. This is the assertion
of the theorem.

How does this theorem lead to a fast primality test? By some kind of
Newton iteration one can check in polynomial time whether a given integer
is a power of an integer. The congruence (5) can be tested by Faserf~ou
transformation arithmetic i) (sr(logn)?) steps; the notatio® incorporates
further logarithmic factors is, » andlogn. If now the quantities andr in
the Theorem of Agrawal et al. can be chosen as being bounded bypsamee
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of logn, we get a primality test with polynomial running time. By Stirling’s
formula it turns out that the hypothetical prime divispof » — 1 is at least
c[v/r]logn, wherec is an absolute constant dependingsor he existence of
such large prime divisors of integers of the shape 1 follows from a deep
theorem of Fouvry [5] (which became famous by its applications to Fermat's
last theorem, before Wiles’ final proof). Roughly speaking, Fowvrgsult
states that there amanyprimesr such thatr — 1 has a sufficiently large
prime divisor; more precisely, there is a set of prime numbexith positive
density such that the largest prime divigaof  — 1 satisfiesy > 05587, The
proof relies on advanced sieve methods. However, Hendrik Lensgitaces

the use of Fouvry’s theorem by a tricky but elementary argument which we
do not give here. According to the improvements by Lenstra and others, th
AKS-algorithm has now the following form:

Input: an integem > 1. Output: n iS PRIME Of COMPOSITE
1. Test whether n is a prime power.

2. Find the smallest r such that the order o,(n) of n mod r is greater
than 4(log n)?.

3. Test whether n has prime divisors < r.

4. If n < r, then return PRIME.

5. Test (6) forall 1 < a < 24/¢(r) logn.
6. If n survived all tests, then return PrIME; otherwise return COMPOSITE.

(Several implementations of this or related algorithms can be found under
http://fatphil.org/ mat hs/ AKS/.) This primality test has a running
time of O ((logn)'?). Lenstra and Pomerance are working on refined faster
versions of the new ideas of Agrawal and his collaborators (e.g. poliai®
different froma" — 1); so far, they succeeded in the estimaté(log n)"*) for

the running time. With some heuristics on the distribution of Sophie Germain-
primes, which brings analytic number theory back into the game, the running
time is expected to b® ((log n)?) (but a proof seems to be as hard as a proof
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of the twin prime conjecture on the existence of infinitely many pairs of prime
numbers, p + 2). For a discussion of the progress made since the appearance
of the original AKS-algorithm we refer to the survey paper by Bernst@n [

5 PANP?

In view of the primality test of Agrawal and his students it follows that the de-
cision problemPrimes € P. On the other side, the integer factoring problem,

Factoring: given an integetV, find the prime factzorization af,

is not expected to lie i but in N"P. The class\V'P is, roughly speaking, the
class of decision problems having solutions that, once given, can beederifi
in polynomial time. By definition the classé2 and NP seem to be quite
different: solving a problem seems to be harder than verifying a givetico.

In the language of prime numbers, it is rather difficult to factor a giverelarg
integer, e.g.,

N = 10000000000 097,
into its prime divisors, but it is easy to check whether or not
811 - 12330456 227

is the prime factorization aV. Once the factorization of an integer is produced
by some factoring algorithm, we can use the AKS-algorithm to test its factors
on primality in polynomial time. This shows th&tctoring € N'P. ltis
widely expected thaFactoring does not lie inP; we already mentioned in
Section 2 that public key-cryptography relies in the main part on this belief
(however, this is not true for hypothetical quantum computers). Simglys
it seems to be rather difficult to find an example which is a membafBfbut
not of P. Moreover, it is an open problem to prove (or dispra®ef NP. This
fundamental conjecture in theoretical computer science is another millenium
problem (seehttp://ww.claynath.org/M Il enniumPrize_
Pr obl ens/).

We conclude our report on primes, primality testing and open problems
with a nice quotation due to Paul Leyland who expressed his surprisé abou
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the unexpected discovery of a simple deterministic polynomial time primality
test by saying:

“Everyone is now wondering what else has been similarly overlooked.”
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