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Abstract. This paper briefly surveys the history of primality tests. The re-
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1 Prime numbers and their global distribution

Prime numbers are rather old objects in mathematics, however, they did not

loose their fascination and importance. Invented by the ancient Greek in ana-

logy to theindivisible atoms in physics, primes are the multiplicative atoms

of the integers. Their properties are studied in number theory but they occur

in many other subfields of mathematics. In the last decades prime numbers

entered the real world in many applications, e.g. as generator for keys in mo-

dern cryptographical algorithms.

An integern > 1 is called prime if it has no other positive divisors than

1 and itself (within the set of integers); otherwisen is said to be composite.

Every integer has a unique factorization into powers of distinct prime numbers.

Euclid was the first who proved that there are infinitely many primes. His

simple proof is now taught at school: ifp1, . . . , pm are prime, then the number

q := p1 · . . . · pm + 1
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is not divisible by any of thepj ’s. Thusq has a prime divisor different from

p1, . . . , pm (which can beq itself). This construction of anewprime number

out of an arbitrary finite collection of given primes implies the infinitude of

prime numbers. For other, partially astonishing proofs of this basic fact we

refer to [7].

The celebrated prime number theorem gives information how the primes

are distributed. On the first view the prime numbers seem to appear in the

sequence of positive integers without any visible rule. However, as conjec-

tured about two hundred years ago by Gauss (at the early age of17) and

first proved about hundred years ago by Hadamard and de la Vallée-Poussin

(independently) on the base of outstanding contributions due to Riemann, they

satisfy a distribution law. Roughly speaking, the numberπ(x) of primes less

than or equal tox is

π(x) =

x
∫

2

du

log u
+ error term; (1)

the appearing logarithmic integral is asymptotically equal tox/ log x, where

log x is here and in the sequel the natural logarithm. The error term in the

prime number theorem is small in comparison withx/ log x and is closely

related to the zero distribution of the Riemann zeta-function

ζ(s) =
∞

∑

n=1

1

ns
=

∏

p

(

1 − 1

ps

)−1

, (2)

wheres has to be regarded as a complex variable and the product is taken over

all primes; the series, and so the product, converges absolutely for Res > 1.

The identity between the series and the product is nothing else than the analytic

version of the unique factorization of integers, and provides another proof for

the existence of infinitely many prime numbers which is due to Euler: assum-

ing that there are only finitely many primes, the product converges throughout

the complex plane, contradicting the fact that the series reduces fors = 1 to

the divergent harmonic series.

The Riemann hypothesis claims that the complex zeros ofζ(s) all lie

on the so-called critical line Res = 1/2 in the complex plane. This fa-

mous conjecture was stated by Riemann in 1859 and is still unproved. Its
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value for mathematics is outstanding and so it is one of the seven millenium

problems for which the Clay Institute awarded1 million US-Dollars (see

http://www.claymath.org/Millennium_Prize_Problems/). If

the Riemann hypothesis is true, the error term in the prime number theorem is

as small as possible, namely∼ x1/2 log x, and so the prime numbers are dis-

tributed as uniformly as possible! For details on this fascinating link between

elementary number theory and complex analysis we refer once more to [7].

2 The local decision problem: prime or not prime?

It is easy to check that97 is prime and99 is not, but it seems much

harder to answer the same question for the numbers10 000 000 000 097 and

10 000 000 000 099, at least in the same time. Indeed, a fundamental problem

in number theory is the decision problem

Primes: given a positive integern, decide whethern is prime or not!

This problem became very important by developments in cryptography in the

late1970s. It is easy to multiply two large prime numbers but it is much harder

to factor a given large integer; at least there are no factoring algorithms of satis-

fyingspeed known so far. This simple observation led to so-called public key-

cryptosystems where the key, a large integerN of about two hundred digits, is

public knowledge (as the telephone number) but its prime factorization is the

secret of its owner. This idea is attackable ifN splits into small primes, but if

N is the product of two (carefully chosen) primes with about hundred digits,

the factorization ofN is a nearly unsolvable task with present day computers;

for more details we refer to [4]. For generating such keys one needs to find

largeprime numbers or, in other words, one needs to have afastprimality test,

wherefast means that the running time depending on the size of the number

to be tested issmall. Notice that a factoring algorithm and a primality test

are different things: a numbern can fail a primality test and the test does not

tell us any of its divisors, whereas a factoring algorithm gives the complete

factorization ofn.

One of the first ideas for testing a given numbern of being prime might

be trial division, i.e., to try all positive integers≤ √
n whether they dividen
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or not. Obviously, if there is no divisor ofn among them, thenn is prime.

This strategy is not very useful ifn is large. For example, it would take

about1050 arithmetic operations to test an integer with100 digits; if now

1010 operations can be performed by a computer within one second, then this

test would take about1040 seconds which is still much more than12 billion

years, the estimated age of the Universe. However, hypothetical quantum

computers, that are computers which compute with quantum states, if once re-

alized, would solve this factorization problem within a fraction of a second (see

http://www.qubit.org/library/intros/cryptana.html for

more information). The simple idea of trial division leads to the sieve of Er-

atosthenes (due to the ancient greek Eratosthenes who was the first to measure

approximately the circumference of the Earth250 B.C.). If one deletes out

of a list of integers1 < n ≤ x all multiplesn of the primesp ≤ √
x, then

only the prime numbers in between
√

x andx remain. This gives a list of

all primes under a given magnitude (and this is up to slight refinements still

the best algorithm for this aim). Moreover, we obtain the factorizations ofall

integers in the list. For a primality test, this is a lot of superfluous information

and we might ask for faster algorithms for detecting primes.

For numbers of special shape primality tests of satisfying speed are known

for quite a long time. For instance, the Mersenne numbers, invented by the

monk Mersenne in1644, are defined by

Mp := 2p − 1,

wherep ≥ 3 is prime; it is easily seen that composite exponents cannot

produce primes of this form. In1750 Euler corrected Mersenne’s erroneous

list of Mersenne prime numbers by use of the following criterion: ifp is a

prime number of the formp = 4k + 3, thenq = 2p + 1 is a divisor ofMp if

and only ifq is prime; primes of the form2p + 1 for primep are called Sophie

Germain-primes (in honour for the French mathematician Sophie Germain and

her work on Fermat’s last theorem). For example,M11 = 2047 = 23 · 89 is

not prime as it was stated by Mersenne. In1878 Lucas found a simple andfast

primality test for Mersenne numbers (but only in1935 Lehmer gave the first

proof of the underlying mathematical theorem). His algorithm makes use of

the congruence calculus. Given a positive integersn and arbitrary integersa
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andb, we say thata is congruent tob modulon and write

a ≡ b mod n

if n divides a − b. The set of integersb satisfying the above congruence

forms the so-called residue classa modulon, and we denote the smallest non-

negative integer of this set bya mod n; this number is the remainder of anyb

from this residue class by division withn. With this notation the Lucas-Lehmer

test can be described as follows:

Input: a primep ≥ 3. Output: Mp is PRIME or COMPOSITE.

1. Put s = 4.

2. For j from 3 to p do s := s2 − 2 mod Mp.

3. If s = 0, return PRIME; otherwise return COMPOSITE.

A proof can be found in [4]. The first iterations (without reducing moduloMp)

are

s = 4 → 14 = 2 · 7 → 194 → 37 634 = 2 · 31 · 607,

which yields the first two Mersenne primesM3 = 7 and M5 = 31. The

world recordamong prime numbers, i.e., the largest known prime number, is

a Mersenne prime, namely

M20 996 011 = 220 996 011 − 1.

This number has more than six million digits and if these digits are typed in

the size of this text, this world record would have a length of approximately

17 kilometers. This huge Mersenne prime was found by M. Shafer in Novem-

ber2003 within theGIMPS-project (GreatInternetMersennePrime Search);

initiated by G. Woltman,GIMPS is a huge parallel computer connecting PCs

and workstations worldwide via the internet (more details can be found under

http://www.mersenne.org). It is an open question whether there are

infinitely many Mersenne primes. With a bit heuristics we can be optimistic.

We may interpret the prime number theorem (1) as follows: a positive integern
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is prime with probability1/ log n. Then the expectation value for the number

of Mersenne primesMp with p ≤ x is

∑

p≤x

1

log(2p − 1)
∼ 1

log 2

∑

p≤x

1

p
∼ log log x

log 2
,

which tends withx to infinity; the last asymptotic identity relies on taking

the logarithm in (2). Note that this fits pretty well to the number of detected

Mersenne primes.

3 Efficiency and Fermat’s little theorem

First generalprimality tests superior to trial division (which actually is a fac-

toring algorithm) were found rather late. One of the reasons might be that this

question was not of striking importance in the early age of mathematics (which

mainly was geometry and simple algebra). With the rise of number theory in

the middle ages primality testing and factoring became fundamental problems

in mathematics. Gauss wrote in his famousdisquisitiones arithmeticaefrom

1801 (see [6], article329):

“The problem of distinguishing prime numbers from composite num-

bers and of resolving the latter into their prime factors is known to be

one of the most important and useful in arithmetic (. . .). Nevertheless

we must confess that all methods that have been proposed thus far are

either restricted to very special cases or are so laborious and prolix

that (. . .) these methods do not apply at all to larger numbers.”

About two hundred years before the computer age, this quotation points out

the bottle neck of applying mathematics to the real world. Trial division yields

the factorization of any integer aftersometime and thus it is the theoretical

solution of the factoring problem. It works pretty well forsmall integers in

particular, but it is hopeless if applied to integers with more than ten digits.

The solution of a theoretical problem with respect to applications is only as

good as its realization in practice!

For our later purpose we have to introduce a measure forefficiency. Rough-

ly speaking, a primality test isfast if its running time is polynomial in the
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input data. To be more precisely, we adopt now a bit from the language

of complexity theory of computations. In computer science, the classP of

problems solvable in polynomial time is of special interest. By definition, a

decision problemP lies in the classP of polynomial time problems if there

exists a polynomialp and an algorithm such that if any instance ofP has input

length≤ m, then the algorithm answers the question correctly in time≤ p(m).

Despite of its definition, it is a priori not clear thatP is the class of problems

which in practicecan be solved rapidly. An algorithm with polynomial running

time m100 is slowlier than another algorithm with exponential running time

exp(m/10000) until m is greater than about ten million. However, experience

shows that whenever an interesting problem was shown to be inP, then there

is also an algorithm for it whose running time is bounded by asmallpower of

the input length. What is the input length in the decision problemPrimes? In

view of the binary expansion of integers,

n = a0 + a1 · 2 + a2 · 22 + . . . + am · 2m with aj ∈ {0, 1},

we needm+1 ≤ C log n bits to describe an integern, whereC is an absolute

constant, independent ofn. Thus, a primality test forn is of polynomial time

if its running time is bounded by some absolute constant times a fixed power

of log n; we shall denote this byO ((log n)c).

If we are satisfied with a primality test which gives with ahigh probability

the correct answer, then we can easily do better than trial division. Fermat’s

little theorem from1640 states that ifp is prime anda is not a multiple ofp,

then

ap−1 ≡ 1 mod p. (3)

For our later purpose, we shall have a closer look on Fermat’s little theorem.

The residue classesa mod n obey a lot of algebraic structure, more precisely,

they form a ring (that means roughly that they are closed under addition and

multiplication) and we denote this ring traditionally byZ/nZ. If a is coprime

with n, the residue classa mod n possesses an inverse inZ/nZ which can

be found by solving (with the Euclidean algorithm) the linear diophantine

equation

aX + nY = 1.
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Such residue classes are called prime residue classes and they form the mul-

tiplicative group(Z/nZ)∗; its cardinality is denoted byϕ(n). The order of

an elementa ∈ (Z/nZ)∗, denoted byon(a), is the smallest positive integerk

for which ak ≡ 1 mod n. If there are no divisors of zero, the ring of residue

classes has even more structure. The ringZ/nZ is a field (which means that

every non-zero element has a multiplicative inverse) if and only ifn is prime.

This can be regarded as a characterization of prime numbers but it does not

give a practicable primality test. In this group-theoretical setting, Fermat’s

little theorem is nothing else than the statement that the order of each element

of the multiplicative group of the finite fieldZ/pZ is a divisor ofp − 1, the

number of elements (resp. the order) of the multiplicative group(Z/pZ)∗.

The converse implication of Fermat’s little theorem is not true as the

following example shows:

2340 ≡ 1 mod 341 and 341 = 11 · 31.

But how can we quickly compute congruences with such big numbers? The

trick is called fast exponentiation and works in the above example as follows:

taking into account the binary expansion

340 = 1 · 256 + 1 · 64 + 1 · 16 + 1 · 4,

we may easily compute

2340 = 2256 · 264 · 216 · 24 = 24 · (24)2 ·
(

(24)2
)2 ·

(

(

(24)2
)2

)2

≡ 16 · 256 · 64 · 4 mod 341

by iterating(2k)2 ≡ (2k mod 341)2 mod 341. Fast exponentiation uses only

small integers, in our case non-negative integers< 341, and so the computa-

tion of congruences with powers is a simple task.

Composite numbersn for which

an−1 ≡ 1 mod n (4)

holds true are called pseudoprimes to basea. Integersn that are pseudoprime

for all basesa ≥ 2, coprime withn, are called Carmichael numbers (after
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their discoverer Carmichael in1912); the first one is561 = 3 · 11 · 17, and

there are infinitely many of them. Fortunately, Carmichael numbers do not

appear too often if compared with primes (see [2]). Thus one can derivea

probabilisticprimality test from Fermat’s little theorem as follows: an integer

n is with ahigh probabilityprime if (4) holds for1 ≤ a ≤ m, wherem < n

is a parameter; note that increasingm gives a higher probability forn being

prime. In view of fast exponentiation this is afast algorithm for generating

prime candidates for public keys in cryptosystems. However, once foundsuch

a candidate for being prime, often we need adeterministicprimality test, i.e., a

test which gives thecorrectanswer whether a given integern is prime or not,

and not only an answer which isvery likely correct.

In the 1970s Miller found a primality test in polynomial time under as-

sumption of the truth of the unproved Riemann hypothesis (more precisely, of

the analogue of the Riemann hypothesis for DirichletL-functions). Miller’s

test is based on an extension of Fermat’s little theorem. If one is not willing to

accept any conditional result, there is the Jacobi sum test which has a running

time

O
(

(log n)c log log n
)

,

where c is a positive absolute constant; the exponent is tending so slowly

with n to infinity, that this running time isnearly polynomial for the range

of numbers with which humans compute. For more details concerning these

tests we refer to [4].

4 Recent breakthrough: the AKS-algorithm

It was an unexpected breakthrough when the Indian computer scientist Agrawal

together with his students Kayal and Saxena published in August2002 online

a preprint [1] entitled ’Primes is inP ’ in which they gave a first deterministic

primality test in polynomial time without assuming any unproven hypothesis.

Surprisingly, the test and its mathematical proof are quite simple.

The main idea of this new primality test, the so-called AKS-algorithm, is

the following extension of Fermat’s little theorem to polynomials: a positive
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integern > 1 is prime if and only if

(x + 1)n = xn + 1 (5)

in the ring of polynomials with coefficients fromZ/nZ. For example, the

Carmichael numbern = 561 leads to the polynomial

(x + 1)561 = x561 + . . . + 51x11 + . . . + 1 mod 561.

The proof of (5) is rather simple and makes only use of Fermat’s little theorem

(3) and divisibility properties of binomial coefficients. However, this charac-

terization would not give a polynomial time primality test since for testingn

one has to compute aboutn coefficients for the polynomial on the left hand

side of (5). It was the ingenious idea of Agrawal and his students to replace

the polynomial identity (5) by a set ofweakercongruences

(x − a)n ≡ xn − a mod (n, xr − 1), (6)

where thea’s have to be small residue classes modulon and ther is a small

positive integer. However, to assure that switching from the polynomial iden-

tity (5) to the set of congruences (6) still yields a characterization of prime

numbers, one has to consider quite manya’s andr’s. On the contrary, these

congruences can be checked much faster than (5) since it suffices to compute

with polynomials of degree≤ 2r. The right balance leads to a deterministic

primality test with polynomial running time.

Theorem 1 (Agrawal, Kayal, Saxena).Lets, n be positive integers. Suppose

that q andr are primes such thatq dividesr − 1, n(r−1)/q 6≡ 0, 1 mod r, and
(

q + s − 1

s

)

≥ n2[
√

r].

If for all 1 ≤ a < s, a coprime withn, the congruence (5) holds to be true,

thenn is a prime power.

We give a sketch of proof following Bernstein’s shortened argument [3].

Let p be a prime divisor ofn. Consider numbers of the formtk = nikpjk with

0 ≤ ik, jk ≤ [
√

r], where, as usual,[x] denotes the largest integer≤ x. The
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pigeonhole principle shows that at least two distinct pairs of exponents(ik, jk)

lead to numberstk lying in the same residue class modulor. Without loss of

generality,

t1 ≡ t2 mod r. (7)

Fermat’s little theorem (3) implies that

(x − a)tk ≡ xtk − a mod (p, xr − 1)

holds for all1 ≤ a ≤ p andk = 1, 2. In view of (7)xr − 1 dividesxt1 − xt2 ,

and thus

(x − a)t1 ≡ xt2 − a mod (p, xr − 1).

It follows that gt1 = gt2 for all elementsg of the multiplicative subgroup

G generated by the linear factors(ζr − a) inside the cyclotomic field over

Z/pZ, generated by adjunction of therth roots of unityζr (this step needs

some fundamentals from algebra). Consequently,t1 − t2 is a multiple of the

group order ofG. Sincea is coprime withn, and since

p(r−1)/q 6≡ 0, 1 mod n,

G has at least
(

q+s−1
s

)

elements (this step requires some elementary number

theory). In view of the condition of the theorem

|t1 − t2| < (np)[
√

r] ≤ n2[
√

r] ≤
(

q + s − 1

s

)

.

Since this is a lower bound for the group order ofG, it follows that t1 = t2

which impliesn = pm for some non-negative integerm. This is the assertion

of the theorem.

How does this theorem lead to a fast primality test? By some kind of

Newton iteration one can check in polynomial time whether a given integer

is a power of an integer. The congruence (5) can be tested by Fast Fourier

transformation arithmetic iñO
(

sr(log n)2
)

steps; the notatioñO incorporates

further logarithmic factors ins, r and log n. If now the quantitiess andr in

the Theorem of Agrawal et al. can be chosen as being bounded by somepower
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of log n, we get a primality test with polynomial running time. By Stirling’s

formula it turns out that the hypothetical prime divisorq of r − 1 is at least

c[
√

r] log n, wherec is an absolute constant depending ons. The existence of

such large prime divisors of integers of the shapep − 1 follows from a deep

theorem of Fouvry [5] (which became famous by its applications to Fermat’s

last theorem, before Wiles’ final proof). Roughly speaking, Fouvry’s result

states that there aremanyprimesr such thatr − 1 has a sufficiently large

prime divisor; more precisely, there is a set of prime numbersr with positive

density such that the largest prime divisorq of r − 1 satisfiesq ≥ r0.6687. The

proof relies on advanced sieve methods. However, Hendrik Lenstra replaced

the use of Fouvry’s theorem by a tricky but elementary argument which we

do not give here. According to the improvements by Lenstra and others, the

AKS-algorithm has now the following form:

Input: an integern > 1. Output: n is PRIME or COMPOSITE.

1. Test whether n is a prime power.

2. Find the smallest r such that the order or(n) of n mod r is greater
than 4(log n)2.

3. Test whether n has prime divisors ≤ r.

4. If n ≤ r, then return PRIME.

5. Test (6) for all 1 ≤ a ≤ 2
√

ϕ(r) log n.

6. If n survived all tests, then return PRIME; otherwise return COMPOSITE.

(Several implementations of this or related algorithms can be found under

http://fatphil.org/maths/AKS/.) This primality test has a running

time of O
(

(log n)12
)

. Lenstra and Pomerance are working on refined faster

versions of the new ideas of Agrawal and his collaborators (e.g. polynomials

different fromxr−1); so far, they succeeded in the estimateO
(

(log n)7.5
)

for

the running time. With some heuristics on the distribution of Sophie Germain-

primes, which brings analytic number theory back into the game, the running

time is expected to beO
(

(log n)3
)

(but a proof seems to be as hard as a proof
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of the twin prime conjecture on the existence of infinitely many pairs of prime

numbersp, p + 2). For a discussion of the progress made since the appearance

of the original AKS-algorithm we refer to the survey paper by Bernstein [3]).

5 P 6= NP ?

In view of the primality test of Agrawal and his students it follows that the de-

cision problemPrimes ∈ P. On the other side, the integer factoring problem,

Factoring: given an integerN , find the prime factzorization ofN ,

is not expected to lie inP but inNP. The classNP is, roughly speaking, the

class of decision problems having solutions that, once given, can be verified

in polynomial time. By definition the classesP andNP seem to be quite

different: solving a problem seems to be harder than verifying a given solution.

In the language of prime numbers, it is rather difficult to factor a given large

integer, e.g.,

N = 10 000 000 000 097,

into its prime divisors, but it is easy to check whether or not

811 · 12 330 456 227

is the prime factorization ofN . Once the factorization of an integer is produced

by some factoring algorithm, we can use the AKS-algorithm to test its factors

on primality in polynomial time. This shows thatFactoring ∈ NP. It is

widely expected thatFactoring does not lie inP; we already mentioned in

Section 2 that public key-cryptography relies in the main part on this belief

(however, this is not true for hypothetical quantum computers). Surprisingly,

it seems to be rather difficult to find an example which is a member ofNP but

not ofP. Moreover, it is an open problem to prove (or disprove)P 6=NP. This

fundamental conjecture in theoretical computer science is another millenium

problem (see http://www.claymath.org/Millennium_Prize_

Problems/).

We conclude our report on primes, primality testing and open problems

with a nice quotation due to Paul Leyland who expressed his surprise about
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the unexpected discovery of a simple deterministic polynomial time primality

test by saying:

“Everyone is now wondering what else has been similarly overlooked.”

References

1. Agrawal M., Kayal N., Saxena N.Primes is in P,available athttp://www.
cse.iitk.ac.in/news/primality.html

2. Alford W.R., Granville A., Pomerance C. “There are infinitely many Carmi-
chael numbers”,Ann. of Math.,139, p. 703–722, 1994

3. Bernstein D.Proving primality after Agrawal-Kayal-Saxena,available at
http://cr.yp.to/papers.html]aks

4. Crandall R., Pomerance C.Prime numbers – a computational perspective,
Springer 2001

5. Fouvry E. “Théorème de Brun-Titchmarsh; application à théorème de Fermat”,
Inventiones,79, p. 383–407, 1985

6. Gauss C.F.Disquisitiones arithmeticae,Yale University Press, New Haven,
translated by A.A. Clarke, 1966

7. Ribbenboim P.The new book of prime number records,Springer, 3rd ed., 1996

184


