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Abstract. This paper presents an indirect adaptive control scheme forlinear
continuous-time systems. The estimated plant model is controllable and
then the adaptive scheme is free from singularities. Such singularities are
avoided through a modification of the estimated plant parameter vector so
that its associated Sylvester matrix is guaranteed to be nonsingular. That
property is achieved by ensuring that the absolute value of its determinant
does not lie below a positive threshold. An alternative modification scheme
based on the achievement of a modified diagonally dominant Sylvester ma-
trix of the parameter estimates is also proposed. This diagonal dominance is
achieved through estimates modification as a way to guarantee the control-
lability of the modified estimated model when a controllability measure of
the estimation model without modification fails. In both schemes, the use of
a hysteresis switching function for the modification of the estimates is not
required to ensure the controllability of the modified estimated model. Both
schemes ensure that chattering due to switches associated with the modifi-
cation is not present. The results are extended to the first-order case when
the input is subject to saturation being modeled as a sigmoidfunction. In
this case, a hysteresis-type switching law is used to implement the estimates
modification.
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1 Introduction

The adaptive stabilization and control of linear continuous and discrete sys-

tems has been successfully developed in the two last decades, [1]–[4].Usually,

the plant is assumed to be inversely stable and its relative degree and its high-

frequency gain sign are assumed to be known together with an absolute upper-

bound for that gain in the discrete case. The assumption on the knowledge of

the order can be relaxed by assuming a nominal known order and considering

the exceeding modes as unmodeled dynamics, [5]–[9]. The assumption on the

knowledge of the high frequency gain has been removed in [4] and [9] and the

assumption of the plant being inversely stable has been successfully removed

in the discrete case and, more recently, in the continuous one [10, 11], [5]–

[7]. The problem is solved by using either excitation of the plant signals

or a modification of the least-squares estimation by either using excitation

of the plant signals or exploiting the properties of the standard least-squares

covariance matrix, [11], [5, 8], [12]. In a set of papers, the assumption of

the plant being inversely stable has been removed by using either excitation

of the plant signals or estimates modification by using hysteresis switching

functions which generate the controllability of the estimated plant model while

exploiting the properties of the covariance matrix, [11, 7, 8] and references

therein focused on a deterministic approach. An alternative modification stra-

tegy was the use of a random search-type algorithm to avoid the degeneracy of

the Sylvester matrix, [6]. In [5], a recursive coordinate modification method

was given which ensue convergence in a stochastic sense. This paperpresents

an adaptive stabilization algorithm for continuous-time systems which can

have unstable zeros .The adaptive scheme uses a parameter modification

scheme which neither involves hysteresis switching nor takes advantage of

the properties of the covariance matrix while guarantees that the absolute

value of the determinant of the Sylvester matrix associated with the param-

eter estimates is bounded from below by a positive threshold. An alternative

modification procedure which is based upon the achievement of a diagonally

dominant Sylvester matrix of the modified estimates is also proposed.This

modification is an alternative method in the case when a sufficiency test on

maintenance of controllability of the unmodified estimated model fails. Such
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a test consists of guaranteeing through the manipulation of matrix norms that

the maximum absolute eigenvalue of the Sylvester matrix of such a model is

bounded above by a finite real constant while the minimum one is bounded

from below by a positive real constant. The boundedness and convergence

of all the estimates and controller parameters is guaranteed in both the ideal

perfectly modeled case and when the wide class of unmodelled dynamics and

bounded disturbances considered in [7]–[15] are present. The plant input and

output are bounded and converge to zero in the ideal perfectly modeled case

while they are bounded in the above mentioned non ideal situation. Section 2 is

devoted to the synthesis of the adaptive stabilizer in the perfectly modelled case

for unknown continuous-time plants. The basic estimation scheme, used prior

to the modification procedure, is of least-squares type. The two above men-

tioned estimation modification procedures are also given. Section 3 presents

the convergence and stability properties of the proposed scheme. Some ro-

bustness issues against the presence of unmodeled dynamics and bounded

disturbances are also pointed out the mechanism used to guarantee robustness

is the variation of the basic estimation scheme by adding a relative dead zone

so that the estimation and covariance matrix adaptation are frozen when the

adaptation error is small compared to an absolute overbounding function of

the contribution to the uncertainties to the output. The modification procedures

that ensure controllability of the estimated model are kept as in the ideal case.

The scheme’s modifications to operate in the case of presence of unmodelled

dynamics and/or bounded disturbances are also given. A numerical example

is given in Section 4 and, finally, conclusions end the paper. The mathematical

proofs of the results are developed in Appendix.

2 Adaptive stabilizer for a continuous-time plant

In the sequel, the time-argument is suppressed unless confusion can arise and

the constant parameters are denoted by a superscript “∗”. Consider the follow-

ing continuous-time controllable system

A∗(D)y(t) = B∗(D)u(t), Diy(0) = y
(i)
0 (i = 0, 1, . . . , n− 1) (1)
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whereDi ≡ di

dti
(i = 0, 1, . . . , n − 1) is the i-th time-derivative operator,

A∗(D) = Dn +
n∑

i=1
a∗i D

n−i andB∗(D) =
m∑

i=0
b∗i D

m−i with n ≥ m. Since

(1) is controllable then its associated(n + m) Sylvester resultant matrix

S(θ∗0) =




1 0 · · · 0 b∗0 0 · · · · · · 0

a∗1 1
.. .

... b∗1 b∗0
...

... a∗1
.. . 0

... b∗1
.. .

...
...

... 1 b∗m
...

.. . .. . 0

a∗n
... a∗1 0 b∗m

.. . b∗0

0 a∗n
...

...
.. . b∗1

...
.. .

...
...

.. .
...

0 · · · 0 a∗n 0 · · · · · · 0 b∗m




︸ ︷︷ ︸
m

︸ ︷︷ ︸
n

is nonsingular. Define the filtered signals:

E∗(D)uf = u, E∗(D)yf = y, E∗(D) = Dn +

n−1∑

i=1

e∗i D
n−i (2)

with E∗(D) being a strictly Hurwitz polynomial. The filtered control law for

a known plant (1) is generated as

S∗(D)uf = −R∗(D)yf (3)

whereS∗(D) = Dn +
n∑

i=1
s∗i D

n−i, R∗(D) = Dn +
m−1∑
i=0

r∗i D
m−i−1, satisfy

the diophantine equation:

A∗(D)S∗(D) + B∗(D)R∗(D) = C∗(D)

whereC∗(D) = Dn+
n∗−1∑
i=1

c∗i D
n∗−i of prefixed degree fulfilling the constraint

n∗ ≤ n + deg
(
S∗(D)

)
≤ 2n is a strictly Hurwitz polynomial (i.e., with

roots inReD < 0) which defines the suited closed-loop dynamics.S∗(D) and

R∗(D) are the unique solution to the above diophantine equations sinceA∗(D)

andB∗(D) are coprime because of the controllability of (1) and the constraints
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deg
(
S∗(D)

)
≤ deg

(
E∗(D)

)
≤ n anddeg

(
R∗(D)

)
< deg

(
A∗(D)

)
. (In

particular, ifE∗(D) satisfiesdeg
(
E∗(D)

)
≤ n− 1 then its appropriate coef-

ficients in (2) are zeroed). Equation (3) is equivalent to its unfiltered version:

u =
(
E∗(D)− S∗(D)

)
uf −R∗(D)yf . (4)

The control objective in the adaptive case for unknown plant is to update

the controller parameterssi and rj (i = 1, 2, . . . , n, j = 0, 1, . . . , m) in

an adaptive way so that the plant (1), subject to the control law (4) when

replacing the parameters by their estimates, is asymptotically stable in the large

in the absence of disturbances. Under bounded noise and a standard class of

unmodelled dynamics, the scheme is guaranteed to be globally stable. Simple

direct calculus with (1), (2) yields for filtered signals:

Dnyf = θ∗T ϕ (5)

with θ∗ = [θ∗T0

... ε∗T0 ]T

= [θ∗1, θ
∗
2, . . . , θ

∗
n+m+1

... θ∗n+m+2, θ
∗
n+m+3, . . . , θ

∗
2n+m+1]

T

= [b∗0, b
∗
1, . . . , b

∗
ma∗1, a

∗
2, . . . , a

∗
n

... ε∗01, ε
∗
02, . . . , ε

∗
0n]T , (6a)

ϕ(t) =
[
ϕT

0 (t), iTϕ(t)
]T

= [Dmuf , Dm−1uf , . . . , uf , (6b)

−Dn−1yf ,−Dn−2yf , . . . , yf , i1, i2, . . . , in]T (6c)

whereg(t) = εT
0 (t)i(t) is an exponentially decaying term that depends on

initial conditions and eachij(t) is known and it has the formt`eλ∗

k
t for ` =

0, 1, . . . , mk − 1 with mk being the multiplicity of the rootλ∗
k of C∗(D).

There aremk termsi(·)(t) of such a form for eachλ∗
k. The parameter vector

θ∗ is estimated by using an standard least-squares algorithms of covariance

matrixP (t) and estimated vectorθ(t) =
(
θT
0 (t), εT

0 (t)
)T

with ε0(t) being the

estimation of the initial conditions ofε∗0. The estimation algorithm consists of

an estimation algorithm and a rule to modify such estimates as follows:

2.1 Parameter estimation

e = Dnyf − θT ϕ (prediction error), (7a)
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θ̇ = Pϕe, (7b)

Ṗ = −PϕϕT P ; P (0) = P T (0) > 0. (7c)

The basic modification of the estimated plant model is performed when ne-

cessary to maintain the controllability of the estimated model in the sense that∣∣Det
(
S(θ̄0)

)∣∣ ≥ ρ > 0 even if
∣∣Det

(
S(θ0)

)∣∣ < ρ for some positive real

constantρ while the Sylvester matrices of the “a priori” and modified estimates

have the same structures asS(θ∗0) and their values are obtained by replacing

θ∗0 with θ0 andθ̄0, respectively. The modification scheme to calculateθ̄ from θ

is implemented according to the following scheme:

2.2 Basic modification of the estimation

The plant parameter estimates through the algorithm (7) are then modified

as follows. First, define the strictly positive piecewise constant real time-

functionh(·) and nonnegative time-functionsδα andα as follows for positive

real constantsρ andρ′ ≥ ρ:

h(0)=ρ, h(t+)=





ρ if h(t) = ρ and
∣∣Det

(
S(θ0)

)∣∣ 6= ρ for t = t−,

ρ if h(t) = ρ′ and
∣∣Det

(
S(θ0)

)∣∣ = ρ′ for t = t−,

ρ′ if h(t) = ρ′ and
∣∣Det

(
S(θ0)

)∣∣ 6= ρ′ for t = t−,

ρ′ if h(t) = ρ and
∣∣Det

(
S(θ0)

)∣∣ = ρ for t = t−,

(8a)

δα =





3h−Det
(
S(θ0)

)

C̄
=

3h−
∣∣Det

(
S(θ0)

)∣∣ Sign(C̄)
(
Det

(
S(θ0)

))

C̄

if
∣∣Det

(
S(θ0)

)∣∣ < h,

0 if
∣∣Det

(
S(θ0)

)∣∣ ≥ h,

(8b)

α =





δαC̄ if δαC̄ ≥ 1,

(δαC̄)
1

n+m if δαC̄ < 1
(8c)
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for some small prefixed positive real constantρ of upper-bound specified later

and

C̄ =
{

C(σ̄1, σ̄2, . . . , σ̄n+m+1) :

∣∣C(σ̄1, σ̄2, . . . , σ̄n+m+1)
∣∣ = max

σi∈{0,−1,1}

∣∣C(σ̄1, . . . , σ̄n+m+1)
∣∣
}

, (8d)

C(σ̄1, σ̄2, . . . , σ̄n+m+1)

=
n+m∑

k=1

n+m+1∑

i1,i2,...,ik=1

1

k!
Trace

(
Sθi1

(θ0)S̃θi1
...θik

(θ0)
) ik∏

j=i1

[σj ], (8e)

(σ̄1, σ̄2, . . . , σ̄n+m+1)

=
{
Arg(σ1, σ2, . . . , σn+m+1) : C̄ = C(σ1, σ2, . . . , σn+m+1)

and σi ∈ {0,−1, 1}, i = 1, 2, . . . , n + m + 1
}

(8f)

where S̃(θ0) is the matrix of cofactors ofS(θ0), with subscripts denoting

partial first or higher-order derivatives with respect to the respective arguments,

and the first-order derivatives with respect to the parameter estimates are:

Sai
(θ0) =

dS

dai

∣∣∣
θ0

=




0i×(n+m)

· · · · · · · · ·
Im 0m×n

· · · · · · · · ·
0(n−i)×(n+m)




← (i + 1)-th row
(i = 1, . . . , n)

Sbj
(θ0) =

dS

dbj

∣∣∣
θ0

=




0j×(n+m)

· · · · · · · · ·
Im 0m×n

· · · · · · · · ·
0(n−i)×(n+m)




← (j + 1)-th row
(j = 0, 1, . . . , m)

(8g)

θ̄ = θ + δ̄, (9a)

δ̄ = [δθ1, δθ2, . . . , δθn+m+1, 0,

n︷︸︸︷
. . . , 0]T = [δ̄T

0 , 0, 0T ]T

= [δb0, δb1, . . . , δbm, δa1, δa2, . . . , δan, 0, . . . , 0]T , (9b)

āi = ai + δai = ai + ασ̄i, b̄j = bj + δbj = bj + ασ̄n+1+j ,

i = 1, 2, . . . , n, j = 0, 1, . . . , m. (9c)
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Note that(σ̄1, σ̄2, . . . , σ̄n+m+1)
T is a non necessarily unique vector, whose

components take values in the set{1, 0,−1} which maximizes the function

C(σ1, σ2, . . . , σn+m+1) for the of constraintsσi ∈ {1, 0,−1} for i = 1, 2, . . . ,

n+m+1. The idea behind the above modification method (8), (9) is basically

the following. Two different thresholds are used to modify the parameter

components. The use of two thresholdsρ andρ′ is only made for purposes

of avoiding chattering by involving the mechanism of switching between them

each time that a discontinuity in the modification is found. These thresh-

olds are sufficiently small compared to the stability abscissa of the objec-

tive polynomialC∗(D) in order to guarantee the closed-loop stability. Each

absolute value of a parameter estimate is either modified with a maximum

amountα(t) or such a parameter becomes unmodified (see (9)). The maximum

value of depends on the thresholdsρ andρ′ (see (8a)–(8c)). The mechanism

which ensures that the absolute value modified Sylvester determinant exceeds

the corresponding threshold is to manipulate its Taylor expansion around its

unmodified value by checking the maximum allowable absolute increase by

increasing each of all the estimates in±α or leaving them unmodified. See

(8d)–(8g).

More in detail, assume that eachi-th parameter component ofθ0 is mo-

dified by an additive increment so that the modificationασi scheme is̄θ0 =

θ0 + α(σ1, . . . , σn+m+1)
T . A well-known equation from Linear Algebra is

d

dθ0i

(
Det

(
S(θ0)

))∣∣
θ0=q0

= Trace
(
Sθ0i

(q0)S̃(q0)
)
,

[13], from which higher-order derivatives with respect to the various parameter

vector components. Thus, by using a series Taylor expansion of the analytic

multivariable function of the modified estimatesDet
(
S(θ̄01, . . . , θ̄0,n+m+1)

)

aroundDet
(
S(θ01,...,n+m+1)

)
(later denotedDet

(
S(θ0)

)
by for notation sim-

plicity purposes) which is considered as a multivariable function of all the

parameter components, the identityDet
(
S(θ̄0)

)
=

(
S(θ0)

)
+ Cα, with the

function C being calculated from (8e). The switches inh(t) betweenρ and

ρ′ given by (8a) have as objective of avoiding chattering so that the existence

of solution is ensured for all time. Chattering could potentially arise if the

Sylvester determinant would converge to a constant functionh while, at the

10
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same time, its time-derivative converges to zero with changing sign. This phe-

nomenon is avoided in this approach by using the switching rule (8a) by taking

advantage of the fact that the unmodified and modified parameter estimates

converge asymptotically to finite limits. Thus if the Sylvester determinant

converges toρ (or ρ′) after a large but finite time it cannot converge toρ′ (or

ρ) while it remains in a certain small neighborhood centered atρ′ (or ρ). The

avoidance of chattering guarantees the existence of solution. These features

will be proved in the following section of the paper.

The above modification procedure basically operates as follows. Assume

that θi is any estimatea(·) or b(·). If σ = 0 then such a parameter does not

contribute to the maximumC (i.e., to C̄). That means that if the parameter

were accounted for in (8c) for eventual parameter modification with both signs,

i.e., σ = ±1, thenC would have less absolute value. Ifσ = ±1, then the

parameter contributes tōC, i. e., if it is accounted for to calculatēC which

reaches a larger absolute value than for any other possibilities for accounting

or not all the remaining parameter estimates. At the end of the modification

procedure, all the estimates whose correspondingσ̄(·) is±1 become modified

while those ones whose correspondingσ̄
(·)

is zero remain unmodified. The

use of two distinct valuesρ andρ′ to deal with switches in the determinant

test is just to avoid that the potential situation of the determinant converging

to one of those values implies the non existence of solution in the closed-loop

system. Therefore, an isolated discontinuity (the test for switchingh(·) from

one value to the other in (8a)) ensures the existence of solution and the problem

of convergence of the determinant of the Sylvester matrix of the unmodified

estimates to one of those values is avoided since in finite, but large, time the

determinant is close to its limit, since the estimates have a limit, as proved

in Theorem 1 and the corresponding discontinuity of f ensures that ho new

switches would arise.It is proved in Appendix, as an intermediate step in

the proof of the subsequent controllability result, that for all time because

not all the derivatives in(8e) with respect to the estimates evaluated at the

parameter vector estimated from the algorithm(7) are zero. This feature

makes possible that the Sylvester determinant of the modified estimates can

always be modified with respect to its value prior to modification. It becomes

11
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obvious from the above modification philosophy that|C̄| can be replaced by

any value of|C| which be bounded from below by a positive constant. The

main idea behind its proof is that the scalar functionDet
(
S(θ0)

)
whosen+m

arguments are all the estimatesa(·) andb(·) built through (8), (9) is not constant

at any real interval. This property will follow from the fact that at least one of

its first-order derivatives (i.e., the components of its gradient with respect to

the estimated parameters)or of its successive higher order derivativesin the

parameter space of estimates is nonzero. Therefore, the modification rule

(8), (9) allows the modification of the estimates when necessary so that the

constraint
∣∣Det

(
S(θ̄0)

)∣∣ ≥ ρ is fulfilled. The following result relies on the

controllability of the modified estimated model:

Proposition 1. Assume thatρ <
|σ|

6(n + m)
where(−σ) is the convergence

abscissa ofC∗(D). Thus, modified estimation scheme(8), (9) of the plant

model estimated from(7) fulfils at all time
∣∣Det

(
S(θ̄0)

)∣∣ ≥ ρ > 0 so that

such a model is controllable. Furthermore, there is no chattering causedby

switches in the estimates modification rule(8a)–(8c).

2.3 Alternative modification of the estimation

A second variation of the above estimation modification rule of (8), (9) is given

below by modifying the algorithm rules (8) and (9c). It is based on ensuring

that the Sylvester matrix of the modified estimates is diagonally dominant in

the case when that associated with estimates without modification is not gua-

ranteed to be controllable under a sufficiency test. Such a test is based onthe

evaluation of matrix norms ofS(θ0) and it does not requires the computation

of its eigenvalues. First, define small positive real constantsεbi, ε0i andε′0i

fulfilling εb2 ≥ εb1 + ε̄0, ε02 ≥ ε01 + ε̄1, ε′02 ≥ ε′01 + ε̄′1 as well as an

arbitrary large real constantT > 0 and an arbitrary large integerN > 0.

Then, establish Condition 1 for controllability test purposes of the estimated

model before modification at any timet as follows:

It is said thatCondition 1 holds at timet if

(n + m)
1
2

∥∥S(θ0)
∥∥
∞
≥ 1

ε′0
and (n + m)−

1
2

∥∥S(θ0)
∥∥

1
≤ 1

ε0
(10a)
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with ε0(t) = ε0(t − T ) = ε0i, ε′0(t) = ε′0(t − T ) = ε′0i for somei ∈ {1, 2}
if N−

t ≤ N , andε0(t) = ε0j , ε′0(t) = ε′0j , for somej ∈ {1, 2} with j 6= i

if N−
t = N + 1 whereN−

t is the overall number of times where inequalities

(10a) are simultaneously violated with the same values for the constants on the

finite but large time interval[t − T, t), i.e. with either(ε01, ε
′
01) or (ε02, ε

′
02).

After any switch in the values of both constants in (10a), Nt is set to zero, i.e.,

if N−
t = N + 1 thenNt = 0.

Also, Condition 2 is now established for testing ifbm belongs to a small

neighborhood around zero as follows :

It is said thatCondition 2 holds at timet if |bm| ≥ εb with εb(t) = εb(t−
T ) = εbi for somei ∈ {1, 2} if N ′

t
− ≤ N ; andεb(t) = εbj for somej ∈ {1, 2}

with j 6= i if N ′
t
− = N + 1 whereN ′

t
− is a the overall set of consecutive

violations of Condition 2 on the time interval[t − T, t) which operates in the

same way as for Condition 1

The parameter estimates are now modified as follows by using Condi-

tions 1, 2. Modify (9c) as follows:

δai =

{
0 if Condition 1 holds,

−αai otherwise,

δbj =

{
0 if Condition 1 holds,

−αbj otherwise,

(i = 0, 1, . . . , n, j = 0, 1, . . . , m− 1),

(10b)

δbm =





0 if Condition 1 holds,

βbm if Condition 1 does not hold

and Condition 2 holds,

β′ if Condition 1, 2 do not hold,

(10c)

α =

n∑
i=1
|ai|+

m∑
i=1
|bi|+ ρα − 1

n∑
i=1
|ai|+

m∑
i=1
|bi|

, (11a)
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β =





1

bm

{
(1− α)

[ n∑
i=1
|ai|+

m−1∑
i=1
|bi|+ γ|b0|

]
+ ρβ

}
− 1

if εb ≤ |bm| ≤
n∑

i=1
|ai|+

m−1∑
i=1
|bi|+ γ|b0|+ ρb,

0 if |bm| ≥ max
(
εb,

n∑
i=1
|ai|+

m−1∑
i=1
|bi|+ γ|b0|+ ρb

)
,

(11b)

β′ =
n∑

i=1

|ai|+
m−1∑

i=1

|bi|+γ|b0|+ ρ′b+|bm|, γ =

{
0 if m = n,

1 if m < n
(11c)

for prefixed given constantsρα ∈ (ρ′α, 1], ρ′α ∈ (0, 1), ρβ > 0; ρ′β > 0, and

β andβ′ are calculated for all time for the implementation of the modification

with andα = ρα = 1 if
n∑

i=1
|ai|+

m∑
i=0
|bi| = 0.

Remark 1. Condition 1 guarantees that all the absolute values eigenvalues of

the Sylvester matrix of the estimated model(7) are positive and upper-bounded

by a finite constant. As a result, Condition 1 guarantees that
∣∣Det

(
S(θ0)

)∣∣ is

bounded away from zero. If it is violated Condition 2 guarantees that the

Sylvester matrix is diagonally dominant and then nonsingular. The schemeis

stated in terms of achieving similar absolute relative increments in the modified

estimated model for each nonzero estimate distinct ofbm. This is a major

difference with the modification scheme(9), (10).

The reason of using pairs of distinct test values for checking those condi-

tions is to avoid chattering at their switching points, i.e., when
∥∥S(θ0)

∥∥
∞
→

1

ε′0
√

n + m
and

∥∥S(θ0)
∥∥

1
→
√

n + m

ε0
simultaneously as time tends to infinity

with either constant values(ε01, ε
′
01) or (ε02, ε

′
02) (Condition 1), or when

|bm| → εb2 (Condition 2). The reason is that the unmodified estimates have

finite limits depending on the initial conditions of the estimation algorithm

so that each norm of the Sylvester matrix or|bm| cannot converge to two

distinct values. A possible convergence to any of the switching points of the

matrix norms and|bm| (which would imply chattering) is avoided with the use

of Conditions 1, 2 in (10). The mechanism used is to switch the values of

the constants after a large numberN of consecutive switches have occurred

with the same values of those constants over a prefixed arbitrarily large time

intervalT .

14
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Remark 2. Note that the switches in the alternative modification scheme,

equations(9a), (9b) and (10), (11), automatically end in some finite time

as it follows from the subsequent reasoning. Assume that the limits of the

above norms and|bm| estimate are arbitrarily close to any of the switching

points of Conditions 1, 2 after a large time because the unmodified estimates

are very close to their limit points. The existence of these limits will follow

rigorously from the properties of the estimation and modification algorithms

proved in the subsequent section. Thus, the switching conditions changeafter

extra finite time to their alternative values because of the structure of the

modification rule. More switches cannot occur after extra timeνT (some

finiteν) since the (very close to its limit) unmodified estimates do not generate

switches from Conditions 1, 2 for one of the two values of theε(·)b-constants.

A good practical strategy to apply coherently Condition 1 is the use of very

large values forε′0i and very small ones forε0i and a sufficient (although

small) values for|ε′02 − ε′01| and for a|ε02 − ε01| fast ending of the switches

of the modification mechanism. As in the basic modification mechanism, a

possibly existing “a priori” knowledge on the true plant parameters could be

used to design the various constants so that Conditions 1, 2 hold for the true

plant so that if the estimates converge to the true parameters, the modification

mechanism is switched off automatically in finite time. However, the absence

of that knowledge do not affect to the stability of the closed-loop system.

The subsequent result is also proved in Appendix.

Proposition 2. If Condition 1 holds then the estimated plant model obtained

from the algorithm(7) is controllable and its associate Sylvester matrix is

nonsingular. If it does not hold then the alternative modification scheme(10),

(11) is controllable for all time and it does not exhibit chattering generated by

switches related to Conditions 1, 2.

Remark 3. A simple motivation of Propositions 1, 2 can be obtained from

the Perturbation Banach’s Lemma from Numerical Analysis,[14] that estab-

lishes that small perturbations of nonsingular matrices yield to nonsingular

matrices. In terms of Sylvester matrices, the modification rule(9a) implies

that, S′(θ̄0, σ(·)) = S′(θ0) + α.δS′(θ0, σ(·)), when the modification takes

15
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place, where the superscript prime indicates than the first row and column

of the Sylvester matrices have been deleted, since they are irrelevant fortheir

determinants and

δS′(θ0, σ(·)) =



σ1 0 · · · 0 σ0 · · · 0
... σ1 0

... σ1
. . .

...

σn
...

.. . 0
...

. . . σ0

0 σn σ1 σm σ1
... 0

.. .
... 0

. . .
...

0 · · · 0 σn 0 · · · σm



is a (n + m)-square matrix with eachσi potentially taking values in the set

{0,−1, 1} i the modification scheme(8), (9). By simple inspection it is easy

to see thatδS′(θ0, σ(·)) can be built as being nonsingular for many of the

choices of theσ(·). (Constructions such likeσn+i+1 = σi (i = 1, 2, . . . , n) for

m = n − 1 have to be excluded sinceδS′(θ0, σ(·)) becomes singular). Thus,

S′(θ̄0, σ(·)) is nonsingular and

∥∥S−1(θ̄0, σ(·))
∥∥ ≤

α−1
∥∥δS′−1(θ0, σ(·))

∥∥
1− α−1

∥∥δS′−1(θ0, σ(·))
∥∥∥∥S(θ0)

∥∥

for any matrix norm provided thatα >
∥∥δS′−1(θ0, σ(·))

∥∥∥∥S(θ0)
∥∥ what fol-

lows if α > (n + m + 1)max
( n∑

i=1
a2

i ,
m∑

i=0
b2
i

)1/2
by taking`1 matrix norms.

Sinceδα ≥ α from (8b). That means that ifα or δα is sufficiently large com-

pared to a measure of the absolute values of the estimates, then the modified

Sylvester matrix can be made nonsingular even if that prior to the modification

is singular. A lower-bound forδα is given explicitly in the proof of Proposi-

tion 1. The modification rule(10), (11) is based on guaranteeing that either

the unmodified Sylvester matrix is nonsingular and no modification is made

or the modified Sylvester matrix is diagonally dominant and then nonsingular.

For this case,δS′(θ0) = Diag(−α, . . . ,−α, β)S′(θ0) under modification for

nonzerobm andδS′(θ0) = Diag(−α, . . . ,−α, 0)S′(θ0) + β′, otherwise.
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2.4 Stabilizing adaptive control law

Introducing (9a) into (7a), we obtain:

Dnyf = e + θT ϕ = e + (θ̄T − δ̄T )ϕ

= e + A(D, t)yf + B(D, t)uf + εT
0 (t)iϕ(t)

(12)

with A(D, t) andB(D, t) being time-varying polynomials associated with the

estimates obtained from (7), which define the estimated model of the plant

prior to eventual modification, and whose adjustable parameters are the com-

ponents of the “a priori” estimated vectorθ. The filtered and unfiltered control

inputs are generated from the adaptive version of(3), (4),

S(D, t)uf = −R(D, t)yf , (13)

u =
(
E∗(D)− S(D, t)

)
uf −R(D, t)yf (14)

so that the following closed-loop diophantine equation is satisfied by the con-

troller polynomialsR(D) andS(D) which are calculated from modified pa-

rameter estimates:

Ā(D, t)S(D, t) + B̄(D, t)R(D, t) = C∗(D) (15a)

with

Ā(D, t) = A(D, t) + δA(D, t), B̄(D, t) = B(D, t) + δB(D, t),

δA(D, t) =
n∑

i=1

δaiD
n−i and δB(D, t) =

m∑

i=0

δbiD
m−i.

The solution is unique since the modified plant parameter estimated model is

controllable at all time what implies that the time-varying polynomialsĀ(D, t)

andB̄(D, t) are coprime for all time.

2.5 Calculation of the parameters of the adaptive stabilizer

The expression (15a) is equivalent to the following algebraic linear system

S(θ̄0)v = c∗ (15b)

17
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for all time with

v = [1, s1, . . . , sn, r0, r1, . . . , rm−1]
T ,

c∗ = [1, c∗1, c
∗
2, . . . , c

∗
n∗ ]T

(15c)

which is uniquely solvable with updated parameters at all time ins(·) andr(·)

which are used to generate the filtered plant input (3) so that the reference

closed-loop dynamics characteristic equation isC∗(D) = 0.

3 Stability results

The following assumption on some of the design constants is introduced to

guarantee the stability of the closed-loop system under Estimates Modification.

Assumption 1. (a) The design constantρ in (8a) is chosen sufficiently small

according to the constraintρ <
|σ|

6(n + m)
in the Basic Modification Scheme

of Subsection 2.2, equations (8), (9).

(b) The design constantε′01 is sufficiently large and the design constants

ε02, εb2 andρ′b are sufficiently small so that|σ| > max(δ̄′1, δ̄
′
2) with 0 < ε01 +

ε̄0 ≤ ε02 <
√

n + m, where

δ̄′1 = (1− ρα) +
√

2

(
1 +

1

ε′01
√

n + m
+ ρ′β + εb2

)
,

δ̄′2 =

(
2 +

ε02√
n + m− ε02

)
(1− ρα)

in the implementation of the Alternative Modification Scheme of Subsec-

tion 2.4, equations (9a), (9b), (11).

Theorem 1. The adaptive control law(13), (14), under the estimation scheme

(7)–(9) (or (7), (9a)and(10), (11)) and(15), has the following properties when

applied to the plant(1) provided that Assumption 1 holds:

(i) θ, θ̄ and P are uniformly bounded and the modified estimated plant

model is controllable at all time;

(ii) e andPϕ are inL2;

(iii) θ, P, θ̄, si and rj (i = 1, 2, . . . , n, j = 0, 1, . . . , m − 1) converge

asymptotically to finite limits for any bounded initial conditions for the plant
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and the estimation algorithm . Also, the Sylvester determinants of the unmodi-

fied and modified parameter estimates converge asymptotically to finite limits;

(iv) Diuf , Diyf (i = 0, 1, . . . , n− 1) andu andy are uniformly bounded

and converge asymptotically to zero.

Note thate ∈ L2
⋂

L∞ from Theorem 1 ((i) and (iv)) so thate → 0 as

t → ∞ andθ ∈ L∞ and converges to a finite limit. Also,
∥∥ ˙̃
θ‖ ∈ L∞ from

(7b) sinceP ∈ L∞ andϕ ∈ L∞. These properties guarantee thatDet
(
S(θ0)

)

andθ0 are bounded and converge to finite limits so that the modificationδ̄ is

bounded and converges for both proposed modification schemes (8), (9) and

(9a) and (10), (11).

Remark 4. Assume that the plant is not perfectly modelled and/or it is subject

to bounded disturbances with the unmodelled dynamics being related touf

by a exponentially stable transfer function. Thus, it is modelled after filtering

as A∗(D)yf = B∗(D)uf + ηf + εT
0 (t)iϕ(t) with ηf

1

E∗(D)η(t)
. Assume

that (1) is controllable whenη ≡ 0 and that an overbounding measurable

function η̄f (t) = ε1ρ(t) + ε2 = ε1 Sup
0≤τ≤t

{∥∥ϕ(τ)e−σ0(t−τ)
∥∥}

+ ε2 ≥ |ηf |,

for some nonnegative real constantsεi (i = 1, 2) wherev(t) is a vector whose

components areDjuf andDjuf , j = 0, 1, . . . , n − 1 ([7, 8] and [15]). The

estimation scheme of(7) is modified by premultiplying the right-hand-sides of

(7a), (7b)by the normalizing factorb :=
gs

1 + γφT Pφ
, where

s :=

{
0 if t ∈ I1 :=

{
t ∈ R

+
0

: |e| < µη̄f

}
,

f(µη̄f , e)/e otherwise(i.e., forI2 := R
+
0
− I1),

f(σ, e) :=





e− σ if e > σ,

0 if |e| ≤ σ,

e + σ if e < −σ

(16)

with g, γ andµ > 1 are prefixed positive constants. Note thatb(t) includes a

relative dead zone for small prediction error related to the size of the unmo-

delled dynamics (see, for instance,[7], [8] and [15]). Thus, it can be proved

that θ ∈ L∞, θ̄ ∈ L∞, Pϕ ∈ L2 and b|η2
f − e2| ∈ L1

⋂
L∞ and also that

the filtered and unfiltered input and output signals are uniformly bounded.The

proof is very similar to that of Theorem 1 and it is omitted by space reasons.
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4 Numerical example

A numerical example is now tested for a nominally unstable and inversely

unstable plant (1) parametrized byA∗(D) = D4+0.75D3+0.5D2+0.25D+

0.25 andB∗(D) = 0.75D3 + 2/3D2 + 0.25D + 0.25 with initial conditions

(−5,−7, 0, 0)T with filter parameterE∗(D) = (D + 6.93)2. The estimation

algorithm used prior to modification is that of Remark 2. The unmodelled

dynamics is defined by a second-order differential equationη̇ +0.12η− 7.8 =

7.8u. The estimation-modification algorithm used is that of (7)–(9) with the

replacement of (8a) with (10). The determinant threshold for parameter mo-

dification of the estimates isρ = 0.01. The adaptive stabilizer satisfies the

constraintsdeg
(
R(D)

)
= deg

(
S(D)

)
− 1 = 1. The initialization of the esti-

mation algorithm isb0(0) = 1, b1(0) = −0.008, b2(0) = −0.003, a1(0) =

0.005, a2(0) = −0.005, a3(0) = 0, a4(0) = 0. The parameterb∗3 is assumed

known and deleted from the estimation algorithm . The estimates of the initial

conditions of the plant (1) are zero. The covariance matrix is initialized to

P (0) = Diag(106) andg = γ = 1, µ = 1.04. The absolute overbounding

of the unmodelled dynamics contribution is computed with constantsε1 = 1

andε2 = 10−5 andσ0 = 0.1. The output and input versus time are shown on

Fig. 1. Figure 2 show the absolute value of the Sylvester determinant related

to the estimates and modified estimates, respectively.

Fig. 1. Output and input versus time of the closed-loop system.
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Fig. 2. Absolute Sylvester determinants of the a priori and modified estimatin
schemes.

5 Adaptive stabilization with a continuous-time controller of a
first-order plant under saturated input

The inputs to physical systems usually present saturation phenomena which

limit the amplitudes which excite the linear dynamics. Also, the adaptive

stabilization and control of linear continuous and discrete systems has been

successfully investigated in the last years. Classically, the plant is assumedto

be inversely stable and its relative degree and its high-frequency gain sign are

assumed to be known together with an absolute upper-bound for that gain in

the discrete case. Attempts of relaxing such assumptions have been made for

continuous systems. The assumption on the knowledge of the order can be

relaxed by assuming a known nominal order and considering the exceeding

modes and unmodelled dynamics. The problem has been solved by using

either excitation of the plant signals or by exploiting the properties of the

standard least-squares covariance matrix combined with an estimation modi-

fication rule based upon the use of a hysteresis switching function. Such an

estimates modification technique guarantees that the modified estimated plant

model is controllable at all time provided that the plant is controllable.This

paper presents an adaptive stabilization algorithm for first-order continuous-

time systems with a zero which can be either stable or unstable under saturated

input. The saturating device is modelled by a sigmoidal function.Such an

approach is a very good approximation to the common saturations usually

modelled as piecewise-continuous functions. Also, it is an exact model for

saturations inherent to practical MOS-type amplifiers. The adaptive scheme
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uses a parameter modification rule which guarantees that the absolute value

of the determinant of the Sylvester matrix associated with the modified para-

meter estimates is bounded from below by a positive threshold and, thus, the

estimated model is guaranteed to be controllable. That feature is the main

contribution of this manuscript. The results are then extended to the case

when an adaptive stabilizer, which re-updates at sampling instants the plant

estimates, modified estimates and controller parameters, is used for the above

continuous-time plant. This strategy results in a hybrid closed-loop system

because of the discrete nature of the updating procedure of the parametrical

estimation/modification.

5.1 Plant, estimation/modification scheme and adaptive stabiliza-
tion law

Consider the following continuous-time first-order controllable system under

saturated input:

ẏ + a∗y = b∗0u̇ + b∗1u
′, (17a)

u′ = satv∗(u) = than(v∗u) =
1− e−2v∗u

1 + e−2v∗u
(17b)

where the saturated inputu′ to the plant (17a) is modelled by a sigmoidal

function [16]. To simplify the writing, the argument(t) is omitted and all the

constants are denoted by superscripts by “∗”. Equation (17a) can be rewritten

as

Ẏ = −A∗y + b∗0u̇ + b∗1u + b∗0(u̇
′ − u̇) + b∗1(u− u). (18)

Note that the equivalence between (17a) and (18) is an identity where positive

and negative terms concerned with the unsaturated input and its time-derivative

are cancelled in the right-hand-side of (18). Define filtered signals

u̇f = −d∗uf + u, u̇′
f = −d∗u′

f + u′, ẏf = −d∗y′f + y′ (19)

for some scalard∗ > 0 so that one gets from (18) for filtered signals

ẏf = θ∗T ϕ = −a∗yf + b∗0u̇f + b∗1u
′
f + ε∗0e

−d∗t, (20a)

ẏf = −a∗yf + b∗0u̇f + b∗1u
′
f + b∗0(u̇

′
f − u̇f )

+ b∗1(u
′
f − uf ) + ε∗0e

−d∗t (20b)
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where

θ∗ = [b∗0, b
∗
1, a

∗, b∗0, b
∗
1, ε

∗
0]

T , (21a)

ϕ = [u̇f , uf , −yf , u̇′
f − u̇f , u′

f − uf , e−d∗t]T (21b)

whereε∗0 = yf (0) − u′
f (0) has been included inθ∗T to obtain (4) without

neglecting the exponentially decaying term due to initial conditions of the

filters1/(s + d∗) used in (20). Also, the over-parametrization of (21a), (21b),

in the sense that the coefficients of the numerator polynomial are estimated

twice with different regressors, allows describing (20a) as driven byuf and

u′
f − uf . This idea will be then exploited for the stability analysis of the

adaptive stabilizer. The parameter vectorθ∗T can now be estimated by using

the least-squares algorithm

e = ẏf − θT ϕ, (22)

θ̇ = Pϕe, (23)

Ṗ = −PϕϕT P, P (0) = P T (0) > 0 (24)

wheree is the prediction error,θ = (θ1, θ2, θ3, θ4, θ5, θ6)
T is the estimate of

θ∗, defined in (21a), andP is the covariance matrix. The use of (20b) into (6)

yields

ẏf = θ1ẏf +θ2uf −θ3yf +θ4(u̇
′
f −uf )+θ5(u

′
f −uf )+θ6e

−d∗t +e. (25)

The following modification rule of the parameter estimates is used to guarantee

the controllability of the estimated plant model

θ̄ = θ + Pβ (26)

with β being a vector which can be chosen to be equal to one of the following

vectors

β1 = [0, 0,

6︷︸︸︷
. . . , 0]T , β2 = v, β3 = −β2, (27a)

β4 = p1 − p4 + p3, β5 = −β4, β6 = p1 − p4 − p3, (27b)

β7 = −(p1−p4)+p3, v = (θ1−θ4)p3+θ3(p1−p4)−(p2−p5) (27c)
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and whose current value is selected from a hysteresis switching functionwhich

is defined by the following rule. Define

c(β) =
∣∣(θ̄1 − θ̄4)θ̄3 − (θ̄2 − θ̄5)

∣∣ =

∣∣∣∣∣∣
Det




1 0 0
θ̄3 1 θ̄1 − θ̄4

0 θ̄3 θ̄2 − θ̄5




∣∣∣∣∣∣

which is the absolute value of the Sylvester matrix of the modified parameter

estimates associated with the estimation of the plant numerator and denomina-

tor polynomials obtained from (23), (24) and (25)–(27). Assume thatβ(t−) =

βi(t
−) andc

(
βj(t

+)
)
≥ c

(
βm(t+)

)
for somej = 1, 2, . . . , 7 with j 6= i and

all m = 1, 2, . . . , 7. Thus, for some prefixed design scalarα∗ ∈ (0, 1]:

β(t+) =

{
βj(t

+) if c
(
βj(t

+)
)
≥ (1 + α∗)c

(
βi(t

+)
)
,

βi(t
+) otherwise

(28)

wherepi denotes thei-th column ofP . This modification strategy guarantees

that the parametrical error lies in the image of the ofP while allowing that the

diophantine equation, which will be then used for the synthesis of the adaptive

stabilizer, will have no cancellations at any time. It will be then shown that the

two following conditions are satisfied:

1) β converges,

2) c (β) ≥ δ∗ > 0

which will be then required in the proofs of convergence and stability. Equa-

tion (25) can be rewritten as dependent of the modified estimates (26)–(28)as

follows :

ẏf = θ̄1u̇f + θ̄2uf − θ̄3yf + θ̄4(u̇
′
f − u̇f )

+ θ̄5(u
′
f − uf ) + θ̄6e

−d∗t + e− βT Pϕ.
(29)

The filtered control inputuf to the saturating device and its unfiltered version

u are generated as follows:

u̇f = −s1uf − r0yf , u = d∗uf + u̇f = (d∗ − s1)uf − r0yf (30)

with the parametersr0 ands1 of the adaptive stabilizer being calculated for all

time from the diophantine polynomial equation

(D+θ̄3)(D+s1)+
[
(θ̄1−θ̄4)D+(θ̄2−θ̄5)

]
r0 = C∗(D) =

def
D2+c∗1D+c∗2 (31)

24



Stabilization of Continuous-Time Adaptive Control Systems

with D = d/dt in (15a) andC∗(D) being a strictly Hurwitz polynomial that

defines the suited nominal closed-loop dynamics.

5.2 Convergence and stability results

They are summarized in the following main result whose proof is omitted.

Theorem 2. Consider the plant(17) subject to the estimation scheme(22)–

(24), the modification scheme(26), (27)and the control law(30). Assume that

either a∗ > 0 (i.e., the open-loop plant is stable) or
∣∣y(0)

∣∣ ≤ b∗1 − a∗b∗0
a∗

if

a∗ < 0 (i.e., the initial condition is sufficiently small if the plant is unstable).

Thus, the resulting closed-loop scheme has the following properties:

(i) The modified estimated plant model is controllable for all time for the

chosenβ in such a way thatc (β) ≥ δ∗ > 0;

(ii) θ̃ = θ − θ∗ ∈ L∞ ande andPϕ are inL∞
⋂

L2;

(iii) θ, P, β, θ̄, s1 and r0 are uniformly bounded and converge asymp-

totically to finite limits. Also, the number of switches inβ is finite. Also,

θ̇ ∈ L2
⋂

L∞;

(iv) The signalsu, u′ and y and their corresponding filtered signals are

in L∞
⋂

L2. The signalsu, u′, uf , u′
f , y and yf converge to zero and their

time-derivatives are inL∞
⋂

L2 so that they converge to zero asymptotically.

Note that the requirement of the initial conditions being sufficiently small

when the plant is unstable is a usual requirement for stabilization in the pre-

sence of input saturation since it is impossible to globally stabilize an open-

loop unstable system with saturated input. This avoids the closed-loop sys-

tem trajectory to explode. Such a phenomenon occurs when the initial time-

derivative of the state vector is positive and continues to be positive for all time

because its sign cannot be modified for any input value within the allowable

input range. Note also that Theorem 2 (i)–(iii) imply that Conditions 1, 2 for

the β(·)-functions of the modification scheme are fulfilled. Finally, note that

the controllability of the modified estimation scheme allows to keep coprime

the modified estimates of the polynomials for zeros and poles. Thus, the

diophantine equation (31) associated with the controller synthesis is solvable

for all time without any singularities.
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The mechanism which is used to ensure local stability for unstable plants

and global one for stable ones is to guarantee the boundedness of all the

unsaturated filtered and unfiltered signals from the regressor bondedness while

the saturated ones are bounded by construction. This also ensures the iden-

tification (or adaptation) error to be bounded for all sampling time since the

unmodified and modified plant parameter estimates as well as those of the

adaptive controller are all bounded.

5.3 Hybrid approach

Now, the continuous-time plant (17) is subject to the given control law above

in Section 5, under the saturating sigmoidal function (17b), but the estimation

algorithm only updates parameters at the sampling instantstk+1 = tk + h =

(k+1)h of the sampling period h while the regressor is evaluated at all time for

re-updating the various estimates at sampling instants only. That scheme lies

in the class of the so-called hybrid systems, [7] and [16]–[19]. The estimation

modification and calculation of the controller parameters are also updated at

sampling instants. The discrete-time parameter estimation and inverse of the

covariance matrix adaptation laws are:

θk = θk−1 + ∆θk−1θk−1

−Pk

h∫
0

∣∣ϕ
[
(k−1)h+τ

]∣∣2ϕ
[
(k−1)h+τ

]
ϕT

[
(k−1)h+τ

]
dτ

ck

(
1+

h∫
0

ϕT
[
(k−1)h+τ

]
ϕ
[
(k−1)h+τ

]
dτ

) θ̃k−1,
(32a)

P−1
k+1 = P−1

k + ∆P̃−1
k = P−1

k

+

h∫
0

∥∥ϕ
[
(k−1)h+τ

]∥∥2
ϕ
[
(k−1)h+τ

]
ϕT

[
(k−1)h+τ

]
dτ

ck

(
1+

h∫
0

ϕT
[
(k−1)h+τ

]
ϕ
[
(k−1)h+τ

]
dτ

) θ̃k−1,
(32b)

ck ≥ ck0 =
def

λ2
max(Pk)

h∫
0

∥∥ϕ
[
(k − 1)h + τ

]∥∥4
dτ

1 +
h∫
0

∥∥ϕ
[
(k − 1)h + τ

]∥∥4
dτ

(32c)
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with P (0) = P T (0) > 0 and θ̃k = θk − θ∗ for all integerk ≥ 0. The main

result of this section is ennounced in the following. Its proof, which is very

close to that of Theorem 1, is omitted.

Theorem 3. Consider the plant(17) under the same estimation/modification

scheme as in Section 5, with the estimation being updated only att = kh, and

the same stabilizing control law. Thus, the resulting closed-loop scheme fulfils

the same properties of Theorem 1 under the same assumptions.

Appendix

Proof of Proposition 1. Firstly, note that the first-order derivatives of the

determinant with respect to any parameter estimate are calculated as follows

from elementary algebra (see, for instance, [13]):

∂

∂θ1
Det

(
S(θ0)

)
= Trace

(
∂S(θ0)

∂θi
S̃(θ0)

)
(A.1)

which holds when taking derivatives of determinants with respect to any value

of the parameter estimateθi for i=1, 2, . . . , n+m+1. The derivatives are eva-

luated atθ0. However, it is clear from (8e) thatSθi1
,...,θik

=
∂kS(θ0)

∂θk
i1

, . . . , θk
ik

= 0,

k = 2, 3, . . . , n + m + 1 with all the partial derivatives being evaluated at

θ0. Also, sinceS̃(θ0) is a matrix of cofactors, it contains products of at most

(n + m) parameters at each one of its entries so thatS̃θi1
,...,θik

(θ0) = 0 if

k > n + m for any integersij ≥ 1 for j = 1, 2, . . . , k. Now, Det
(
S(θ̄0)

)
is

expanded in Taylor series aroundDet
(
S(θ0)

)
by taking successive derivatives

with respect to parameter components evaluated atθ0 by starting with (A.1)

while zeroing any derivatives of higher-order than (n+m). One obtainsdirectly

Det
(
S(θ̄0)

)
= Det

(
S(θ0)

)
+ ∆(θ0, θ̄0) (A.2a)

with

∆(θ0, θ̄0)

=
n+m∑

k=1

n+m+1∑

i1,i2,...,ik=1

1

k!
Trace

(
Sθi1

(θ0)S̃θi1
,...,θik

(θ0)
) ik∏

j=i1

(θ̄j − θj)
(A.2b)
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being the maximum absolute achievable increment between the modified and

unmodified determinants. Now, it is proved by contradiction that

Trace
(
Sθi1

(θ0)S̃θi1
,...,θik

(θ0)
)

= 0

for all ik ∈ {1, . . . , n + m + 1}, k = 1, 2, . . . , n + m
(A.3)

is impossible since (A.3) depends on the estimates of the plant parameters

irrespective of the modification scheme. Now, assume that
∣∣DetS(θ0)

∣∣ 6=ζ <ρ

with ζ > 0. Then, note from the definition ofS(θ̄0) that
∣∣DetS(θ̄0)

∣∣ = ζ

with arbitrary nonzeroζ if the subsequent modification rule is used after esti-

mation:δai =−ai, δbj =−bj andδbm =±ζ
1
n−bm for i=1, 2, . . . , n, j =0,

1, . . . , m. Assume that (A.3) holds. Thus, one has the impossible relationships

ζ =
∣∣DetS(θ̄0)

∣∣ =
∣∣DetS(θ0)

∣∣ 6= ζ by using a Taylor series expansion in the

parameter space of the modified estimates around the estimated ones obtained

from (7) according to (A.2). Thus, (A.3) is false, since all the derivatives used

in (A.2) are not dependent on the modification scheme. Then, there is at least

one parameter componentθi of θ0 for whichTrace
(
Sθi1

(θ0)S̃θi1
,...,θik

(θ0)
)
6=

0 and thenC̄ in (8d), (8e) is nonzero. Thus,Det
(
S(θ0)

)
is not constant for all

the values of the components ofθ0 belonging to arbitrary real intervals and a

modificationθ0 → θ̄0 can be carried out to guarantee that
∣∣Det

(
S(θ̄0)

)∣∣ ≥ ρ.

If δα is discontinuous att then
∣∣δα(t+)

∣∣ ≥ 2ρ

|C̄| if h(t+) = ρ andh(t−) = ρ′

and
∣∣δα(t+)

∣∣ ≥ 2ρ′

|C̄| if h(t+) = ρ′ and(t−) = ρ. In any of the above situations,

α(t) 6= 0. The switches inh(t) make this eventual discontinuities to occur only

at isolated time instants. Direct calculations yield:
∣∣Det

(
S(θ̄0)

)∣∣=
∣∣Det

(
S(θ0)

)
+∆(θ0, θ̄0)

∣∣≥|δα||C̄|−
∣∣Det

(
S(θ0)

)∣∣

≥3ρ−Det
(
S(θ̄0)

)
Sign(C̄)−

∣∣Det
(
S(θ0)

)∣∣>ρ>0.
(A.4)

Note thatδα = α if δα ≥ 1 (what implies thatαj ≥ α for j ≥ 1) and

δα = αn+m if δα < 1 (what implies thatαj < α for j > 1) with δα

and α being chosen according to (8a), (8b). Such a constraint establishes

the first inequality in (A.4) since
∣∣∆(θ0, θ̄0)

∣∣ ≥ |δαC̄| from (A.2b). Thus,

the first part of Proposition 1 has been proved. The absence of chattering

follows directly since theα – function is continuous atδαC̄ = 1 sinceδαC̄ =
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(δαC̄)
1

n+m

]

δαC̄=1
. The eventual discontinuities in the determinant test (8b)

are isolated at any time what is guaranteed by the switches switches inh(t)

given by (8a).

Proof of Proposition 2. One has from the definitions and properties of the

`2, `1 and`∞ matrix norms (see, for instance, [20, 21])

(n + m)−
1
2

∥∥S(θ0)
∥∥

2
= (n + m)−

1
2

∣∣λ1/2
max

(
ST (θ0)S(θ0)

)∣∣

=

∣∣∣∣
1

λ
1/2
max

(
ST (θ0)S(θ0)−1

)
∣∣∣∣ ≤ (n + m)

1
2

∥∥S(θ0)
∥∥

1

(A.5)

where
∣∣λmax(·)

∣∣ and
∣∣λmin(·)

∣∣ denote the maximum and minimum module

of the eigenvalues of the(·)-matrix, respectively. Thus, the two following

inequalities follow directly from (A.5)

∣∣∣λ1/2
min

(
ST (θ0)S(θ0)

−1
)∣∣∣ =

1∣∣∣λ1/2
max

(
ST (θ0)S(θ0)

)∣∣∣
=

1∥∥S(θ0)
∥∥

2

≥ 1

(n+m)
1
2

∥∥S(θ0)
∥∥

1

=
1

(n+m)
1
2 max

(
1+

n∑
i=1
|ai|,

m∑
i=0
|bi|

) , (A.6a)

∣∣∣λ1/2
max

(
ST (θ0)S(θ0)

−1
)∣∣∣ =

1∣∣∣λ1/2
min

(
ST (θ0)S(θ0)

)∣∣∣

≤ 1∣∣∣λ1/2
max

(
ST (θ0)S(θ0)

)∣∣∣
=

1∥∥S(θ0)
∥∥

2

≤ 1

(n+m)−
1
2

∥∥S(θ0)
∣∣
∞

=
1

(n+m)−
1
2

( n−1∑
i=1
|ai|+

m−1∑
i=1
|bi|+max

(
1+|b0|, |an|+|bm|

)) , (A.6b)

which imply

0 <
1

ε′0
≤

∣∣∣λ1/2
min

(
ST (θ0)S(θ0)

)∣∣∣ ≤
∣∣∣λ1/2

max

(
ST (θ0)S(θ0)

)∣∣∣ ≤ 1

ε0
<∞ (A.7)

if Condition 1 holds. Thus, Condition 1 guarantees that is nonsingular (i.e.,

the estimated plant model is controllable) and a parameter modification is not

performed in (10), (11). If Condition 1 does not hold thenS(θ0) is not guar-

anteed to be nonsingular accordingly to the test of (A.7). Thus, the estimation
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modification procedure of (9a), (10), (11) when Condition 1 does not hold

guarantees that

1 >
n∑

i=1

|āi|+
m−1∑

i=0

|b̄i|, |b̄m| >
n∑

i=1

|āi|+
m−1∑

i=1

|b̄i|+ γ|b̄0|. (A.8)

Now, note that if (A.8) holds then the modifiedS(θ̄0) is diagonally domi-

nant what follows directly by inspection from its definition since for such a

matrix structure, it suffices to guarantee diagonal dominance for then-th and

(n + 1)-th rows. Since all diagonally dominant matrix is nonsingular, [20],

S(θ̄0) is nonsingular and the modified estimated plant model is controllable.

The proof of nonsingularity has been completed. The absence of chattering

follows from the use of two possible values of all theε(·)-constants in Condi-

tions 1, 2, the fact that those values are modified afterN consecutive switches

with the same values of the constants over finite intervals of lengthT and the

feature that the estimates prior to the modification have finite limits (see also

Remarks 1, 2.

Proof of Theorem 1. The subsequent proof applies for both modification

schemes (8), (9), and (9a), (9b), (10), (11).

(i), (ii) Note that Ṗ−1 = −P−1ṖP−1 = ϕϕT from (7c). Define the

Lyapunov function candidateV = θ̃T P−1θ̃ whereθ̃ = θ̂ − θ∗ is the paramet-

rical error before modification of the estimates. Thus, (7a) can be rewritten

as e = −θ̃T ϕ and V̇ = −(θ̃T ϕ)2 = −e2 ≤ 0 after direct calculations

with V and (7), [5]. Thus,e ∈ L2 and∞ > θ̃T P−1θ̃ ≥ λmin(P−1)θ̃T θ̃,

with λmin(P−1) being the minimum eigenvalue ofP−1 so thatθ̃ is uniformly

bounded since the maximum eigenvalue ofP, λmax(P ), is upper-bounded by

a positive finite constant and thenλmin(P−1) = λ−1
max(P ) > 0 for all t ≥ 0.

Thus,P, θ is uniformly bounded‖P‖, ‖θ‖ and‖δ̄‖ are inL∞ from (9) since

θ = (θT
0 , εT

0 )T andθ0 andDet
(
S(θ0)

)
are uniformly bounded for allt ≥ 0.

Thus, the modified parameter vectorθ̄ = (θ̄T
0 , εT

0 )T is also uniformly bounded

for all t ≥ 0. The modified estimated plant model is controllable since∞ >∣∣Det
(
S(θ̄0)

)∣∣ ≥ ρ > 0 from (8), (9) and the fact that̄θ0 is uniformly bounded

for all t ≥ 0. On the other hand,Pϕ ∈ L2 sincetr(Ṗ ) = −‖Pϕ‖22 ∈ L1

from (7c) with‖ · ‖2 denoting the spectral ( or Euclidean) vector norm. Thus,

30



Stabilization of Continuous-Time Adaptive Control Systems

propositions (i), (ii) have been proved.

(iii) It is standard to prove thatP andθ converge asymptotically from (7b)

and the fact thatlim
t→∞

( t∫
0

‖θ̇‖dτ
)
≤ 1

2

[(
‖Pϕ‖2dτ

)
+ lim

t→∞

( t∫
0

e2dτ
)]

< ∞

sincePϕ ∈ L2 ande ∈ L2 what impliesθ̇ ∈ L1 and theθ converges from

(ii) (see [22]). Also,θ0 converges sinceθ converges and thusDet
(
S(θ0)

)

converge to a finite constant values as time tends to infinity. From the fact

that θ0 converges, the possible switches in (8a), (8b) end in finite time since

there exists a large finite timēt0 such thatθ andDet
(
S(θ0)

)
are close to their

limits and the piecewise-constanth-function maintains a constant value (ρ or

ρ′ ≥ ρ) for all time t > t̄0 (see (15a), (15b)). As a resultα, σ(·), σ̄(·) and

C̄ converge. Thus, the modified parameter vectorθ̄, and thenDet
(
S(θ̄0)

)
,

converge asymptotically to finite limits. As a result, each controller parameter,

namely, each coefficient ofR(D, t) andS(D, t), converges to a finite limit

value and (iii) has been proved.

(iv) Note that direct calculation from (12) yields form ≤ n− 1:

Dnyf = e + (θ̄T − δ̄T )ϕ = e +
n∑

i=0

b̄iD
m−iuf −

n∑

i=1

āiD
n−iuf − δ̄T

0 ϕ0

and the substitutionDnuf obtained explicitly from (13) into (12) yields for

m = n:

Dnyf =e− b̄0

[ n∑

i=1

siD
n−iuf +

n−1∑

i=0

riD
n−i−1yf

]

+
[ n∑

i=1

biD
n−iuf +

n−1∑

i=0

āi+1D
n−i−1yf

]
− δ̄T

0 ϕ0.

Thus, the substitution of the above identities together with (13) yield the fol-

lowing extended auxiliary dynamic system which describes the combination

of the closed-loop dynamics and control law:

ẋ = Ax + w, (A.9a)

ż = Az + w1 (A.9b)
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with

w = [e + εT
0 iϕ − δ̄T

0 ϕ0, 0]T = w̄ + w1,

w̄ = [−δ̄T
0 ϕ0, 0]T , w1 = [e + εT

0 iϕ, 0]T ,
(A.10a)

A(t) =




p̄T

In−1
... 0

· · · · · · · · ·
v̄T

0
... In−1




, p̄ =

{
p̄(1) if m ≤ n− 1,

p̄(2) if m = n,
(A.10b)

p̄(1)T = [−ā1,−ā2, . . . ,−ān
... 0,

n−m−1︷︸︸︷
. . . , 0

... b̄0, b̄1, . . . ,−b̄m], (A.10c)

p̄(2)T =
[
− (ā1 + b̄0r0),−(ā2 + b̄0r1), . . . ,−(ān + b̄0rn−1)

...

(b̄1 + b̄0s1), (b̄2 + b̄0s2), . . . , (b̄n + b̄0sn)
]
, (A.10d)

v̄T = [r0, r1, . . . , rn,
... s1, s2, . . . , sn] (A.10e)

with x(0) = z(0) = x0, x = (Dn−1yf , . . . , Dyf , yf , Dn−1uf , . . . , Duf , uf )T

andϕ0(D
n−1yf , . . . , Dyf , yf , Dnuf , Dn−1uf , . . . , Duf , uf )T . The proof of

boundedness and convergence to zero of the input, output, their filteredver-

sions and the time-derivatives of those ones up till(n − 1)-th order of the

closed-loop system is immediate by first proving that (A.9b) is asymptotically

stable in the large. Thus, by vector construction,|Dnuf | ≤ K ′‖x‖ from the

controller equation (13) and, then,‖ϕ0‖ ≤ max
(
|Dnuf |, ‖x‖

)
≤ K‖x‖

with K = 1 + K ′. Note from (A.9b) and (15a) that all the eigenvalues of

A(t) are less than or equal to(−σ) for some real constantσ > 0 which is

less than or equal to the minimum absolute value of the roots of the strictly

Hurwitz C∗(D)-polynomial for all t ≥ 0 (equality applies when both roots

are distinct, [21, 22]). Also,A(t) is uniformly bounded and, furthermore,
t+T0∫

t

∥∥Ȧ(τ)
∥∥dτ ≤ µT0 + µ′

0 for positive constantsµ andµ0, all t ≥ 0 and

some finiteT0. This follows directly in the absence of modification on the

integration interval since the time-derivative of the estimates and controller

parameters are bounded as follows from Theorem 1. Assume that there are

∞ > st ≥ 0 modification switches on[t, t + T0]. Their number is finite since
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the integration interval is finite and
∣∣Det

(
S(θ0)

)∣∣ is a continuous function of

time so that existing switches are isolated (i.e., there is no accumulation point

of modification switches). Also, their associate discontinuities inA(t) are

given by bounded steps whose norms are upper-bounded by a positive finite

constant̄k from Theorem 1(i) sinceθ ∈ L∞. As a result,

(t+T0)+∫

t−

‖Ȧ(τ)‖dτ

≤
st∑

i=1

k̄

t+i (t)∫

t−i (t)

∂
(
(τ − ti(t)

)
dτ +

∫

st⋃
j=0

Ij(t)

∥∥Ȧ(τ)
∥∥dτ ≤ µT0 + µ0

with µ0 = µ′
0 + s̄k̄ < ∞ where∞ > s̄ = Sup

t≥0
(st) wherest is a nonnegative

integer number andδ(τ) is the Dirac-delta function atτ = 0. The t(·)(t)

instants are thest separated instants within(t, t + T0) where the modification

switches take place,I0(t) =
(
t, t1(t)

)
, Ii(t) =

(
ti(t), ti+1(t)

)
, andIst(t) =(

tst(t), t + T0

)
for i 6= 0, st arest+1 open intervals where the time-derivative

of the modified estimates exist. (Ifst = 0 thenI0(t) = (t, t + T0]).

Thus, the common unforced version of both time-varying systems (103)

is exponentially stable in the large ([8, 15]). Now, direct calculus with the

differential systems (A.9a) and (A.9b) yields that their solutions are related as

follows:

x(t) = z(t) +

t∫

0

Ψ(t, τ)w̄(τ)dτ (A.11)

with Ψ(t, τ) being the fundamental matrix of the unforced system of (9a) and

(9b), i.e.,x(t) = z(t) = Ψ(t, 0)x0 for all t ≥ 0 if w ≡ w1 ≡ 0. Since such

a system is exponentially stable in the large, one has for any matrix norm that∥∥Ψ(t, τ)
∥∥ ≤ KΨe−σ(t−τ) for any t andτ fulfilling t ≥ τ ≥ 0. In particular,

one has
∥∥Ψ(t, τ)

∥∥
2
≤ e−σ(t−τ) (i.e.,KΨ = 1) if the spectral matrix norm is

used. SinceA(t) is exponentially stable and, furthermore,w1 ∈ L∞
⋂

L2

from (i), (ii) z ∈ L∞
⋂

L2, ż ∈ L∞
⋂

L2 andz converges exponentially to

zero for any bounded initial condition (see [22]). Thus, by taking spectral
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vector and matrix norms in (A.11), one gets directly from the definition of̄w

in (A.9a):

∥∥x(t)
∥∥

2
= ‖z(t)‖2 +

t∫

0

e−σ(t−τ)‖δ̄0‖2
∥∥x(τ)

∥∥
2
dτ. (A.12)

Now, define

z̄tj ,e = Sup
tj≤t≤T

∥∥z(t)
∥∥

2
and z̄ = Sup

t∈R+
0

∥∥zt,e

∥∥
2

= Sup
T∈R+

0

(
Sup

0≤t≤T

∥∥z(t)
∥∥

2

)

for all finite tj ∈ Z+
0 andT ∈ R+

0 whereZ+
0 andR+

0 are the sets of nonneg-

ative integer and real numbers, respectively. Sincez ∈ L∞
⋂

L2 there exists

a sequence of time instantsTs = {tk, k ≥ 0} with t0 sufficiently large (but

finite) such that̄ztk+1,e < z̄tk,e ≤ z̄ < ∞ and sincēztk → 0 ask → ∞
sinceTs is a monotonically increasing sequence andz(t) converges to zero

asymptotically since it is inL∞
⋂

L2. Now, if the Basic Modification Scheme

(8), (9) is used, it follows from
∥∥x(tk + τ)

∥∥
2

= z̄tk,ee
(−σ+δ̄′0)τ <∞

for all tk ∈ Ts, 0 ≤ τ ≤ tk+1 − tk
(A.13)

whereδ̄′0 = Sup
T∈R+

0

(
Sup

0≤t≤T

∥∥δ̄0(t)
∥∥

2

)
< 1, sinceρ′ ≥ 2ρ, by applying Bell-

man-Gronwall’s Lemma to (A.12) (see [21]), provided thatρ <
|σ|

3(n + m)
.

Thus,
∥∥x(tk + τ)

∥∥
2

<∞ and
∥∥ẋ(tk + τ)

∥∥
2

<∞ are uniformly bounded from

(A.13), boundedness of both the estimation error andδ̄′0 and (103), (104). One

has, in addition, from (A.13) that x(tk + τ) → 0 for all τ ∈ [tk, tk+1) as

k → ∞ since δ̄′0 is bounded from (i). As a result,x ∈ L∞, ẋ ∈ L∞ and

x → 0 and ẋ → 0 ast → ∞. Thus, the proof of (iv) follows for the Basic

Modification Scheme from the calculation of the solutionx : [0,∞) → R
2n

to (A.9a) for any initial conditions.

If the Alternative Modification Scheme of (9a)–(9c) is used, then a new

upper-bound for̄δ′0 has to be fixed as follows. Direct calculations with (10),

(11) yields‖δ̄0‖2 ≤
(
(1−α)2

( n∑
i=1

a2
i +

m∑
i=0

b2
i

)
+ δb2

m

) 1
2

if Condition 1 does
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not hold with orδbm = βbm or δbm = βb′m. By taking also into account (10),

(11), one gets

‖δ̄0‖2 ≤




(1− ρα)2
( n∑

i=1
|ai|+

m∑
i=0
|bi|

)2

( n∑

i=1

|ai|+
m∑

i=0

|bi|
)2

+ β2b2
m




1
2

≤ (1− ρα) + β|bm|

= 1− ρα + (1− α)
( n∑

i=1

|ai|+
m∑

i=0

|bi|
)
(1− α)ρβ − |bm|

≤ 2(1− ρα) +
1− ρα

n∑
i=1
|ai|+

m∑
i=0
|bi|

ρβ,

(A.14a)

if δbm = βbm, and

‖δ̄0‖2 ≤
(

(1− α)2
( n∑

i=1

a2
i +

m∑

i=0

b2
i

)
+ β′2

) 1
2

≤
(

(1− α)2 + 2
( n∑

i=1

|ai|+
m∑

i=0

|bi|
)2

+ 2
(
ρ′b + |bm|

)2
) 1

2

≤
(

(1− ρα)2 + 2
( n∑

i=1

|ai|+
m∑

i=0

|bi|
)2

+ 2(ρ′b + εb)
2

) 1
2

.

(A.14b)

Also, if Condition 1 does not hold then the following inequalities hold:

(n + m)
1
2 − ε0

ε0
<

∥∥S(θ0)
∥∥

1
− 1 ≤

n∑

i=1

|ai|+
m∑

i=0

|bi|

< 1 +
∥∥S(θ0)

∥∥
∞
≤ 1 +

(n + m)−
1
2

ε′0
.

(A.15)

The remaining of the proof follows from (A.13) after substituting (A.15) into

(105) to calculate upper-boundsδ̄′i (i = 1, 2) of Sup
t≥0

(
‖δ̄0‖2

)
.
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