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Abstract. This paper presents an indirect adaptive control schemiméar
continuous-time systems. The estimated plant model israiattle and
then the adaptive scheme is free from singularities. Suuutarities are
avoided through a modification of the estimated plant patamesctor so
that its associated Sylvester matrix is guaranteed to beimgumlar. That
property is achieved by ensuring that the absolute valuesaféterminant
does not lie below a positive threshold. An alternative rficaiion scheme
based on the achievement of a modified diagonally dominareSier ma-
trix of the parameter estimates is also proposed. This d@gibminance is
achieved through estimates modification as a way to guardhéscontrol-
lability of the modified estimated model when a controllapimeasure of
the estimation model without modification fails. In both sotes, the use of
a hysteresis switching function for the modification of tlstireates is not
required to ensure the controllability of the modified estied model. Both
schemes ensure that chattering due to switches associdtethermodifi-
cation is not present. The results are extended to the fider@ase when
the input is subject to saturation being modeled as a sigrfomiction. In

this case, a hysteresis-type switching law is used to impierhe estimates
modification.
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1 Introduction

The adaptive stabilization and control of linear continuous and discrete sy
tems has been successfully developed in the two last decades, [1}s[#lly,

the plant is assumed to be inversely stable and its relative degree and its high-
frequency gain sign are assumed to be known together with an absolgte upp
bound for that gain in the discrete case. The assumption on the knowlédge o
the order can be relaxed by assuming a nominal known order and congide
the exceeding modes as unmodeled dynamics, [5]-[9]. The assumptioa on th
knowledge of the high frequency gain has been removed in [4] andh{Bire
assumption of the plant being inversely stable has been successfullyggmov
in the discrete case and, more recently, in the continuous one [10, J4], [5
[7]. The problem is solved by using either excitation of the plant signals
or a modification of the least-squares estimation by either using excitation
of the plant signals or exploiting the properties of the standard leastesjuar
covariance matrix, [11], [5, 8], [12]. In a set of papers, the asgiompf

the plant being inversely stable has been removed by using either excitation
of the plant signals or estimates modification by using hysteresis switching
functions which generate the controllability of the estimated plant model while
exploiting the properties of the covariance matrix, [11, 7, 8] and refa®n
therein focused on a deterministic approach. An alternative modification stra
tegy was the use of a random search-type algorithm to avoid the deggpéra
the Sylvester matrix, [6]. In [5], a recursive coordinate modification netho
was given which ensue convergence in a stochastic sense. Thigyapents

an adaptive stabilization algorithm for continuous-time systems which can
have unstable zeros The adaptive scheme uses a parameter modification
scheme which neither involves hysteresis switching nor takes advarntage o
the properties of the covariance matrix while guarantees that the absolute
value of the determinant of the Sylvester matrix associated with the param-
eter estimates is bounded from below by a positive threshold. An alternative
modification procedure which is based upon the achievement of a diigon
dominant Sylvester matrix of the modified estimates is also propoBed.
modification is an alternative method in the case when a sufficiency test on
maintenance of controllability of the unmodified estimated model fails. Such
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a test consists of guaranteeing through the manipulation of matrix norms that
the maximum absolute eigenvalue of the Sylvester matrix of such a model is
bounded above by a finite real constant while the minimum one is bounded
from below by a positive real constant. The boundedness and gamee

of all the estimates and controller parameters is guaranteed in both the ideal
perfectly modeled case and when the wide class of unmodelled dynamics and
bounded disturbances considered in [7]-[15] are present. Theipjar and
output are bounded and converge to zero in the ideal perfectly modased c
while they are bounded in the above mentioned non ideal situation. Section 2 is
devoted to the synthesis of the adaptive stabilizer in the perfectly modelled cas
for unknown continuous-time plants. The basic estimation scheme, used prior
to the modification procedure, is of least-squares type. The two above men-
tioned estimation modification procedures are also given. Section 3 presents
the convergence and stability properties of the proposed scheme. Seme ro
bustness issues against the presence of unmodeled dynamics an@édound
disturbances are also pointed out the mechanism used to guarantdaegsebus

is the variation of the basic estimation scheme by adding a relative dead zone
so that the estimation and covariance matrix adaptation are frozen when the
adaptation error is small compared to an absolute overbounding function of
the contribution to the uncertainties to the output. The modification procedures
that ensure controllability of the estimated model are kept as in the ideal case.
The scheme’s modifications to operate in the case of presence of unmodelled
dynamics and/or bounded disturbances are also given. A numericgapéxa

is given in Section 4 and, finally, conclusions end the paper. The mathematica
proofs of the results are developed in Appendix.

2 Adaptive stabilizer for a continuous-time plant
In the sequel, the time-argument is suppressed unless confusion eaaratis

the constant parameters are denoted by a supersegtigEbnsider the follow-
ing continuous-time controllable system

A*(D)y(t) = B*(D)u(t), D'y(0) =y (i=0.1,....,n—1) (1)
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, d’ . . o
where D" = s (1t = 0,1,...,n — 1) is thei-th time-derivative operator,
A*(D) = D"+ > a!D" " andB*(D) = ) bD™ " with n > m. Since
=1 =0
(1) is controllable then its associated+ m) Sylvester resultant matrix

(10 - 0 b5 0 - o 0]
T :
a .0 b
s@ =" P 0
ar a0 b by
0 a D H
m n

is nonsingular. Define the filtered signals:
n—1 4
E*(D)ug =u, E*(D)ys=y, E*(D)=D"+) D"  (2)
=1
with £*(D) being a strictly Hurwitz polynomial. The filtered control law for
a known plant (1) is generated as

S*(D)U,f = —R*(D)yf (3)

n i m—1 .
whereS*(D) = D" + 3" stD"', R*(D) = D" + > r;D™ =1 satisfy

=1 =0
the diophantine equation:

A*(D)S*(D) + B*(D)R*(D) = C*(D)
n*—1 )
whereC*(D) = D"+ Y ;D™ ~i of prefixed degree fulfilling the constraint
=1
n* < n+ deg (5*(D)) < 2n is a strictly Hurwitz polynomial (i.e., with
roots inReD < 0) which defines the suited closed-loop dynami€$(D) and
R*(D) are the unique solution to the above diophantine equations 4if(de)
andB* (D) are coprime because of the controllability of (1) and the constraints
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deg (5*(D)) < deg (E*(D)) < n anddeg (R*(D)) < deg (A*(D)). (In
particular, if E*(D) satisfiesleg (E*(D)) < n — 1 then its appropriate coef-
ficients in (2) are zeroed). Equation (3) is equivalent to its unfilteresimer

u= (E*(D) = S*(D))us — R*(D)y;. (4)

The control objective in the adaptive case for unknown plant is to update
the controller parameterg andr; (i = 1,2,...,n, j = 0,1,...,m) in

an adaptive way so that the plant (1), subject to the control law (4) when
replacing the parameters by their estimates, is asymptotically stable in the large
in the absence of disturbances. Under bounded noise and a stalatsrdfc
unmodelled dynamics, the scheme is guaranteed to be globally stable. Simple
direct calculus with (1), (2) yields for filtered signals:

D"y =0T (5)

with 6% = [057 1 57]"

= [ Ty 9;; SRR :+m+1 : :+m+2v ;+m+37 R 9>2kn+m+1]T
= [b5, b1, ... bhat,ab, ... ak 531,582,...,53n]T, (6a)
. T _
p(t) = [@o (1),i5(1)]" = [D™ug, D™ Py, .. uy, (6b)
_Dnilyfv_Dnizyfu‘"7yf77:17i27°"77:n]T (6C)

whereg(t) = el (t)i(t) is an exponentially decaying term that depends on
initial conditions and eachy(¢) is known and it has the forrtfe*s! for £ =
0,1,...,my — 1 with m;, being the multiplicity of the root\; of C*(D).

There arem;, termsi(.)(t) of such a form for each;. The parameter vector

6* is estimated by using an standard least-squares algorithms of covariance
matrix P(t) and estimated vectat(t) = (67 (¢), eg(t))T with £o(t) being the
estimation of the initial conditions ef;. The estimation algorithm consists of

an estimation algorithm and a rule to modify such estimates as follows:

2.1 Parameter estimation

e = D"y; — 67y (prediction error) (7a)
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0 = Pye, (7b)
P=—Ppp"P;  P(0)=PT(0) > 0. (7¢c)

The basic modification of the estimated plant model is performed when ne-
cessary to maintain the controllability of the estimated model in the sense that
|Det(S(6p))| = p > 0 even if |Det(S(6y))| < p for some positive real
constanp while the Sylvester matrices of the “a priori” and modified estimates
have the same structures 8&;) and their values are obtained by replacing
05 with 6y anddy, respectively. The modification scheme to calcubatem ¢

is implemented according to the following scheme:

2.2 Basic modification of the estimation

The plant parameter estimates through the algorithm (7) are then modified
as follows. First, define the strictly positive piecewise constant real time-
functionh(-) and nonnegative time-functiong anda as follows for positive

real constantg andp’ > p:

p if h(t)=p and ‘Det(S(Go))‘ #p fort=1t¢",

p if h(t) = p' and |Det(S(0p))| = p/ for t =t~
h(0)=p, M(t")=1{ , | , _ (83

P if h(t) = p and ‘Det(S(GO))‘ #p fort=1t",

p' if h(t)=p and|Det(S(6p))| =p fort=1t",

3h—De‘E(5(90)) _ 3h— |Det (5(60))]| S{gn(C’) (Det(S(60)))

c c

%=1 it [Det(S(6))| < h (8b)
0 if |Det(S(6))| > h,
5,C if 6,C >1,

o= o _ (8c)
(0,C)mFm if 5,0 < 1
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for some small prefixed positive real constarf upper-bound specified later

and

C = {0(61,62, e Fnpmil):

C(01,02, s Onsmar)| = | max [C@1, - Tnimin)| f - (80)

C(G1,02,. .., Ontm+1)
n+m n4+m+l1 1 _ ik
= Z Z HTI'ELCG(SQH (60)50,, .0, (60)) H o], (8e)
k=1 i1,i2,...,ix=1 =i
(01,02, -, Ontm+1)
= {Arg(al,ag, ey Onimy1): C=C(01,02,..., 00 mi1)
and o; € {0,-1,1}, i =1,2,....,n+m+ 1} (8f)
where S(6o) is the matrix of cofactors of(dy), with subscripts denoting
partial first or higher-order derivatives with respect to the respeatiguments,

and the first-order derivatives with respect to the parameter estimates are

[ Oi><(n+m) 1
as. | — (i + 1)-th row
s =—1 = |1y X =1,...,
5ol = ooy = | O =L
| O(n—i)x (n+m)]
_ - (89)
0jx (n+m)
asi | o — (] + 1)-th row
L ol A
O(nfz)x(ner)_
0=0+56, . (9a)
6 =1[061,009,...,0001ms1,0,7. 01T =[6F,0,0T]"
= [6bg, Ob1, . .., Oby, bay, day, . . ., 8a,,0,...,0]T, (9b)
a; = a; + da; = a; + oy, Bj :bj+(5bj :bj+045n+1+j,
(9¢)

i=1,2,...,n,7=0,1,...,m.
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Note that(&y1, 52, ...,5,me1)’ is @ non necessarily unique vector, whose
components take values in the 4ét 0, —1} which maximizes the function
C(o1,09,...,0n+m+1) forthe of constraints; € {1,0, —1}fori =1,2,...,
n+m+ 1. The idea behind the above modification method (8), (9) is basically
the following. Two different thresholds are used to modify the parameter
components. The use of two threshojdand p’ is only made for purposes
of avoiding chattering by involving the mechanism of switching between them
each time that a discontinuity in the modification is found. These thresh-
olds are sufficiently small compared to the stability abscissa of the objec-
tive polynomialC* (D) in order to guarantee the closed-loop stability. Each
absolute value of a parameter estimate is either modified with a maximum
amountx(t) or such a parameter becomes unmodified (see (9)). The maximum
value of depends on the threshojdandp’ (see (8a)—(8c)). The mechanism
which ensures that the absolute value modified Sylvester determinantiexcee
the corresponding threshold is to manipulate its Taylor expansion around its
unmodified value by checking the maximum allowable absolute increase by
increasing each of all the estimatesdiar or leaving them unmodified. See
(8d)—By).

More in detail, assume that ea¢tth parameter component 6f is mo-
dified by an additive increment so that the modificationy scheme i, =

0o + (o1, ..., 0nrme1)T. Awell-known equation from Linear Algebra is
d ~
00 (Det (5(90))) ‘GO:qU = Trace(ng (QO)S(QO)),

[13], from which higher-order derivatives with respect to the vasiparameter
vector components. Thus, by using a series Taylor expansion of thgiana
multivariable function of the modified estimat®®t (S (o1, - - . , fo.n+m+1))
aroundDet (S(0o1,....n+m+1)) (later denotedet (S(6o)) by for notation sim-
plicity purposes) which is considered as a multivariable function of all the
parameter components, the identityt(S(6y)) = (S(6o)) + Ca, with the
function C' being calculated from (8e). The switcheslifr) betweenp and

p' given by (8a) have as objective of avoiding chattering so that the egesten
of solution is ensured for all time. Chattering could potentially arise if the
Sylvester determinant would converge to a constant fundctiarhile, at the

10
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same time, its time-derivative converges to zero with changing sign. This phe-
nomenon is avoided in this approach by using the switching rule (8a) by taking
advantage of the fact that the unmodified and modified parameter estimates
converge asymptotically to finite limits. Thus if the Sylvester determinant
converges te (or p’) after a large but finite time it cannot convergegtqor

p) while it remains in a certain small neighborhood centered &br p). The
avoidance of chattering guarantees the existence of solution. Thegeefea

will be proved in the following section of the paper.

The above modification procedure basically operates as follows. Assume
thato; is any estimate:., or b.y. If o = 0 then such a parameter does not
contribute to the maximun®’ (i.e., toC'). That means that if the parameter
were accounted for in (8c) for eventual parameter modification with botis sig
i.e.,c = =1, thenC would have less absolute value. df = +1, then the
parameter contributes 10, i. e., if it is accounted for to calculat€ which
reaches a larger absolute value than for any other possibilities for ratngu
or not all the remaining parameter estimates. At the end of the modification
procedure, all the estimates whose correspondjngs +1 become modified
while those ones whose correspondiﬁg is zero remain unmodified. The
use of two distinct valuep and p’ to deal with switches in the determinant
test is just to avoid that the potential situation of the determinant converging
to one of those values implies the non existence of solution in the closed-loop
system. Therefore, an isolated discontinuity (the test for switchjngrom
one value to the other in (8a)) ensures the existence of solution and tilemro
of convergence of the determinant of the Sylvester matrix of the unmodified
estimates to one of those values is avoided since in finite, but large, time the
determinant is close to its limit, since the estimates have a limit, as proved
in Theorem 1 and the corresponding discontinuity of f ensures that Wwo ne
switches would arise.lt is proved in Appendix, as an intermediate step in
the proof of the subsequent controllability result, that for all time because
not all the derivatives in8e) with respect to the estimates evaluated at the
parameter vector estimated from the algoriti{if) are zero. This feature
makes possible that the Sylvester determinant of the modified estimates can
always be modified with respect to its value prior to modification. It becomes

11
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obvious from the above modification philosophy that can be replaced by
any value of|C| which be bounded from below by a positive constant. The
main idea behind its proof is that the scalar functiast (S (6,)) whosen +m
arguments are all the estimatgs andb.) built through (8), (9) is not constant

at any real interval. This property will follow from the fact that at leas¢ of

its first-order derivatives (i.e., the components of its gradient with régpec
the estimated parameters)or of its successive higher order derivatities
parameter space of estimates is nonzero. Therefore, the modification rule
(8), (9) allows the modification of the estimates when necessary so that the
constraint|Det(S(6g))| > p is fulfilled. The following result relies on the
controllability of the modified estimated model:

o]
6(n +m)
abscissa ofC*(D). Thus, modified estimation scheif@, (9) of the plant

model estimated frori7) fulfils at all time |Det(S(6y))| > p > 0 so that
such a model is controllable. Furthermore, there is no chattering cabyed
switches in the estimates modification r(8a)-(8c).

Proposition 1. Assume thap < where(—o) is the convergence

2.3 Alternative modification of the estimation

A second variation of the above estimation modification rule of (8), (9) isgive
below by modifying the algorithm rules (8) and (9c). It is based on engurin
that the Sylvester matrix of the modified estimates is diagonally dominant in
the case when that associated with estimates without modification is not gua-
ranteed to be controllable under a sufficiency test. Such a test is basiee on
evaluation of matrix norms o$(6,) and it does not requires the computation
of its eigenvalues. First, define small positive real constaptsg; andeg,
fulfilling ey > ep1 + &0, €02 > €01 + €1, €y > €y + &) as well as an
arbitrary large real constafft > 0 and an arbitrary large integéy > 0.
Then, establish Condition 1 for controllability test purposes of the estimated
model before modification at any times follows:

It is said thatCondition 1 holds at timef if

1 1 _1 1
(n+m)z||S(60)|| > = and (n+m)~2|S(6)]|, < - (10a)

oo — A/
€o

12
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with eo(t) = eo(t — T') = eqi, €(t) = e((t — T) = €, for somei € {1,2}
if Ny < N, andeo(t) = eq;, g(t) = e, for somej € {1,2} with j # i
if N, = N + 1 whereN; is the overall number of times where inequalities
(10a) are simultaneously violated with the same values for the constants on the
finite but large time intervalt — T',¢), i.e. with either(eg1, £{,;) Or (€02, £()-
After any switch in the values of both constantsifd), NV, is set to zero, i.e.,
if N, =N +1thenN; = 0.

Also, Condition 2 is now established for testingjf, belongs to a small
neighborhood around zero as follows :

It is said thatCondition 2 holds at time if |b,,| > e, with g (t) = e,(t —
T) = ey, forsomei € {1,2}if N/~ < N; andey(t) = &5 for somej € {1,2}
with j # i if N/~ = N + 1 where N/~ is a the overall set of consecutive
violations of Condition 2 on the time intervl — 7', t) which operates in the
same way as for Condition 1

The parameter estimates are now modified as follows by using Condi-
tions 1, 2. Modify (9¢) as follows:

5 0 if Condition 1 holds
a; = .
—aa; otherwise
s 10 if Condition 1 holds (100)
77 | —ab; otherwise

(i=0,1,....n, j=0,1,...,m—1),

0 if Condition 1 holds
5, — 0Bb,, if Condition 1 .does not hold (100)
and Condition 2 holds

o4 if Condition 1, 2 do not hold

n m
> lail + 32 [bi] + pa — 1
a = i=1 — =1 — , (11a)
> lail + X2 bl
i=1 =1

13
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1 n m—1
= [ £ jad+ S il 2ll] + oo -1
=1 =1

m

n m—1
B={ i e <lbul< X lal+ X [bil +lbol o (L1D)
=1 =1

n m—1
0 i bl = max (5, X ol + X bil +lbol + 1),
=1 =1

. _
O T m=n" 10
1 if m<n

n m—1
B8 =" lail+ Y bil+Ibol + ph+ ol 7 = {
=1 =1
for prefixed given constanis, € (pq. 1], o, € (0,1), ps > 0; pj3 > 0, and

(3 and3’ are calculated for all time for the implementation of the modification

n m
with anda = p, = 1if 3 Ja;| + > |bi| = 0.
i=1 1=0

Remark 1. Condition 1 guarantees that all the absolute values eigenvalues of
the Sylvester matrix of the estimated madghre positive and upper-bounded
by a finite constant. As a result, Condition 1 guarantees fbat (S(6y))| is
bounded away from zero. If it is violated Condition 2 guarantees that the
Sylvester matrix is diagonally dominant and then nonsingular. The scleeme
stated in terms of achieving similar absolute relative increments in the modified
estimated model for each nonzero estimate distindt,of This is a major
difference with the modification scheif®, (10).

The reason of using pairs of distinct test values for checking thoséd-cond
tions is to avoid chattering at their switching points, i.e., wh{(6o)|| . —
and||S(60)||, — 4neo+m simultaneously as time tends to infinity

1
with either constant values:=g1, ;) or (g02,(,) (Condition 1), or when
|bm| — ep2 (Condition 2). The reason is that the unmodified estimates have
finite limits depending on the initial conditions of the estimation algorithm
so that each norm of the Sylvester matrix|by,| cannot converge to two
distinct values. A possible convergence to any of the switching points of the
matrix norms andb,,,| (which would imply chattering) is avoided with the use
of Conditions 1, 2 in (10). The mechanism used is to switch the values of
the constants after a large numb#ar of consecutive switches have occurred
with the same values of those constants over a prefixed arbitrarily large time
interval T'.

14
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Remark 2. Note that the switches in the alternative modification scheme,
equations(9a), (9b) and (10), (11), automatically end in some finite time

as it follows from the subsequent reasoning. Assume that the limits of the
above norms andb,,| estimate are arbitrarily close to any of the switching
points of Conditions 1, 2 after a large time because the unmodified estimates
are very close to their limit points. The existence of these limits will follow
rigorously from the properties of the estimation and modification algorithms
proved in the subsequent section. Thus, the switching conditions chétege
extra finite time to their alternative values because of the structure of the
modification rule. More switches cannot occur after extra tin¥é (some
finite v) since the (very close to its limit) unmodified estimates do not generate
switches from Conditions 1, 2 for one of the two values otthjg-constants.

A good practical strategy to apply coherently Condition 1 is the use of very
large values fore(,, and very small ones fory; and a sufficient (although
small) values fotieg, — ;| and for aeg2 — 01 fast ending of the switches

of the modification mechanism. As in the basic modification mechanism, a
possibly existing “a priori” knowledge on the true plant parameters cowdd b
used to design the various constants so that Conditions 1, 2 hold for the true
plant so that if the estimates converge to the true parameters, the modificatio
mechanism is switched off automatically in finite time. However, the absence
of that knowledge do not affect to the stability of the closed-loop system.

The subsequent result is also proved in Appendix.

Proposition 2. If Condition 1 holds then the estimated plant model obtained
from the algorithm(7) is controllable and its associate Sylvester matrix is
nonsingular. If it does not hold then the alternative modification schide
(11)is controllable for all time and it does not exhibit chattering generated by
switches related to Conditions 1, 2.

Remark 3. A simple motivation of Propositions 1, 2 can be obtained from
the Perturbation Banach’'s Lemma from Numerical Analygdid] that estab-
lishes that small perturbations of nonsingular matrices yield to nonsingular
matrices. In terms of Sylvester matrices, the modification (@& implies
that, 5'(6p,0(y) = ' (6o) + @.65"(o,0(,), when the modification takes

15
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place, where the superscript prime indicates than the first row and golum
of the Sylvester matrices have been deleted, since they are irrelevadhéiior
determinants and

o1 0 -0 a9 -+ 0
: 01 0 01 ' :
65/(00,0'(.)) = | On - .0 Do g0
0 o, 01 Om, o1
S0 .10 oo
_() v 0 o, 0 O |

is a (n + m)-square matrix with eachr; potentially taking values in the set
{0,—1,1} i the modification schem@), (9). By simple inspection it is easy
to see thatyS’(6p, o(.y) can be built as being nonsingular for many of the
choices of ther.). (Constructions such like,, ;11 = 0; (i = 1,2,...,n) for
m=n—1 have to be excluded siné&’ (6, o(.) becomes smgular). Thus,
S'(0o, 0(.y) is nonsingular and

S 0 < 71H5S/71 9070( H
H 0,0 ())H = _IH(SS' (0o, 0. HHS (6o) H
for any matrix norm provided thai > H(SS’ L 90, D[S (60)| what fol-

lows ifa > (n +m + 1) max ( Z a2, Z b2) by taking¢; matrix norms.

Sinced, > « from (8b). That means that ifv or 4, is sufficiently large com-
pared to a measure of the absolute values of the estimates, then the modified
Sylvester matrix can be made nonsingular even if that prior to the modificatio

is singular. A lower-bound foé,, is given explicitly in the proof of Proposi-

tion 1. The modification rul¢l0), (11) is based on guaranteeing that either

the unmodified Sylvester matrix is nonsingular and no modification is made
or the modified Sylvester matrix is diagonally dominant and then nonsingular
For this casepS’(6y) = Diag(—«, ..., —a,3)S’(6y) under modification for
nonzerab,,, and§S’(6p) = Diag(—a, ..., —a,0)5(6y) + 3, otherwise.

16
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2.4 Stabilizing adaptive control law
Introducing (9a) into (7a), we obtain:

D'yr=e+0Tp=c+ (07 —0")p

(12)
= e+ A(D. t)ys + B(D. t)ug + < (1)i, (1)

with A(D,t) andB(D,t) being time-varying polynomials associated with the
estimates obtained from (7), which define the estimated model of the plant
prior to eventual modification, and whose adjustable parameters are the com-
ponents of the “a priori” estimated vectér The filtered and unfiltered control
inputs are generated from the adaptive versior{3f (4),

S(D,t)us = —R(D,t)yy, (13)

u= (E*(D) — S(D,t))uy — R(D,t)yy (14)

so that the following closed-loop diophantine equation is satisfied by the con-
troller polynomialsR(D) and.S(D) which are calculated from modified pa-
rameter estimates:

A(D,t)S(D,t) + B(D,t)R(D,t) = C*(D) (15a)
with

A(D,t) = A(D,t) + SA(D,t), B(D,t)=B(D,t)+B(D,t),

SA(D,t)=> 6a;D""" and SB(D,t) =Y b D™ ",
=1 1=0

The solution is unique since the modified plant parameter estimated model is
controllable at all time what implies that the time-varying polynomi&(®, ¢)
andB(D,t) are coprime for all time.

2.5 Calculation of the parameters of the adaptive stabilize

The expression (15a) is equivalent to the following algebraic linearmsyste

S(6p)v = c* (15b)

17
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for all time with

T
v = [17517‘"7Sn7T0)T17"'7rm—1] ’

]T (15c¢)

c=[1,c],¢5 ..., Crx
which is uniquely solvable with updated parameters at all timg.jrandr
which are used to generate the filtered plant input (3) so that the reteren

closed-loop dynamics characteristic equatio6i§D) = 0.

3 Stability results

The following assumption on some of the design constants is introduced to
guarantee the stability of the closed-loop system under Estimates Modification.

Assumption 1. (a) The design constaptin (8a) is chosen sufficiently small

according to the constraipt < ﬂ in the Basic Modification Scheme
6(n +m

of Subsection 2.2, equations (8), (9).

(b) The design constanf), is sufficiently large and the design constants
£02, €p2 andp}, are sufficiently small so thatr| > max(6], 65) with 0 < g¢1 +
g0 < €02 < v/n + m, where

. 1
O =(1=pa) +V2(1+ ———=+ph+en ),
1= ( Pa) e Vit m Pp T €b2
N €02
Oy= (24 —2—)(1—
2 < \/n+m—502)( pa)

in the implementation of the Alternative Modification Scheme of Subsec-
tion 2.4, equations (9a), (9b), (11).

Theorem 1. The adaptive control laWl3), (14), under the estimation scheme
(7H9) (or (7), (9a)and(10), (11)) and(15), has the following properties when
applied to the plan{l) provided that Assumption 1 holds:

(i) 6,0 and P are uniformly bounded and the modified estimated plant
model is controllable at all time;

(i) eand P, are in Lo;

(i) 0,P,0,s; andr; (i = 1,2,...,n,5 = 0,1,...,m — 1) converge
asymptotically to finite limits for any bounded initial conditions for the plant

18



Stabilization of Continuous-Time Adaptive Control Systems

and the estimation algorithm . Also, the Sylvester determinants of the unmodi-

fied and modified parameter estimates converge asymptotically to finite limits;
(V) Diuy, D'ys (i = 0,1,...,n — 1) andu andy are uniformly bounded

and converge asymptotically to zero.

Note thate € La () Lo from Theorem 1 ((i) and (iv)) SO that — 0 as
t — oo andf € L, and converges to a finite limit. Als¢{,5|] € Lo from
(7b) sinceP € Lo, andy € L. These properties guarantee tbat (5(6))
andd, are bounded and converge to finite limits so that the modificattisn
bounded and converges for both proposed modification scheme®)&nd
(9a) and (10), (11).
Remark 4. Assume that the plant is not perfectly modelled and/or it is subject
to bounded disturbances with the unmodelled dynamics being related to
by a exponentially stable transfer function. Thus, it is modelled after filtering
as A*(D)yy = B*(D)us + ny + &b (t)i,(t) with nfm. Assume
that (1) is controllable wherny = 0 and that an overbounding measurable
functionfjs(t) = e1p(t) +e2 = & OS<u1<)t{Hcp(7')e_"°(t_T)H} +e2 > |y,
for some nonnegative real constantgi = 1,2) wherev(¢) is a vector whose
components aré’us and D/ug, j = 0,1,...,n — 1 ([7, 8] and[15]). The
estimation scheme d¥) is modified by premultiplying the right-hand-sides of

.. gs
7a), (7b) by the normalizing factob := ——=————, where
(7a), (7b) by g TTaTPs
L. )0 if tely:={teRy: || <ups},
" | f(uiig,e) /e otherwise(ie., forly := Ry — 1),
e—o If e>o, (16)
f(o,e) =120 if el <o,

et+o if e<—0o

with g,y and . > 1 are prefixed positive constants. Note thét) includes a
relative dead zone for small prediction error related to the size of the unmo-
delled dynamics (see, for instan¢é], [8] and[15]). Thus, it can be proved
thatf € Lo, 0 € Loo, Py € Ly andbly; — ¢*| € L1 L and also that

the filtered and unfiltered input and output signals are uniformly bountied.
proof is very similar to that of Theorem 1 and it is omitted by space reasons

19



M. De la Sen

4 Numerical example

A numerical example is now tested for a nominally unstable and inversely
unstable plant (1) parametrized |y (D) = D*+0.75D3+0.5D2 +0.25D +

0.25 and B*(D) = 0.75D3 + 2/3D? + 0.25D + 0.25 with initial conditions
(—5,—7,0,0)T with filter paramete=*(D) = (D + 6.93)2. The estimation
algorithm used prior to modification is that of Remark 2. The unmodelled
dynamics is defined by a second-order differential equatiem.12n — 7.8 =

7.8u. The estimation-modification algorithm used is that of (7)—(9) with the
replacement of (8a) with (10). The determinant threshold for parameter mo
dification of the estimates is = 0.01. The adaptive stabilizer satisfies the
constraintsleg(R(D)) = deg(S(D)) — 1 = 1. The initialization of the esti-
mation algorithm iy (0) = 1, b1(0) = —0.008, b2(0) = —0.003, a1(0) =
0.005, az(0) = —0.005, a3(0) =0, a4(0) = 0. The parametel; is assumed
known and deleted from the estimation algorithm . The estimates of the initial
conditions of the plant (1) are zero. The covariance matrix is initialized to
P(0) = Diag(10°) andg = v = 1, u = 1.04. The absolute overbounding

of the unmodelled dynamics contribution is computed with constants 1
ande, = 107° andog = 0.1. The output and input versus time are shown on
Fig. 1. Figure 2 show the absolute value of the Sylvester determinant related
to the estimates and modified estimates, respectively.

Output Input

. Time
Time

Fig. 1. Output and input versus time of the closed-loop syste
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|pet s| |Det s|

0.035 0.035
0.03
0.025
0.02 0.025
0.015
0.01
0.005 0.015

Time Time

Fig. 2. Absolute Sylvester determinants of the a priori adiifred estimatin
schemes.

5 Adaptive stabilization with a continuous-time controller of a
first-order plant under saturated input

The inputs to physical systems usually present saturation phenomena which
limit the amplitudes which excite the linear dynamics. Also, the adaptive
stabilization and control of linear continuous and discrete systems has been
successfully investigated in the last years. Classically, the plant is astamed
be inversely stable and its relative degree and its high-frequency gaimasg
assumed to be known together with an absolute upper-bound for that gain in
the discrete case. Attempts of relaxing such assumptions have been made for
continuous systems. The assumption on the knowledge of the order can be
relaxed by assuming a known nominal order and considering the exgeedin
modes and unmodelled dynamics. The problem has been solved by using
either excitation of the plant signals or by exploiting the properties of the
standard least-squares covariance matrix combined with an estimation modi-
fication rule based upon the use of a hysteresis switching function. Such a
estimates modification technique guarantees that the modified estimated plant
model is controllable at all time provided that the plant is controllafleis

paper presents an adaptive stabilization algorithm for first-order contigtiou
time systems with a zero which can be either stable or unstable under sdturate
input. The saturating device is modelled by a sigmoidal functiSoch an
approach is a very good approximation to the common saturations usually
modelled as piecewise-continuous functions. Also, it is an exact model for
saturations inherent to practical MOS-type amplifiers. The adaptivarsche

21



M. De la Sen

uses a parameter modification rule which guarantees that the absolute value
of the determinant of the Sylvester matrix associated with the modified para-
meter estimates is bounded from below by a positive threshold and, thus, the
estimated model is guaranteed to be controllable. That feature is the main
contribution of this manuscript. The results are then extended to the case
when an adaptive stabilizer, which re-updates at sampling instants the plant
estimates, modified estimates and controller parameters, is used for the above
continuous-time plant. This strategy results in a hybrid closed-loop system
because of the discrete nature of the updating procedure of the pacametr
estimation/modification.

5.1 Plant, estimation/modification scheme and adaptive shéliza-
tion law

Consider the following continuous-time first-order controllable systemmunde
saturated input:
¥+ a'y = biu + bju, (17a)

D P
_62Uu

(17b)

u' = saty (u) = than(v'u) = T

where the saturated input to the plant (17a) is modelled by a sigmoidal
function [16]. To simplify the writing, the argumefit) is omitted and all the
constants are denoted by superscripts:8y Equation (17a) can be rewritten
as

Y = — A%y + bhi + biu + b (0 — ) + b} (u — ). (18)

Note that the equivalence between (17a) and (18) is an identity wheity@os
and negative terms concerned with the unsaturated input and its timetideriva
are cancelled in the right-hand-side of (18). Define filtered signals

ip = —d'up +u, Up=-du+u, gr=-dyp+y 19
for some scala#i* > 0 so that one gets from (18) for filtered signals
Ur = 0T = —a"ys + bty + biuy + epe 4t (20a)
yp = —a"ys + boty + biuy + bg(uy — 1)
+ 0} (ufy —uy) +ege ™! (20b)
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where
9* = [b87 T,(I*,bg, ){756]717 (213)
o = [if, ug, —ys, Wy — iy, ufp —up, e (21b)

whereej = y¢(0) — u/(0) has been included if*? to obtain (4) without
neglecting the exponentially decaying term due to initial conditions of the
filters1/(s + d*) used in (20). Also, the over-parametrization of (21a), (21b),

in the sense that the coefficients of the numerator polynomial are estimated
twice with different regressors, allows describing (20a) as drivem ogand

u’f — uy. This idea will be then exploited for the stability analysis of the
adaptive stabilizer. The parameter vedidt can now be estimated by using
the least-squares algorithm

€= yf - GT% (22)
6 = Poe, (23)
P =—Ppp'P, P(0)=PT0)>0 (24)

wheree is the prediction erro) = (61, 602,03, 04, 05,06)" is the estimate of
0*, defined in (21a), and is the covariance matrix. The use of (20b) into (6)
yields

vy = 0195 +0O2uyp — O3y +94(ulf —uy) +95(ulf —uy) +0ge T +e. (25)

The following modification rule of the parameter estimates is used to guarantee
the controllability of the estimated plant model

0=0+Pg (26)
with 3 being a vector which can be chosen to be equal to one of the following

vectors

6
61 = [Oa 07¢7 O]Ta 62 =0, ﬁ3 = _ﬁ27 (27a)

Bs=p1—pa+p3, B5=—PFs, [6=0p1—ps—Dp3, (27b)
Br = —(p1—pa)+p3, v = (61—04)p3+03(p1—ps)—(p2—ps) (27C)

23



M. De la Sen

and whose current value is selected from a hysteresis switching fumdtich
is defined by the following rule. Define
1o 0
Det (03 1 01 — 604

0 53 52 — 9_5
which is the absolute value of the Sylvester matrix of the modified parameter
estimates associated with the estimation of the plant numerator and denomina-
tor polynomials obtained from (23), (24) and (25)—(27). Assumetat) =

Bi(t~) andc(B3;(t1)) > ¢ (Bm(th)) for somej = 1,2,...,7 with j # i and

allm =1,2,...,7. Thus, for some prefixed design scatédre (0, 1]:

ﬂ(ﬁ):{ﬁj(”) i e(B(t) = (1+ a)e(B(17)).

Bi(tT) otherwise

c(B) = | (01 — 0)05 — (02 — 05)| =

(28)

wherep; denotes theé-th column of P. This modification strategy guarantees
that the parametrical error lies in the image of théPaivhile allowing that the
diophantine equation, which will be then used for the synthesis of the adapti
stabilizer, will have no cancellations at any time. It will be then shown that the
two following conditions are satisfied:

1) fconverges
2) ¢(B)>d6">0
which will be then required in the proofs of convergence and stability.aEqu

tion (25) can be rewritten as dependent of the modified estimates (26 H28)
follows :

yr = glﬂf + éQUf — §3yf + 54(1'1} — iLf)
+ 0_5(u’f —ug) + 0 + e — BT Py
The filtered control input:; to the saturating device and its unfiltered version
u are generated as follows:

(29)

Up = —s1uf —roys, u=dup+ur=(d"—si)ur—roys (30)

with the parameterg, ands; of the adaptive stabilizer being calculated for all
time from the diophantine polynomial equation

(D+é3)(D+31)+ [(91—§4)D+(92—§5)] ro = C*(D) djf D2+CTD+C; (31)
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with D = d/dt in (15a) andC*(D) being a strictly Hurwitz polynomial that
defines the suited nominal closed-loop dynamics.

5.2 Convergence and stability results

They are summarized in the following main result whose proof is omitted.

Theorem 2. Consider the plan{17) subject to the estimation scher{g2)-
(24), the modification schen{@6), (27) and the control law(30). A:kssur?e* that
eithera* > 0 (i.e., the open-loop plant is stable) ¢y(0)| < bl_—fbo if
a* < 0 (i.e., the initial condition is sufficiently small if the plant is unstable).

Thus, the resulting closed-loop scheme has the following properties:

(i) The modified estimated plant model is controllable for all time for the
choseng in such a way that () > 6* > 0;

(i) 6 = 0 — " € Lo, ande and Py are in Lo, () Lo;

(iii) 6, P, 3, 0, s; and ry are uniformly bounded and converge asymp-
totically to finite limits. Also, the number of switchesnis finite. Also,
0 € Ly Loo;

(iv) The signalsu,«’ and y and their corresponding filtered signals are
iN Loo () L2. The signaISu,u’,uf,u},y and y; converge to zero and their
time-derivatives are il (] L2 So that they converge to zero asymptotically.

Note that the requirement of the initial conditions being sufficiently small
when the plant is unstable is a usual requirement for stabilization in the pre-
sence of input saturation since it is impossible to globally stabilize an open-
loop unstable system with saturated input. This avoids the closed-loop sys-
tem trajectory to explode. Such a phenomenon occurs when the initial time-
derivative of the state vector is positive and continues to be positivédl fone
because its sign cannot be modified for any input value within the allowable
input range. Note also that Theorem 2 (i)—(iii) imply that Conditions 1, 2 for
the 3. -functions of the modification scheme are fulfilled. Finally, note that
the controllability of the modified estimation scheme allows to keep coprime
the modified estimates of the polynomials for zeros and poles. Thus, the
diophantine equation (31) associated with the controller synthesis is solvable
for all time without any singularities.
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The mechanism which is used to ensure local stability for unstable plants
and global one for stable ones is to guarantee the boundedness of all the
unsaturated filtered and unfiltered signals from the regressor boeskedihile
the saturated ones are bounded by construction. This also ensuresrthe id
tification (or adaptation) error to be bounded for all sampling time since the
unmodified and modified plant parameter estimates as well as those of the
adaptive controller are all bounded.

5.3 Hybrid approach

Now, the continuous-time plant (17) is subject to the given control laweabov

in Section 5, under the saturating sigmoidal function (17b), but the estimation
algorithm only updates parameters at the sampling instanis= t; + h =
(k+1)h of the sampling period h while the regressor is evaluated at all time for
re-updating the various estimates at sampling instants only. That scheme lies
in the class of the so-called hybrid systems, [7] and [16]-[19]. The etima
modification and calculation of the controller parameters are also updated at
sampling instants. The discrete-time parameter estimation and inverse of the
covariance matrix adaptation laws are:

O = Op—1 + AOx_10, 1

h
of’@[(kfl)h”]’Q‘P[("Cfl)h“}ﬂ[(kfl)hw]df

~ (32a)
— by - k-1,
ck<1—|—0f<pT[(k:—1)h+T]cp[(k—1)h+T] dr)
P =P+ AR =R
h
Ofng[(k—l)h%—T]HQgD[(k—l)h—i-T]@T[(k:—l)h+7'}d7~ (32b)
+ Ok—1,
Ck (H—fhcpT[(k—l)h+7]gp[(k—l)h+7]d7‘)
0
h 1
[le[(k = Dh+7]||"dr
€k 2 Ch0 = Ao (Pr) — (32¢)

h 4
1+0ngo[(k—1)h+T}H dr
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with P(0) = PT(0) > 0 andf, = 6, — 6* for all integerk > 0. The main
result of this section is ennounced in the following. Its proof, which is very
close to that of Theorem 1, is omitted.

Theorem 3. Consider the plan{17) under the same estimation/modification
scheme as in Section 5, with the estimation being updated onb¢ dth, and

the same stabilizing control law. Thus, the resulting closed-loop schente fulfi
the same properties of Theorem 1 under the same assumptions.

Appendix

Proof of Proposition 1. Firstly, note that the first-order derivatives of the
determinant with respect to any parameter estimate are calculated as follows
from elementary algebra (see, for instance, [13]):

aielDet(S(Ho)) = Trace(%zo)g(eoﬁ (A.1)

which holds when taking derivatives of determinants with respect to dog va

of the parameter estimaiefori=1,2, ..., n+m+1. The derivatives are eva-
B kS (o) _0

i B 8951, . ,ka ’

k= 23,...,n+m + 1 with all the partial derivatives being evaluated at

6. Also, sinceS () is a matrix of cofactors, it contains products of at most

(n + m) parameters at each one of its entries so §pa1t9k (6o) = 0 if

k > n+ m for any integers; > 1for j = 1,2,..., k. Now, Det(S(6p)) is

expanded in Taylor series aroubdt (.S (6,)) by taking successive derivatives

with respect to parameter components evaluatety aly starting with @A.1)

while zeroing any derivatives of higher-order than (n+m). One obtdinestly

luated aty. However, it is clear from (8e) th&l

Det(S(G_o)) = Det(S(Ho)) -+ A(HO, éo) (A.2a)
with
A(007 é[])
n+m n+m-+1 ik
1 - _ (A.20)
— Z Z HTmce(Sgi1 (00)56;,....0:, (60)) H (05 —0;)
k=1 11,i2,...,i=1 Jj=t1
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being the maximum absolute achievable increment between the modified and
unmodified determinants. Now, it is proved by contradiction that

Trace(Sgi1 (Qo)geil,...,eik (90)) =0

(A.3)
forall i e{l,....,n+m+1}, k=1,2,...,n+m

is impossible sinceA4.3) depends on the estimates of the plant parameters
irrespective of the modification scheme. Now, assume\thatS’(Ho)\ #(<p

with ¢ > 0. Then, note from the definition of(6,) that |DetS(6o)| = ¢

with arbitrary nonzerd if the subsequent modification rule is used after esti-
mation: da; = —a;, 0b; =—b; anddb,, = iC% —by, fori=1,2,...,n, j=0,
1,...,m. Assume that4.3) holds. Thus, one has the impossible relationships

¢ = |DetS(0o)| = |DetS(6)| # ¢ by using a Taylor series expansion in the
parameter space of the modified estimates around the estimated ones obtained
from (7) according to4.2). Thus, (A.3) is false, since all the derivatives used

in (A.2) are not dependent on the modification scheme. Then, there is at least
one parameter componehtof 6, for which Trace(Sgil (90)5”91.1 el (90)) #*

0 and thenC' in (8d), (8e) is nonzero. ThuRet(S(6)) is not constant for all

the values of the components &f belonging to arbitrary real intervals and a
modificationfy — y can be carried out to guarantee thatt (S(6y))| > p.

If 6, is discontinuous at then |5, (t7)| > % if h(tT) = pandh(t™) = p/

/
and|dq (t7)| > % if h(tT) = p’ and(t~) = p. In any of the above situations,

a(t) # 0. The switches ik (¢) make this eventual discontinuities to occur only
at isolated time instants. Direct calculations yield:

‘Det(S(éo)) | = ‘Det(S(eo)) —i—A(Ho, éo)} > ’(5QHC_" — ‘Det (S(Qg)) ‘

_ _ A.
>3p—Det(5(6o))Sign(C)— ‘Det(S(Go)) ’ >p>0. (44

Note thaté, = « if 6, > 1 (what implies thato/ > « for j > 1) and

b = o™ if 6, < 1 (what implies thate/ < « for j > 1) with §,
and o being chosen according to (8a), (8b). Such a constraint establishes
the first inequality in 4.4) since|A(6o,60)| > [6.C| from (A.2b). Thus,

the first part of Proposition 1 has been proved. The absence of rchatte
follows directly since thex — function is continuous a%,C = 1 sinced,C =
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(5aC‘)n+m]6aC:1. The eventual discontinuities in the determinant test (8b)
are isolated at any time what is guaranteed by the switches switcligs)in
given by (8a).

Proof of Proposition 2. One has from the definitions and properties of the

U5, £1 and/,, matrix norms (see, for instance, [20, 21])

(n+m)~2|S(00)||, = (n +m)~2|AL2, (5T (60)S(60))]

max
1

N2, (ST (60)S(60)1)

(A.5)

< (n+m)?||S(@0)|,

where | Aoz (-)| and |Amin ()| denote the maximum and minimum module
of the eigenvalues of thé)-matrix, respectively. Thus, the two following
inequalities follow directly from 4.5)

A2 (ST (66)S(60) ! - !
‘ mm ( 0) ( 0) )‘ ‘)\}){iv (90)5(90))‘ HS(GO)HQ
> 11 — ! — — , (A.6a)
(n+m) 2SO, (n4-m)b ma x (142 Jail, 3 Ibi])
=1 =0
A2 (6T (0)S(6) !
‘ max (S° (00)5(60) )‘ ’A'}r{fn (90)5(60))‘
1 1 1
= P (sm@ste0)]| TSOOTL ™ o) Hste0)]
_ 1 (A.6D)

-1 9
(n+m)—%( S lail+ z b+ max (1+[bol, [an] +[bm]) )

which imply

1

0< < ‘)\i,{fn (ST (00)S(60)) ‘ < ‘)\}r{fz ST(eO)S(eo))) < — <00 (A7)
0

if Condition 1 holds. Thus, Condition 1 guarantees that is nonsingular (i.e.,

the estimated plant model is controllable) and a parameter modification is not

performed in (10), (11). If Condition 1 does not hold th&f®,) is not guar-

anteed to be nonsingular accordingly to the testof). Thus, the estimation
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modification procedure of (9a), (10), (11) when Condition 1 does otd h
guarantees that

n m—1 n m—1
1> sl + ) bl (bl > > la@l + > 1Bl + vlbol- (A.8)
=1 =0 =1 =1

Now, note that if @4.8) holds then the modifie(6y) is diagonally domi-
nant what follows directly by inspection from its definition since for such a
matrix structure, it suffices to guarantee diagonal dominance fot-theand

(n + 1)-th rows. Since all diagonally dominant matrix is nonsingular, [20],
S(6p) is nonsingular and the modified estimated plant model is controllable.
The proof of nonsingularity has been completed. The absence of dhatter
follows from the use of two possible values of all thg-constants in Condi-
tions 1, 2, the fact that those values are modified dfteonsecutive switches
with the same values of the constants over finite intervals of |€hghd the
feature that the estimates prior to the modification have finite limits (see also
Remarks 1, 2.

Proof of Theorem 1. The subsequent proof applies for both modification
schemes (8), (9), and (9a), (9b), (10), (11).

(i), (i) Note that P~} = —P~1PP~! = T from (7c). Define the
Lyapunov function candidate = §7 P~19 whered = § — 6* is the paramet-
rical error before modification of the estimates. Thus, (7a) can be rewritte
ase = —0Tp andV = —(07¢)?2 = —e < 0 after direct calculations
with V and (7), [5]. Thuse € Ly andoo > 67P710 > Apin(P~1)670,
with A\in (P~1) being the minimum eigenvalue éf! so thatd is uniformly
bounded since the maximum eigenvalug®h,,,...(P), is upper-bounded by
a positive finite constant and theg,;,(P~1) = A,;L (P) > 0 for all ¢ > 0.
Thus, P, § is uniformly bounded| P||, ||¢|| and||6|| are in L, from (9) since
0 = (6f,e{)" and6y andDet(S(6y)) are uniformly bounded for all > 0.
Thus, the modified parameter vector= (61, 1)T is also uniformly bounded
for all t > 0. The modified estimated plant model is controllable sisce>
|Det(S(60))| > p > 0 from (8), (9) and the fact thak, is uniformly bounded

forall + > 0. On the other handPy € L sincetr(P) = —||Pp|3 € Ly
from (7c) with|| - |2 denoting the spectral ( or Euclidean) vector norm. Thus,
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propositions (i), (ii) have been proved.
(iii) It is standard to prove thaP and#d converge asymptotically from (7b)

. t 1 9 . t 9
and the fact thaim (bfuaydf) < 5[(\\13@\\ dr) + lim (bfe df)} <

sincePy € L, ande € L, what implies§ € L, and the# converges from
(ii) (see [22]). Also,f, converges sincé converges and thuBet(S(6y))
converge to a finite constant values as time tends to infinity. From the fact
that 6y converges, the possible switches in (8a), (8b) end in finite time since
there exists a large finite tintg such that andDet(S(6,)) are close to their
limits and the piecewise-constalmifunction maintains a constant valye gr
p' > p) for all time t > t, (see (15a), (15b)). As a result o, and
C converge. Thus, the modified parameter veéoand thenDet (S (6y)),
converge asymptotically to finite limits. As a result, each controller parameter,
namely, each coefficient dR(D,t) and S(D,t), converges to a finite limit
value and (iii) has been proved.

(iv) Note that direct calculation from (12) yields for < n — 1:

D"yr =e+ (éT — 5T)<,0 =e+ ZBiDmfiuf — ZéianiUf — 50Tg00
=0 =1

and the substitutioD™u; obtained explicitly from (13) into (12) yields for

m =n.

n n—1
Dnyf =e — 1_70 [Z SiDn_iUf + Z T‘Z'Dn_i_lyf:|
=1 =0

n n—1
+ [Z bz‘aniUf + Z dH.anfi*lyf] — 55@0.
=1 =0

Thus, the substitution of the above identities together with (13) yield the fol-
lowing extended auxiliary dynamic system which describes the combination
of the closed-loop dynamics and control law:

= Az + w, (A.9a)
2= Az + w (A.90)
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with
w = [e+eliy, — 0g vo,0]T = 1w+ wy, A
e T B T T (A.10a)
w = [0y o,0]", w1 =le+eyiy, 0],
_ o -
In.y ¢ 0 _(1)
_ D if m<n-1,
=T D if m=n,
| 0 : In1)
n—m—1
ﬁ(l)T = [*C_Ll, —Q2,...,—0p 0, ~...7,0 l_)o, 1_71, ceey *l_)m], (A.10¢)
PAT = [~ (@ +boro), —(@z + bor1), - .., —(@n + born—1)
(61 + 6081), (62 + 6082), RN (Bn + Bosn)], (A.lOd)
@T:[TO,T]_,...,’I"”, 5517525"'7571] (A].O@)

with 2(0) = 2(0) = x0, 2= (D" Yys,..., Dys,ys, D" tug, ..., Dugp,us)?
andyo (D" Yy, ..., Dys,yp, D"us, D" tuy, ..., Dus,us)’. The proof of
boundedness and convergence to zero of the input, output, their filtered
sions and the time-derivatives of those ones up(til— 1)-th order of the
closed-loop system is immediate by first proving th&t9p) is asymptotically
stable in the large. Thus, by vector constructign?us| < K'|z|| from the
controller equation (13) and, thefipo|| < max (|D"uyl, ||lz]|) < Kz

with K = 1 + K’. Note from (4.9b) and (15a) that all the eigenvalues of
A(t) are less than or equal {6-0) for some real constant > 0 which is

less than or equal to the minimum absolute value of the roots of the strictly
Hurwitz C*(D)-polynomial for all¢ > 0 (equality applies when both roots
are distinct, [21, 22]). AlsoA(t) is uniformly bounded and, furthermore,
tJ}TO |A(7)||dr < pTo + wi for positive constants and o, all t > 0 and
sct>me finiteTy. This follows directly in the absence of modification on the
integration interval since the time-derivative of the estimates and controller
parameters are bounded as follows from Theorem 1. Assume that tleere a
oo > s; > 0 modification switches oft, ¢ + Tp|. Their number is finite since
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the integration interval is finite anet (S (6,))| is a continuous function of
time so that existing switches are isolated (i.e., there is no accumulation point
of modification switches). Also, their associate discontinuitiesi{n) are
given by bounded steps whose norms are upper-bounded by a @disitie
constant: from Theorem 1(i) sincé € L. As a result,

(t+To)*
|A(7)||dr

t— St

<, k[ o((r—tit))dr + /HA(T)deguToJrﬂo

t () U L)

Jj=0

with 19 = pf + 8k < oo whereco > 5 = Sup(s;) Wheres; is a nonnegative
>0

integer number and(r) is the Dirac-delta function at = 0. Thet((t)
instants are the; separated instants withi, ¢ + 7j) where the modification
switches take placdy(t) = (¢,t1(t)), L;(t) = (ti(t), tiv1(t)), andIy, (t) =
(ts,(t),t + Tp) fori # 0, s; ares;1 open intervals where the time-derivative
of the modified estimates exist. @f = 0 thenly(t) = (¢,t + Tp)).

Thus, the common unforced version of both time-varying systems (103)
is exponentially stable in the large ([8, 15]). Now, direct calculus with the
differential systemsA4.9a) and (4.9b) yields that their solutions are related as
follows:

ao:4w+/w@mm@mf (A.11)
0

with ¥ (¢, 7) being the fundamental matrix of the unforced system of (9a) and
(9b), i.e.,x(t) = z(t) = ¥(¢,0)xo forall ¢t > 0if w = wy; = 0. Since such

a system is exponentially stable in the large, one has for any matrix norm that
|w(t,7)|| < Kge o= for anyt andr fulfilling ¢ > 7 > 0. In particular,

one hag|¥(t,7)[|, < e 7" (i.e., Ky = 1) if the spectral matrix norm is
used. SinceA(t) is exponentially stable and, furthermore; € Lo () L2

from (i), (i) 2 € Loo () L2, 2 € Lo () L2 and z converges exponentially to
zero for any bounded initial condition (see [22]). Thus, by taking spec
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vector and matrix norms in4.11), one gets directly from the definition af
in (A.9a):

t
=), = 22 + / e 1ol ||z (7) | d - (A.12)
0

Now, define

Zpe= Swp [2(0)], and z=Sup [z]], = Sup ( Sup [l2(1)],)
t;<t<T teRy TeRrt “O0<t<T
for all finite t; € Z§ andT € RS whereZ; and Ry are the sets of nonneg-
ative integer and real numbers, respectively. Sinee L, [ L2 there exists
a sequence of time instarits = {tx, k¥ > 0} with ¢y sufficiently large (but
finite) such thatz;, ., . < 2, < Z < oo and sincez;, — 0ask — oo
sinceTy is a monotonically increasing sequence aiit) converges to zero
asymptotically since it is ilh (] L2. Now, if the Basic Modification Scheme
(8), (9) is used, it follows from

Hx(tk + 7')H2 = Ztk’ee(*‘”‘%ﬁ < o0

(A.13)
forall ty € Ts, 0 < 7 < tgpiq — t

whered), = Sup ( Sup HSO(t)HQ) < 1, sincep’ > 2p, by applying Bell-
TeRrf ~0<t<T

ol
3(n+m)
Thus, ||z (t, +7) ||, < oo and||d(t, +7)||, < oo are uniformly bounded from
(A.13), boundedness of both the estimation error gand (103), (104). One
has, in addition, from 4.13) thatz(t;, + 7) — 0 for all 7 € [tg,tx11) @S
k — oo sinced) is bounded from (i). As a result; € Lo, @ € Lo and
x — 0andi — 0 ast — oo. Thus, the proof of (iv) follows for the Basic
Modification Scheme from the calculation of the solution[0, oc) — R2®
to (A.9q) for any initial conditions.

If the Alternative Modification Scheme of (9a)—(9c) is used, then a new
upper-bound fop;, has to be fixed as follows. Direct calculations with (10),

(11) yields||%||» < ((1 - a)2< Sal+ Y b?) + 5@2;1) % if Condition 1 does
=1 =0

man-Gronwall's Lemma to4.12) (see [21]), provided that <
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not hold with oréb,,, = 3b,, or éb,,, = b],,. By taking also into account (10),
(11), one gets

=

1d0ll2 < (Z |(1 | +,0az)2’b |> (Z |as| + Z |bi ’) + 3°02,

< (1 - pa) +5’bm‘

=1—pa+(1- a)(Z\aﬂ +Z\bz‘!>(1 —a)pg — |bm]
=1 =0

1—0p,
S2(1_p04)+ n y Ps;

m
> lail + > |bil
=1 i=0

(A.14q)

if 6bym = Bbim, and
”50||2 < < 1—a (Za _|_Zb2> +ﬁ/2>
<1_a +2<Z|‘“|+Z|b \> +2( pb+|bm|)2>§ (A.14b)

1

2
<(1—pa +2(Z|a2|+2|b \) +2(pp + ) ) .
Also, if Condition 1 does not hold then the following inequalities hold:
1
n+m)z —
L2 <o, -1 <Dl + 3

(n+m)_

5,

(A.15)

N[

<1+4]S60)||,, <1+
The remaining of the proof follows fromA(13) after substituting 4.15) into
(105) to calculate upper-bounds(i = 1,2) of Sup (||do|2) -
>0
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