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Abstract. The possibilities of efficient amplification and additiorsdlor-

tening of faster moving short fundamental harmonic pulsgshie more

slowly moving longer second harmonic pulses for type | phaséching

are numerically analyzed for initially collimated axiabymmetric beams,
taking into account diffraction, group velocity mismataidadispersion of
the pulses.
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1 Introduction

The possibilities to compress the sum frequency pulses (in particular,the se
cond harmonic pulses) during type Il processes that are quadraticesjtbat

to the field variables [1]-[3] are well known (see [4] and referertbesein).

A concept of chirped pulse optical parametrical amplification (CPOPA) [5]
attracts a great deal of attention [6]-[17]. Due to complexity of the CPOPA
problem, the numerical analysis in the cited works is usually performed for
type Il interaction in the plane wave approximation and neglecting the group
velocity mismatch of the pulses. The plane wave approximation does not
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enable to analyze the beam quality changes [4] during the amplification pro-
cess, and neglection of the group velocity mismatch does not provide the
possibility to correctly describe the reconversion of pulse energiesgithin
amplification process [18]. Also note that although the theoretical analsis o
amplification is usually carried out, as stated above, for type Il interaction,
most experiments involve type | interaction because large gain bandwidth can
be realized when the OPA approaches degeneracy in type | phase rgatchin
the case of group velocity matching between the signal and idler pulse®-The
fore, type | phase matching is used to achieve the shortest pulsest[@&juld

be noted that the parametric amplification is experimentally implemented in
stages [7]-[12] and in each stage, the amplification saturation mode must be
ensured. It increases the overall energy efficiency and, most inmplyrténe
energy stability. Therefore, the numerical research of parametric araptfic
during type | interaction of very short pulses of the first harmonic and the
second harmonic of even the same initial duration is an important problem.
We will stress a recently demonstrated and less known possibility that, using
the cascadeg(® : x(?) processes [19] shortening of the first harmonic pulses
can also be achieved for type | interaction [20]-[26], that is unfotilypam-
plemented with low energy efficiency. On the other hand, taking into account
the group velocity mismatch, the possibility appears to efficiently amplify this
short first harmonic pulse by means of a slower and longer second h&rmo
pulse. As it will be demonstrated below, the fundamental harmonic (FH) pulse
can shorten noticeably near the beam optical axis during the optical gaiame
amplification in type | interaction. Therefore, analogously to the case of the
stimulated Brillouin scattering [27], significantly shortened FH pulses of good
spatial quality can be generated using soft Gaussian diaphragms.

2 Mathematical model and numerical method

The scheme of the FH pulse amplification using type | interaction is presented
in Fig. 1.

Unlike the case of the conventional second harmonic generation [28, 29]
the intense second harmonic pulse is fed to the input of the nonlinear crystal
in addition to the fundamental harmonic. The electric field of the fundamen-
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Fig. 1. The scheme of FH pulse optical parametric amplificatising type |
interaction.

tal and the second harmonics (SH) pulses incident upon the crystal with the
mutually perpendicular polarizations vecters, can then be expressed in the
following form:

E(R, Z,T)

i : 1
= Re{ey‘h(R, Z,T)e'Z=1T) 4 ey Ao(R, Z, T)el(’@Z—sz)}_ (1)

Here,R = (X2 + Y?)'/2 and Z are the transverse and longitudinal spatial
coordinates]’ is the temporal coordinate}; and A, are the slowly varying
complex amplitudes of these wavés,andk, are their wave numbers; and

we = 2w are their cyclic frequencies. Dimensional equations governing the
second harmonic generation (SHG) and discussions of the expretsiin

into account the contribution of the Kerr-type cubic nonlinearity are jprtese

in our paper [29]. We shall note here that the peculiarities of the cubisepha
cross-modulation of pulses in nonlinear crystals are also discussed inmeta
[20, 21]. In this work, basically the same as in [29], equations were fsed
numerical modelling of OPA additionally taking into account the second order
group-velocity dispersion (GVD). The normalized equations for the slowly
varying amplitudes have the form

80,1 Z() Bal . T120Z0 820,1 ‘w%OZ() 10 < 8a1>

0z V1T0 ot Z4LD5'1 6t2 ! 4LD1 ; or " or (2)
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wherea; 2 = Aj2/Ap are the slowly varying dimensionless complex am-
plitudes of the first and second harmonics normalized to the characteristic
amplitude Ay = /8nly/cn1, Iy is the normalization intensity, = 7'/Ty,

z = Z/Zy, r = R/Ry are the normalized independent coordinaigssy =

Ty 2/, are the normalized initial pulse durations of the fundamental and sec-
ond order harmonicsl.psi2 = T1272/2/’<:’1”2 are the dispersion lengthgj »

are the durations of the pulség, > T1), kf , = 0%k/0w?., , are dispersive
spreading parameters;o 20 = Wi 2/ Ry are the normalized initial beam radii,
Lp1 = k12W7,/2 are the diffraction lengths, v, = 1/(,/g10240) is the

47rw1 déf?

nonlinear lengthg; » = —— is the nonlinear coupling coefficierdgf)
cni2
is the effective nonlinear susceptibility;x = 7/Ak is the coherence length,

Lpuiz = 1/(k1,2ﬁ21’2)10) are the nonlinear phase change Iengﬂ@%?) are

the nonlinear refraction indices of the mediumy 2; are the phase cross-
modulation coefficients due to the Kerr effect. For the following discussion it
is convenient to introduce the pulse walk-off lendthy ), = T>V2; due to

group velocity mismatch (GVM)5; = AT whereV] o are the group

velocities of the fundamental and secon%j harrhonic pulges-(153).

Ranges of the normalized variables @&re< ¢t < t,,, 0 < 2z < 2z,
0 <r < r, . The boundary conditions for equations (2), (3) are as follows:
Oa12(r=0,2,t)/0r =0, a1 2(r=rm, 2,t) =0, a12(r, 2=0,t) = a19,20(r, t).

Let us discuss briefly the scheme of the split-step (SS) method used for
solving the set of equations of the second harmonic and the first harmobnic.
is convenient to apply the SS method for the set of equations (2), (3ttewr
in the following form:

6a1

FP = Ellal + EIZGI + E13a1 + E14611, (4)
das -~ ~ ~ ~
5 = Lojag + Losag + Losag + Logas. (5)

Here, the operators on the right-hand siﬁg (i =12 j = 1,2,3,4)
describe:
~ oa; 82 .
Lina; = vt — igi gt

ot - ZQiW (6)
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the group velocity mismatch and dispersion,

-~ .1 0 0
Ligay = ipti— - = <T5>ai (7)

the beam diffraction,
ElSal = i’ylaTCLQe*iAz and E23a2 = i’ma%emz (8)
the OPA process,

Ligay = if (lar|* + Bizlaz|*)ax,

Logas = if (Barlar|* + |ag|*) az

(9)

the interaction of the FH and the SH due to the Kerr nonlinearity of the medium.
New notations are introduced here for convenience:

vi = Zo/ViTo, gi =k Zo/2T§, i = Zo/2k;iRg,
Y = Zo/LNL, Bi = Zo/2LpHi, A =mZy/Lk.
When numerically solving equations (4) and (5), the medium was divided

into the layers of equal thicknegsand the finite-difference equations were
solved successively in each layer:

n n
up = Anap Uz = A12a2,

v1 = huy + Aojur, va = hug + Axug,

(10)
wy = hvy + A13v1, we = hvg + Aogvs,
ai™ = Aqwr, aytt = Agguws,
Here,a], i = 1,2 is the numerical approximation of the differential solution

after then-th layer of the medium,, = nh, n =0,1,..., N, hN = z,,
ui, v;, w; are the interim solutions.

The finite-difference approximations;; of the operatorsfij are as fol-
lows:

Ay;al = FFT|FFT[a?] ™ exp (—i(viw— gin)h)] . (11)
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Here, FFT[ |*! are the forward and inverse discrete fast Fourier transform
with respect to the temporal variableandw is the frequency of the Fourier
spectrum;

24 <Uz‘+ — O Ui T 1 a — Uz‘—)

Aoju; =
v S o T+ T_ T 2

(12)

whereu; = 0.5(v;+u;), ur = u(r£74), 74 = Tp41—"Tk, T— = Fk—Tk—1, Tk
are the coordinates of the radial grid with the density increasing towasds:
re = (e —1)/(e®=1), k=0,1,..., K, R, = kAR, ARK = r,,, a > 0
is the grid density increase ratio;

Ay3v1 = ihy10]02 exp(—iAZ), (13)
Aosvg = ihwﬁ% exp(iAz), (14)

wherev; = 0.5(w; + v;), Z = z + 0.5h and

Avgwi = wy exp (iB1 (Jwi | + Bra|wa|*)h), (15)
Asgwy = wo exp (iB2(Bor |wi|?* + |wa|*)h). (16)
In order to increase the accuracy of the numerical method to the seocderg or

symmetric SS scheme (8) was applied, when finite-difference equatiops (10
are solved in opposite order in the adjacent layers.

3 Modeling results

When modeling the second harmonic generation and the fundamental har-
monic amplification processes, the amplitude envelopes of the input FH and
SH pulses possessed the Gaussian transverse distribution and théa®Gauss

temporal envelope and plane wavefront:

a;j(r, z=0, t) = ajoexp (—T2/w32»0—21n2(t—tjc)27'j20), (j=12), 17)

whereajo = |ajo| exp(ipjo) are the normalized amplitudes of the FH and SH
pulses,p;o are the input phases;;, are their normalized radii at the level
of 1/¢* of the peak intensityr;, are the normalized pulse durations of the
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harmonics at half the peak intensiti¢g; are the moments of appearance of
the pulse peaks.

A KDP crystal with the group velocity mismatdh; ~ 77 fs/mm and
the nonlinear refraction index'"? ~ 0.27 x 1071 m2/W for A; = 800
and )\, = 400 nm were selected for modeling. These and other data necessary
for calculations were taken from the monograph [28]. The pulse dusation
were selected’} = 50fs andT> = 200 fs, so that the influence of the group
velocity mismatch on the efficiency and quality of the amplified FH pulse
could be investigated. The temporal normalization constant was selected to
be T, = 1000fs, due to considerations of the graphical representation of
the calculation results, and the longitudinal normalization constant4yas
VoTy. The radii of Gaussian beams of the harmonics were large eneugh (
1 cm), therefore, the effect of the beam diffraction on the amplification @®ce
was insignificant. The diffraction terms with transverse Laplacians were still
taken into account exactly in the equations, to be able to calculate precisely the
changes of the beam propagation factors [4, 27, 29]. The calculasuits
presented below were obtained for the intensities of second harmonibifdr w
the relationZy/ Ly = 0.5 was satisfied. The input phases of pulses were
setpip = 0 andpyy = w/2 for the effective amplification of fundamental
harmonic. Note as well that, although the developed algorithm and the pro-
gram, as follows from the above, provide the possibility of calculations taking
into account the Kerr nonlinearity, utilization of longer and consequentty les
intense pulses of the second harmonic reduces this influence. Tleeraftrs
work, the results that have been obtained without taking into account &seph
self- and cross-modulation of the pulses are presented.

By changing the pulse delayc, the energy efficiency of the amplification
process or the temporal pulse compression can be optimized. Fig. 2tsresen
the results of pulse propagation calculations in the absence of interaction. |
is seen that the propagating SH pulsgy(= 1.0, to¢c = 0.5) to which the
coordinate system is fixed remains virtually unchanged due to diffractidn an
dispersional spread. At the same time, a shorter and faster FH pulse, initially
delayed by, = 0.6, runs practically through the entire SH pulse and spreads
only slightly due to the influence of the medium dispersion, since the influence
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Fig. 2. The FH pulse propagation through the SH pulse duedogtbup

velocity mismatch taking into account dispersion of thespalat different

planes along propagation: curveZ=£ 0), curve 2 ¢ = 3), curve 3 ¢ = 6),
curve 4 ¢ = 9), curve 5 ¢ = 12), curve 6 ¢ = 15).

of diffraction is insignificant, the same way as for the SH pulse. Note that in
this figure, the modules of the complex amplitudes that usually give a picture of
finer details of changes of the spatio-temporal shape are presentegvéto

in this case, due to smallness of both the FH amplitude itself, as well as the
smallness of the dispersional spreading, its changes are difficult to méke o
Only in the figure of larger scale, it can be noticed that the pulse at the@xit f

the medium (curve 6; = 15) is slightly lower than the pulse at the entrance
to the medium (curve 1, = 0).

Changes of the spatio-temporal intensity distributions of the FH and SH
during the amplification process in various cross-sections of the crystal a
presented in Fig. 3. It is seen that the intensity of the first harmonic grgws b
a large factor, while significant reduction of the pulse duration on the beam
axis begins as the energy reconversion from the trailing part of the putse
the second harmonic starts. It is worth noting, however, that initially only the
energy redistribution within the pulses takes place, while the integral energy
of the pulse being amplified grows. As the pulses propagate further, ahtegr
energy conversion from the first harmonic to the second harmonic begins
Fig. 4 depicts the pulse structure exactly at the beginning of this stage. It
is seen (Fig. 4) that the secondary peak in the second harmonic irstrease
noticeably during reconversion, and the first harmonic pulse assumshape
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Fig. 3. Spatio-temporal structure of normalized intensityhe FH (a1 =
0.1, ty¢ = 0.7) and SH @29 = 1.0, to¢ = 0.5) pulses and their isolines at
the different distances inside the crystalzay 6, b) z =9, ¢) z = 12.

la,(=0z=15
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Fig. 4. Spatio-temporal structure of normalized intensityhe fundamental
and second harmonic pulses and their isolines at thezexit 15 from the
crystal.
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characteristic of the compression regime, analogous to the shape of ties Stok
pulse in the compression regime [27].

Changes of the pulse shapes of instantaneous power and axial intensity in
various cross-sections along the propagation direction are preseritgd
Itis seen that the pulse shape of the second harmonic becomes stroggly,jag

P ) Pz)

t t
10=02) 10=021)

/

Fig. 5. The powerP; 5(z,t) and intensityl; 5(r = 0, z,t) envelopes of the
FH and SH pulses at the different distances inside the drysta

and the duration of the near-axial part of the FH pulse decreases cignlifi
during the amplification process. However, the duration of the instantaneou
power pulses, or, in other words, the integral pulse duration, incsehseto
formation of the ring-shaped pulse structures.

The energy conversion coefficient indicating which part of energaisstr
ferred from the second harmonic pulse to the fundamental harmonic patse w
used for the analysis of the modeling results of the fundamental harmonic
amplification:

//‘alrzt}dtrdr—//}alr,Z—Ot‘dtrdr
m(z) = .
//‘GQ'I"Z—Ot‘dtT‘dT

The energy portion remaining in the second harmonic was defined by the

(18)
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expression

/ / |as(r, z,t)|*dtrdr )

/ lag(r,z = O,t)‘thrdr.

n2(z) =

Taking into account that the initial energy of the incident pulse of the
fundamental harmonic amounted to only 0.25% of the energy of the second
harmonic pulse, the sum of these coefficients is equaj;ta- 72 = 1 in
every plane. Fig. 6 presents the changes of the energy conversfiitients
along the propagation direction. It is seen that at 15, the integral energy
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Fig. 6. Dependences of the energy conversion efficienciglsta® beam
propagation factors on the distance inside the crystal fndédmental and
second harmonic pulses.

reconversion to the second harmonic starts, i.e. the conversion effictamts

to decline. In this specific area, the quality of the fundamental harmonicgulse
characterized by the beam propagation fa¢ddg (2, t)) ~ 1.7 degrades abrupt-

ly. Definition of the propagation factors and their detailed discussion are pr
sented in [4, 27] published earlier in this journal. Therefore, we will msxtuks

this characteristic of the beams in any more details here. We shall note only
that by transmitting the beams through the centered diaphragms possessing the
Gaussian transmissiafy; (r) = Hout (7, 2)/Hin (7, 2) = exp [ — (r?/w})] of

the energy densityd (r, z) of the pulses, the beam quality can be considerably
improved, of course, with certain energy losses. However, in this daise,
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especially important that the pulses can be obtained not only with the improved
spatial structure, but with significantly shorter duration. Fig. 7 presests th
temporal shapes of the pulses propagated through the diaphragmsoofvar
radii. It is seen that at the diaphragm radiug/wip = 0.5, it transmits

1.00 T T
-- - wyw, =08, <M >=1.42,
&58%
0.75r . cww, =05, <M >=1.14,
= A &25%
& SR
= 050t} Y
ﬁ S \\
I \
- 025¢ N
0,09 AT
8.60 0.65 0.70 0.75 0.80

Fig. 7. Envelopes of the fundamental harmonic pulse pafiér = 15,t)
before (solid curve) and behind the Gaussian diaphragmiffefeht radii.

e = 25% of FH pulse energy. Taking into account that approximately 40%
of the second harmonic energy is converted into the fundamental harmonic
pulse,~ 10% of the second harmonic energy remains in the exit pulse whose
duration is approximately 1.5 times shorter than that of the incident pulse.
Consequently, a considerable energy amplification( times) is achieved
with only a slight degradation of the beam qualit4?(z,t)) ~ 1.14) and
shortening by a factor of 1.5.

4 Conclusion

As a result of the performed research, an efficient algorithm has deex-

oped for calculations of the optical parametric amplification of the fundamental
harmonic at type | phase matching, providing the possibility to optimize the
amplification process taking into account the influence of diffraction, grou
velocity mismatch and dispersion of the FH and SH pulses, with the intention
to obtain the exit pulses with the desired parameters. The specific calculations
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have demonstrated that in case when the fundamental harmonic pulse being
amplified is significantly shorter than the second harmonic pulse, the pulse
being amplified shortens noticeably at the beam axis, therefore, byasiepar

the central part of the beam by a soft diaphragm, a significant shogtefithe
fundamental harmonic pulses is possible.
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