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Abstract. The possibilities of efficient amplification and additionalshor-
tening of faster moving short fundamental harmonic pulses by the more
slowly moving longer second harmonic pulses for type I phasematching
are numerically analyzed for initially collimated axiallysymmetric beams,
taking into account diffraction, group velocity mismatch and dispersion of
the pulses.
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1 Introduction

The possibilities to compress the sum frequency pulses (in particular, the se-

cond harmonic pulses) during type II processes that are quadratic with respect

to the field variables [1]–[3] are well known (see [4] and referencestherein).

A concept of chirped pulse optical parametrical amplification (CPOPA) [5]

attracts a great deal of attention [6]–[17]. Due to complexity of the CPOPA

problem, the numerical analysis in the cited works is usually performed for

type II interaction in the plane wave approximation and neglecting the group

velocity mismatch of the pulses. The plane wave approximation does not
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Foundation within the framework of the EUREKA project EU 2359 CHOCLABII.
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enable to analyze the beam quality changes [4] during the amplification pro-

cess, and neglection of the group velocity mismatch does not provide the

possibility to correctly describe the reconversion of pulse energies during the

amplification process [18]. Also note that although the theoretical analysis of

amplification is usually carried out, as stated above, for type II interaction,

most experiments involve type I interaction because large gain bandwidth can

be realized when the OPA approaches degeneracy in type I phase matching in

the case of group velocity matching between the signal and idler pulses. There-

fore, type I phase matching is used to achieve the shortest pulses [12]. It should

be noted that the parametric amplification is experimentally implemented in

stages [7]–[12] and in each stage, the amplification saturation mode must be

ensured. It increases the overall energy efficiency and, most importantly, the

energy stability. Therefore, the numerical research of parametric amplification

during type I interaction of very short pulses of the first harmonic and the

second harmonic of even the same initial duration is an important problem.

We will stress a recently demonstrated and less known possibility that, using

the cascadedχ(2) : χ(2) processes [19] shortening of the first harmonic pulses

can also be achieved for type I interaction [20]–[26], that is unfortunately im-

plemented with low energy efficiency. On the other hand, taking into account

the group velocity mismatch, the possibility appears to efficiently amplify this

short first harmonic pulse by means of a slower and longer second harmonic

pulse. As it will be demonstrated below, the fundamental harmonic (FH) pulse

can shorten noticeably near the beam optical axis during the optical parametric

amplification in type I interaction. Therefore, analogously to the case of the

stimulated Brillouin scattering [27], significantly shortened FH pulses of good

spatial quality can be generated using soft Gaussian diaphragms.

2 Mathematical model and numerical method

The scheme of the FH pulse amplification using type I interaction is presented

in Fig. 1.

Unlike the case of the conventional second harmonic generation [28, 29],

the intense second harmonic pulse is fed to the input of the nonlinear crystal

in addition to the fundamental harmonic. The electric field of the fundamen-
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Fig. 1. The scheme of FH pulse optical parametric amplification using type I
interaction.

tal and the second harmonics (SH) pulses incident upon the crystal with the

mutually perpendicular polarizations vectorse1,2 can then be expressed in the

following form:

E(R, Z, T )

= Re
{
e1A1(R, Z, T )ei(k1Z−ω1T ) + e2A2(R, Z, T )ei(k2Z−ω2T )

}
.

(1)

Here,R = (X2 + Y 2)1/2 andZ are the transverse and longitudinal spatial

coordinates,T is the temporal coordinate,A1 andA2 are the slowly varying

complex amplitudes of these waves,k1 andk2 are their wave numbers,ω1 and

ω2 = 2ω1 are their cyclic frequencies. Dimensional equations governing the

second harmonic generation (SHG) and discussions of the expressionstaking

into account the contribution of the Kerr-type cubic nonlinearity are presented

in our paper [29]. We shall note here that the peculiarities of the cubic phase

cross-modulation of pulses in nonlinear crystals are also discussed in detail in

[20, 21]. In this work, basically the same as in [29], equations were usedfor

numerical modelling of OPA additionally taking into account the second order

group-velocity dispersion (GVD). The normalized equations for the slowly

varying amplitudes have the form
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wherea1,2 = A1,2/A0 are the slowly varying dimensionless complex am-

plitudes of the first and second harmonics normalized to the characteristic

amplitudeA0 =
√

8πI0/cn1, I0 is the normalization intensity,t = T/T0,

z = Z/Z0, r = R/R0 are the normalized independent coordinates,τ10,20 =

T1,2/T0 are the normalized initial pulse durations of the fundamental and sec-

ond order harmonics,LDS1,2 = T 2
1,2/2k′′

1,2 are the dispersion lengths,T1,2

are the durations of the pulses(T2 > T1), k′′
1,2 = ∂2k/∂ω2|ω1,2

are dispersive

spreading parameters,w10,20 = W1,2/R0 are the normalized initial beam radii,

LD1,2 = k1,2W
2
1,2/2 are the diffraction lengths,LNL = 1/

(√
σ1σ2A0

)
is the

nonlinear length,σ1,2 =
4πω1d

(I)
eff

cn1,2
is the nonlinear coupling coefficient,d

(I)
eff

is the effective nonlinear susceptibility,LK = π/∆k is the coherence length,

LPH1,2 = 1/(k1,2n̄
(1,2)
2 I0) are the nonlinear phase change lengths,n̄

(1,2)
2 are

the nonlinear refraction indices of the medium,β12,21 are the phase cross-

modulation coefficients due to the Kerr effect. For the following discussion it

is convenient to introduce the pulse walk-off lengthLGV M = T2V21 due to

group velocity mismatch (GVM)V21 =
1

V2
− 1

V1
, whereV1,2 are the group

velocities of the fundamental and second harmonic pulses (V1 > V2).

Ranges of the normalized variables are0 ≤ t ≤ tm, 0 ≤ z ≤ zm,

0 ≤ r ≤ rm . The boundary conditions for equations (2), (3) are as follows:

∂a1,2(r=0, z, t)/∂r = 0, a1,2(r=rm, z, t) = 0, a1,2(r, z=0, t) = a10,20(r, t).

Let us discuss briefly the scheme of the split-step (SS) method used for

solving the set of equations of the second harmonic and the first harmonic.It

is convenient to apply the SS method for the set of equations (2), (3) rewritten

in the following form:

∂a1

∂z
= L̂11a1 + L̂12a1 + L̂13a1 + L̂14a1, (4)

∂a2

∂z
= L̂21a2 + L̂22a2 + L̂23a2 + L̂24a2. (5)

Here, the operators on the right-hand sideL̂ij (i = 1, 2, j = 1, 2, 3, 4)

describe:

L̂i1ai = −vi
∂ai

∂t
− igi

∂2ai

∂t2
(6)
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the group velocity mismatch and dispersion,

L̂i2ai = iµi
1

r
· ∂

∂r

(
r

∂

∂r

)
ai (7)

the beam diffraction,

L̂13a1 = iγ1a
∗

1a2e
−i∆z and L̂23a2 = iγ2a

2
1e

i∆z (8)

the OPA process,

L̂14a1 = iβ1

(
|a1|2 + β12|a2|2

)
a1,

L̂24a2 = iβ1

(
β21|a1|2 + |a2|2

)
a2

(9)

the interaction of the FH and the SH due to the Kerr nonlinearity of the medium.

New notations are introduced here for convenience:

vi = Z0/ViT0, gi = k′′

i Z0/2T 2
0 , µi = Z0/2kiR

2
0,

γi = Z0/LNL, βi = Z0/2LPHi, ∆ = πZ0/LK .

When numerically solving equations (4) and (5), the medium was divided

into the layers of equal thicknessh and the finite-difference equations were

solved successively in each layer:

u1 = Λ11a
n
1 , u2 = Λ12a

n
2 ,

v1 = hu1 + Λ21u1, v2 = hu2 + Λ22u2,

w1 = hv1 + Λ13v1, w2 = hv2 + Λ23v2,

an+1
1 = Λ14w1, an+1

2 = Λ24w2,

(10)

Here,an
i , i = 1, 2 is the numerical approximation of the differential solution

after then-th layer of the mediumzn = nh, n = 0, 1, . . . , N, hN = zm,

ui, vi, wi are the interim solutions.

The finite-difference approximationsΛij of the operatorŝLij are as fol-

lows:

Λ1ia
n
i = FFT

[
FFT[an

i ]+1 exp
(
− i (viω − giω

2)h
)]−1

. (11)
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Here,FFT[ ]±1 are the forward and inverse discrete fast Fourier transform

with respect to the temporal variablet, andω is the frequency of the Fourier

spectrum;

Λ2iui =
i2µi

τ+ + τ−

(
ūi+ − ūi

τ+
− ūi − ūi−

τ−
+

1

r

ūi+ − ūi−

2

)
, (12)

whereūi = 0.5(vi+ui), u± = u(r±τ±), τ+ = rk+1−rk, τ− = rk−rk−1, rk

are the coordinates of the radial grid with the density increasing towardsr = 0:

rk = (eαRk−1)/(eα−1), k = 0, 1, . . . , K, Rk = k∆R, ∆RK = rm, α > 0

is the grid density increase ratio;

Λ13v1 = ihγ1v̄
∗

1 v̄2 exp(−i∆z̄), (13)

Λ23v2 = ihγ2v̄
2
1 exp(i∆z̄), (14)

wherev̄i = 0.5(wi + vi), z̄ = z + 0.5h and

Λ14w1 = w1 exp
(
iβ1

(
|w1|2 + β12|w2|2

)
h
)
, (15)

Λ24w1 = w2 exp
(
iβ2

(
β21|w1|2 + |w2|2

)
h
)
. (16)

In order to increase the accuracy of the numerical method to the second order,

symmetric SS scheme (8) was applied, when finite-difference equations (10)

are solved in opposite order in the adjacent layers.

3 Modeling results

When modeling the second harmonic generation and the fundamental har-

monic amplification processes, the amplitude envelopes of the input FH and

SH pulses possessed the Gaussian transverse distribution and the Gaussian

temporal envelope and plane wavefront:

aj(r, z=0, t) = aj0 exp
(
−r2/w2

j0−2 ln 2(t−tjC)2τ2
j0

)
, (j = 1, 2), (17)

whereaj0 = |aj0| exp(iϕj0) are the normalized amplitudes of the FH and SH

pulses,ϕj0 are the input phases,wj0 are their normalized radii at the level

of 1/e2 of the peak intensity,τj0 are the normalized pulse durations of the
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harmonics at half the peak intensities,tjC are the moments of appearance of

the pulse peaks.

A KDP crystal with the group velocity mismatchV21 ≈ 77 fs/mm and

the nonlinear refraction index̄n(1,2)
2 ≈ 0.27 × 10−19 m2/W for λ1 = 800

andλ2 = 400 nm were selected for modeling. These and other data necessary

for calculations were taken from the monograph [28]. The pulse durations

were selectedT1 = 50 fs andT2 = 200 fs, so that the influence of the group

velocity mismatch on the efficiency and quality of the amplified FH pulse

could be investigated. The temporal normalization constant was selected to

be T0 = 1000 fs, due to considerations of the graphical representation of

the calculation results, and the longitudinal normalization constant wasZ0 =

V2T0. The radii of Gaussian beams of the harmonics were large enough (∼
1 cm), therefore, the effect of the beam diffraction on the amplification process

was insignificant. The diffraction terms with transverse Laplacians were still

taken into account exactly in the equations, to be able to calculate precisely the

changes of the beam propagation factors [4, 27, 29]. The calculation results

presented below were obtained for the intensities of second harmonic for which

the relationZ0/LNL = 0.5 was satisfied. The input phases of pulses were

setϕ10 = 0 andϕ20 = π/2 for the effective amplification of fundamental

harmonic. Note as well that, although the developed algorithm and the pro-

gram, as follows from the above, provide the possibility of calculations taking

into account the Kerr nonlinearity, utilization of longer and consequently less

intense pulses of the second harmonic reduces this influence. Therefore, in this

work, the results that have been obtained without taking into account the phase

self- and cross-modulation of the pulses are presented.

By changing the pulse delaytjC , the energy efficiency of the amplification

process or the temporal pulse compression can be optimized. Fig. 2 presents

the results of pulse propagation calculations in the absence of interaction. It

is seen that the propagating SH pulse (a20 = 1.0, t2C = 0.5) to which the

coordinate system is fixed remains virtually unchanged due to diffraction and

dispersional spread. At the same time, a shorter and faster FH pulse, initially

delayed byt1C = 0.6, runs practically through the entire SH pulse and spreads

only slightly due to the influence of the medium dispersion, since the influence
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Fig. 2. The FH pulse propagation through the SH pulse due to the group
velocity mismatch taking into account dispersion of the pulses at different
planes along propagation: curve 1 (z = 0), curve 2 (z = 3), curve 3 (z = 6),

curve 4 (z = 9), curve 5 (z = 12), curve 6 (z = 15).

of diffraction is insignificant, the same way as for the SH pulse. Note that in

this figure, the modules of the complex amplitudes that usually give a picture of

finer details of changes of the spatio-temporal shape are presented. However,

in this case, due to smallness of both the FH amplitude itself, as well as the

smallness of the dispersional spreading, its changes are difficult to make out.

Only in the figure of larger scale, it can be noticed that the pulse at the exit from

the medium (curve 6,z = 15) is slightly lower than the pulse at the entrance

to the medium (curve 1,z = 0).

Changes of the spatio-temporal intensity distributions of the FH and SH

during the amplification process in various cross-sections of the crystal are

presented in Fig. 3. It is seen that the intensity of the first harmonic grows by

a large factor, while significant reduction of the pulse duration on the beam

axis begins as the energy reconversion from the trailing part of the pulseinto

the second harmonic starts. It is worth noting, however, that initially only the

energy redistribution within the pulses takes place, while the integral energy

of the pulse being amplified grows. As the pulses propagate further, integral

energy conversion from the first harmonic to the second harmonic begins.

Fig. 4 depicts the pulse structure exactly at the beginning of this stage. It

is seen (Fig. 4) that the secondary peak in the second harmonic increased

noticeably during reconversion, and the first harmonic pulse assumed theshape
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Fig. 3. Spatio-temporal structure of normalized intensityof the FH(a10 =
0.1, t1C = 0.7) and SH (a20 = 1.0, t2C = 0.5) pulses and their isolines at

the different distances inside the crystal: a)z = 6, b) z = 9, c) z = 12.
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characteristic of the compression regime, analogous to the shape of the Stokes

pulse in the compression regime [27].

Changes of the pulse shapes of instantaneous power and axial intensity in

various cross-sections along the propagation direction are presented inFig. 5.

It is seen that the pulse shape of the second harmonic becomes strongly jagged,

z

t

t

I
1
(r=0,z,t)

P
1
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z

t

t

z

I
2
(r=0,z,t)

z

P
2
(z,t)

Fig. 5. The powerP1,2(z, t) and intensityI1,2(r = 0, z, t) envelopes of the
FH and SH pulses at the different distances inside the crystal.

and the duration of the near-axial part of the FH pulse decreases significantly

during the amplification process. However, the duration of the instantaneous

power pulses, or, in other words, the integral pulse duration, increases due to

formation of the ring-shaped pulse structures.

The energy conversion coefficient indicating which part of energy is trans-

ferred from the second harmonic pulse to the fundamental harmonic pulse was

used for the analysis of the modeling results of the fundamental harmonic

amplification:

η1(z) =

∫∫ ∣∣a1(r, z, t)
∣∣2dtrdr −

∫∫ ∣∣a1(r, z = 0, t)
∣∣2dtrdr

∫∫ ∣∣a2(r, z = 0, t)
∣∣2dtrdr

. (18)

The energy portion remaining in the second harmonic was defined by the

48



Numerical Analysis of Short Pulse Optical Parametric Amplification

expression

η2(z) =

∫∫ ∣∣a2(r, z, t)
∣∣2dtrdr

∫∫ ∣∣a2(r, z = 0, t)
∣∣2dtrdr

. (19)

Taking into account that the initial energy of the incident pulse of the

fundamental harmonic amounted to only 0.25% of the energy of the second

harmonic pulse, the sum of these coefficients is equal toη1 + η2
∼= 1 in

every plane. Fig. 6 presents the changes of the energy conversion coefficients

along the propagation direction. It is seen that atz ∼ 15, the integral energy
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Fig. 6. Dependences of the energy conversion efficiencies and the beam
propagation factors on the distance inside the crystal for fundamental and

second harmonic pulses.

reconversion to the second harmonic starts, i.e. the conversion efficiency starts

to decline. In this specific area, the quality of the fundamental harmonic pulses

characterized by the beam propagation factor〈M2
1 (z, t)〉≈1.7 degrades abrupt-

ly. Definition of the propagation factors and their detailed discussion are pre-

sented in [4, 27] published earlier in this journal. Therefore, we will not discuss

this characteristic of the beams in any more details here. We shall note only

that by transmitting the beams through the centered diaphragms possessing the

Gaussian transmissionTG(r) = Hout(r, z)/Hin(r, z) = exp
[
− (r2/w2

G)
]

of

the energy densityH(r, z) of the pulses, the beam quality can be considerably

improved, of course, with certain energy losses. However, in this case,it is
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especially important that the pulses can be obtained not only with the improved

spatial structure, but with significantly shorter duration. Fig. 7 presents the

temporal shapes of the pulses propagated through the diaphragms of various

radii. It is seen that at the diaphragm radiuswG/w10 = 0.5, it transmits
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.)
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Fig. 7. Envelopes of the fundamental harmonic pulse powerP1(z = 15, t)
before (solid curve) and behind the Gaussian diaphragms of different radii.

ε = 25% of FH pulse energy. Taking into account that approximately 40%

of the second harmonic energy is converted into the fundamental harmonic

pulse,∼ 10% of the second harmonic energy remains in the exit pulse whose

duration is approximately 1.5 times shorter than that of the incident pulse.

Consequently, a considerable energy amplification (∼ 40 times) is achieved

with only a slight degradation of the beam quality (〈M2
1 (z, t)〉 ≈ 1.14) and

shortening by a factor of∼1.5.

4 Conclusion

As a result of the performed research, an efficient algorithm has beendevel-

oped for calculations of the optical parametric amplification of the fundamental

harmonic at type I phase matching, providing the possibility to optimize the

amplification process taking into account the influence of diffraction, group

velocity mismatch and dispersion of the FH and SH pulses, with the intention

to obtain the exit pulses with the desired parameters. The specific calculations
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have demonstrated that in case when the fundamental harmonic pulse being

amplified is significantly shorter than the second harmonic pulse, the pulse

being amplified shortens noticeably at the beam axis, therefore, by separating

the central part of the beam by a soft diaphragm, a significant shortening of the

fundamental harmonic pulses is possible.
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