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Abstract. The Bertalanffy-Richards growth model is employed morantha
any other models for forest growth and yield modelling. Heareits fea-
tures have not completely been recognised. As a resultnaésatanding of
the model still appears in some papers published in foreshfds. A study
by [1] is cited here as an evidence of the misunderstandihg. Japer tries
to explain different features of the Bertalanffy-Richagdswth model based
on the different conditions of the allometric parameter artbduces an
assessment software to easily get the partial derivatiitbsr@spect to each
parameter when more complex techniques (e.g., the Martjuaethod)
are employed to estimate parameters of any nonlinear modibis paper
indicates that [1] study appears some unreasonable eddaiaonlinear
growth models from a forestry perspective.

Keywords: feature, Bertalanffy-Richards, nonlinear analysis, ghomodel,
forestry.

1 Introduction

Many nonlinear theoretical models (e.g., the logistic, the Gompertz, the Ber-
talanffy-Richards and the Schnute models) rather than empirical models (e.g
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polynomial model) have been used to model forest growth and yield and tree
height-diameter relationships (e.g. [2]—-[6]) because theoretical moaabsam
underlying hypothesis associated with cause or function of the phenemeno
described by the response variable [7]. However, empirical models &sic
polynomial equations were not considered as modeling nonlinear growth an
yield in forestry because they are devoid of any biological interpretatioh a
do not have meaningful parameters from a forestry perspectiveetmdtical
models, the Bertalanffy-Richards (or Chapman-Richards) growth mwatel
been commonly used historically for modeling forest growth and yield. This
model, valued for its accuracy, has been employed more than any otleer fun
tions in studies of tree and stand growth [5]. So far, about 90% of thetlitera
consulted has utilized this model in forest growth and yield [8]. However, th
mathematical features and the growth performance of the BertalanffyaiRligh
growth function have been not fully understood and there have still existe
some unclear conceptions for the growth function. For instance, whistber
Bertalanffy-Richards function has a point of inflection or not and appe
sigmoid or concave curve shape. The study by [1] is a useful contribtdio
nonlinear growth models. Their study was based on deriving the partighee
tives of the nine well-known nonlinear growth models because the Mattjuar
iterative method [9] was employed to fit the parameters of the growth mo-
dels, and gave the method of parameter estimation using experimental height
growth data and the features of the nonlinear models. However, we believe
that there are some limitations that need to be discussed, in particular, the
features of the Bertalanffy-Richards growth model and the partialatere

of nonlinear growth models. In this paper, we discuss the features of the
Bertalanffy-Richards growth model and examine the evidences anthargs

of the Bertalannffy-Richards growth model presented by [1].

2 Featuresof Bertalanffy-Richards growth model

From a forestry perspective, [1] indicated that the negative expiahemono-
locular and the Mithcherlich growth models have no points of inflection and
are not sigmoid shape, while the Gompertz, logistic, Chapman-Richards (or
Bertalanffy-Richards), Richard’s and the von Bertalanffy growth elethave
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points of inflection and are sigmoid. This is a misunderstanding of the Chap-
man-Richards growth model because whether the growth model possesse
point of inflection or not mainly depends on the allometric parametern
other word, whether the growth model demonstrates an sigmoid or concave
curve shape is based on the different conditions of the allometric parameter
m. Some features of the Bertalanffy-Richards growth model will be discliss
on the basis of the conditions of allometric parametem order to clarify
whether the growth model possesses a point of inflection or not (i.g., sigmoid
or concave curve).

According to [10] and [11], the simplest assumption leading to limited
growth is that the growth rate is proportional to the current gjzethat is:

Y — ko -y )

wherey is any variablet is time, k and« are constants.
Much greater flexibility is obtained by substituting a power transformation,
yY, fory:
dy®
dt
If the derivative on the left-hand side (LHS) of equation (2) is calculated
equation (2) can be rewritten as follows:

= k(a® —y"). )

d
va—l_y _ k(av o yv)’

o
a =) -1
or
% =ny™ —ry (3)

v

wheren = ka
Equationv (3) is the Bertalanffy-Richards growth rate (differential) equa
tion. The integral forms of equation (3) describe the size as an expliat fun
tion of age and can provide additional information about growth patterns.
Moreover, we found that there are many different solutions and fesfuom

,m=1—uv, r==k/v.
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equation (3), which depend on the parametars; andr. Under the initial
conditiony = yo att = 0 in equation (3), the solutions and features are
respectively.

Form > 1, nandr < 0; 0 < m < 1, pandr > 0andm < 0, n and
r > 0, the integral form of equation (3) is:

y = A[1 — Bexp(—kt)] (1/(1=m)) 4)

where A is an asymptote value of the responseB is a biological constant,
k is related to proportional of andm is a shape parameter of the growth
curve (or an allometric constant), respectively. The relations betweenates
A= (nfr)V0=m) B — (5 — b= (/) andk = (1 — m)r.

Form < 0, n > 0 andr < 0, and making”’ = —r, the integral form of
equation (3) is:

y = A/(B/ek’t - 1)(1/(1—m)) (5)

_ Yo\ 1)
whered’ = (n/r")1/0=m) B =1 4 = , K =1"(1—m).

Whenm < 1, n andr > 0, the integral equation (4) possesses a sigmoid
curve with an upper asymptote(or y~,) and an inflection pointts, ys) which
is obtained byi?y/dt?> = 0, and intersect the time axis at age This curve
represents the classical growth situation which is widespread in biology and
forest growth modelling (e.g. [2], p. 6-8).

Whenm > 1, n andr < 0, equation (4) has an S-shaped curve again.
Unlike the above growth situation, however, the curve has a lower asymptote
(yo) ast — 0 besides having an upper asymptdtéor y.,) and an inflection
point (t5, ys). This curve is often seen in forest growth modelling. The above
two types of curves start at a fixed poitty; 0) or (0, y)) and increase their
instantaneous growth rates monotonically until an inflection point is reached;
after this the growth rates decrease to approach asymptotically some fireal va
as determined by the genetic nature of the living organism and the carrying
capacity of the environment.

Whenm < 0, n andr > 0, equation (4) possesses an upper asympiote
(or y~) and cross the time axis, but it has no inflection poiptys). The case
of m < 0 contradicts earlier papers (e.g. [12], p. 1989), which concluded that
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m > 0 in equation (4) defines a subset of realistic solutions satisfying basic
requirements for growth curves. Actually, a curve for the case m<Oeasdd

to simulate growth for fast-growing trees. This curve form has been widely
used to fit fast-growing young eucalypt trees in forest growth (e 3}, L 44)

and to describe the law of diminishing returns in agriculture and economics
[5]. The curve is rapid at an initial period and the instantaneous growghiga
monotonically decreasing to approach asymptotically some final value.

Whenm < 0, n > 0 andr < 0, equation (5) does not possess an
asymptote, but an inflection poifits, y5) is present and the curve does in-
tersect the-axis. In this case, an initial period of decelerated growth starts
atty and then continues later with an indefinite period of accelerated growth.
Such a curve may be uncommon in forest growth modelling, but may be seen
when competition inducing mortality occurs to the extent that dbh growth
for residual trees accelerates (e.g. [14], p. 792-793). This ceserides
unlimited growth as age increases. Generally speaking, it contradictsrtree o
stand growth, which tends to a certain finite value as age increases. éfowev
there also is strong evidence that growth volume per hectare in even-aged
stands is not asymptotic [15].

It can be seen from the above analysis that the parametshould be
greater than zero when modelling forest growth. It is possible to modestfor
growth using the Beterlanffy-Richards function with < 0, but in this case
should be greater than zero.

To derive special cases of the Bertalanffy-Richards growth modetem
(2) can also be expressed as follows:

62—1: = —kw (6)
where the power transformation is used:

(y* —av)/v for v #0,
In(y/«) for v=0.

(7)

This continuous family depends on a single paramei@r m). Whenv = 0
(orm = 1), the Gompertz model can be obtained from equation (7):

Y = aexp [ — Cexp(—k:t)] (8)
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whereC is constant of integration or biological constamtis the value of the
asymptote and is a growth rate related parameter.

Whenv = —1 (m = 2) andv = 1 (m = 0), the logistic model and the
monomolecular model can also be obtained from equation (7). They are as
follows, respectively:

y=a/[1+ Cexp(—kt)], (9)
y = a+ Cexp(—kt) (10)

whereC, « andk are as previously defined. The Gompertz and the logistic
models have an asymptote, intersgeixis, and their inflection points are/e
anda/2, respectively. The monomolecular model possesses only an asymptote
and intersects the time axis. The Bertalanffy-Richards growth model has the
features of flexibility and versatility based on different allometric parameter
Thus, it can demonstrate different curves and the special cases sowth g
models can not demonstrate.

However, [1] concluded that “the Gompertz, logistic, Chapman-Richards
Richard’s, and the von Bertalanffy growth models have points of inflection
and are sigmoid. These models are suitable for quantifying a growth phe-
nomenon that exhibits a sigmoid pattern over time”. As analysed above, that
the Bertalanffy-Richards function possesses the sigmoid or concape shr-
ve depends on the allometric parameter and therefore the function may
demonstrate the sigmoid with inflection point or the concave curve shape. In
fact, from many publications the Bertalanffy-Richards model is suitable not
only for quantifying a growth phenomenon that exhibits a sigmoid pattern over
time, but also for quantifying a growth phenomenon that exhibit a concave
pattern over time.

3 Partial derivatives of nonlinear growth models

Estimates of nonlinear models are more difficult than that of linear models
and the solutions are determined iteratively. [16] and [17] gave the detailed
discussion of nonlinear growth models. The simple method of iterative estima-
tion, the Gauss-Newton method, can be employed and the resulting parameter
estimates are unbiased, normally distributed, minimum variance estimators. If
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the model does not behave in a near to linear fashion, the parameter estimates
will not have these desirable properties and more complex estimation tech-
nigues such as Marquardt method may be necessary [7, 16]. Theudtdtq
iterative method requires specification of the names and starting values of
the parameters to be estimated, expressions for the model, and the partial
derivatives of the model with respect to each parameter [18]. The method
is a compromised approach between the linearization (e.g., Gauss-Newton)
method and the steepest decent method and appears to combine the-best fea
tures of both while avoiding their most serious limitations [19]. In such cases,
the use of partial derivative rather than computational approximatioralyisu
results in more efficient and more precise parameter estimation. Therefore,
[1] derived and provided the partial derivative of the nine nonlingawgh
models for estimating the parameters of these models using SAS program
from a forestry perspective. As [5] mentioned, there are many equatiar

can describe plant growth. Therefore, many partial derivatives weipect

to parameters of different models should be required to estimate nonlinear
models in forestry science. Apparently, the study of [1] has not met this
demand of a large of models where one needs comparing and selecting the
best one to be used in forest growth and yield modelling. In fact, however
JMP statistic software [20] can provide parameter partial derivativempf
nonlinear models with precise and convenient for foresters. The geftwa
easily accesses partial derivative formulas of each parameter asdtcsy the
requirement of partial derivatives with respect to each parameter fitting
nonlinear growth models using SAS syntax. Please refer to the Nonlinear Fit
of [20] concerning the software application. That means, it is not sacg$o
develop the parameter partial derivatives for estimating nonlinear models.

4 Conclusions

The Bertalanffy-Richards growth model has been widely employed irsfore
growth and yield modelling for long time. However, some foresters have not
completely recognised the features of the model from a theoretical point of
view so that the model would be considered to demonstrate only S-cunve sha
with an inflection point. We have shown that the Bertalanffy-Richards tjrow
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model possesses not only the S-curve but also the concave curvéchnaehl
pends on the allometric parameter Better understanding of the Bertalanffy-
Richards growth model features is very important for modelling forestigro

and yield and thus foresters can use the model correctly and effectiviitl -

curve with an inflection point or concave curve. We have also indicaté¢ththa
partial derivatives with respect to each parameter should be used totestima
parameters of nonlinear models when more complex techniques are employed
in which the techniques can deliver more efficient and more precise pame
estimation. The parameter partial derivatives of different nonlinear lecde

be obtained in JMP software to fit any nonlinear growth models. Thus isee

to be not necessary to develop partial derivatives of any nonlineavtiyr
models for estimating parameters of the models when using more complicated
methods such as the Marquardt.
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