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Abstract. We present here a numerical study of laminar doubly difisiv
free convection flows adjacent to a vertical surface in alsttermally
stratified medium. The governing equations of mass, momen&nergy
and species are non-dimensionalized. These equationdbbawesolved by
using an implicit finite difference method and local non-isamity method.
The results show many interesting aspects of complex ictieraof the two
buoyant mechanisms that have been shown in both the talmlaelhas
graphical form.
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1 Introduction

Many free convection processes occur in environments with temperatate s
ification. Good examples are closed containers and environmental clamber
with heated walls. Also the free convection flow associated with heat-rejection
systems for long duration deep ocean power modules where the ocdan env
ronment is stratified, (Yang et. al., [1]). Stratification of fluid arises due to
temperature variations, concentration differences or the presencteoéokt
fluids. Cheesewrit’s [2] work and also of Yang et. al. [3] showed timatlar
solutions were not possible. This fact is supported by Eichhorn [4]tand
Fuijii, et. al. [5] and therefore they developed series solutions to acdount
the nonzero leading edge temperature difference. Eichhorn [4] hadatad
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only three terms in the series solution. On the other hand Fuijii, et. al. [5]
gave both analytical and experimental results for a temperature stratifigation
which the ambient temperature distribution varies with distance. In the above
investigation they also showed that the fourth term in the series solutions are
necessary for comparing the experimental results. The experimenttidemd
retical study in which both the wall temperature and the ambient temperature
varied with a power of the distance along the plate was carried out by Hiau [6
His experimental temperature distributions compare well with his theoretical
results; in order to make the comparison, the author had to use a nonzero
starting length of the surface. Later Chen and Eichhorn [7] considefiaite
isothermal vertical plate in a stable thermally stratified fluid. The experimental
results of their paper have represented clear information on heaterdnsf

a vertical cylinder in water for both the unstratified and the stratified cases.
Kulkarni, et. al. [8] investigated the problem of natural convection fram a
isothermal flat plate suspended in a linearly stratified fluid medium using the
Von-Karman-Pohlhausen integral solution method.

The case of non-similar laminar natural convection from a vertical flat plate
placed in a thermally stratified medium was studied by Venkatachala and Nath
[9]. For getting the desired results they used implicit finite difference scheme
developed by Keller and Cebeci [10]. They also used the perturbagitess
expansion and local non-similarity methods.

Gebhart and Pera [11] presented similarity solutions and investigated the
laminar stability of natural convection flows driven by thermal and concen-
tration buoyancy adjacent to flat vertical surfaces. They also pedem
excellent summary of this class of doubly diffusive natural convectiara P
and Gebhart [12] extended their previous work flows from horizaehces.

In the above studies the effect of stable ambient stratification on heat and
mass transfer was not considered. In the cooling ponds, lakes, salds pnd
atmosphere a stable thermal stratification in the ambient is usually present. A
numerical study of the double-diffusive natural convection flow adjatea
vertical surface in a thermally stratified ambient was presented by Angirasa
and Srinivasan [13]. They used the boundary layer approximationhfor
problem. For solving the conservative equations of mass, momentum, energy
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and species they used an explicit finite-difference scheme.

In this paper the conservative equations of mass, momentum, energy and
species have been solved by using implicit finite-difference scheme aald loc
non-similarity method. The results show many interesting aspects of complex
interaction of the two buoyant mechanisms that have been shown in both the
tabular as well as graphical form.

2 Formulation of the problem

Let us consider the two dimensional steady boundary layer flow, heestféra
and mass transfer of a viscous incompressible fluid along an isotherriehizer
finite plate immersed in a stable thermally stratified fluid. The coordinate
system and the flow configuration are shown in Fig. 1.

A
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Fig. 1. The flow configuration and the coordinate system.
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Using Boussinesq approximations, we obtain the following mass, momen-
tum, energy and species conservation equations for laminar flow adfacent
flat vertical surface.
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with the boundary conditions

u=v=0, t=t, at y=0, 5)
u=0, t=txz, C=Cxop aAS Y — 00
wherew and v are thex- and y-components of the velocity field, respec-
tively, g is the acceleration due to gravity; is the volumetric coefficient of
concentration. Here the volumetric coefficient due to temperaturaist be
positive buts* may have either sign. If the molecular weight of the species is
higher than the solution the#* is positive and vice versa. Hence we see in
equation (2), the two buoyant mechanisms aid each other when the quantities
B(tw — teo) and f*(c, — coo) have opposite signs and oppose each other
when they have the same sign,, is the temperature of the wall and, ,
is the ambient temperature of the fluid,, — c is the difference between
species concentration of the boundary layer and the ambient concemntratio
« is the thermal diffusivity andD is the molecular diffusivity of the species
concentration.

The non-dimensional variables can be written as follows:

. gﬂAto 1/3 . gﬁAto 1/3
X-x( v2 ) ’ Y—y( v2 > ’
u v
= V=—-u— 6
(vgBAL)/3’ (vgBAtL)/3’ ©)
T t—toow7 c— C— Coo,0
tw — too,O Cw — C0,0

whereAty =ty — too,0 (teo,0 IS CONstant).
The non-dimensional conservative equations are then obtained as

ou oV
ox "oy = )
ou ou  9*U
or or 1 9°T
Vax tVoy TV = prave ®)
2
;90,00 _ 1 9% (10)

X ' 9Y  Scov?
whereB = *(cy — o)/ B(tw — tso) is defined as the buoyancy ratio asic=
(1/Atp)dt~ /dz as the thermal stratification parametdtr is the Prandtl
number defined by /a andSc is the Schmidt number defined by D.
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We obtain the boundary condition for temperature at the wall in non-di-
mensional form as follows:

T — tyw — too,z -1 _ too,m - too,()' (11)
tw - too,() tw - too,O
Sincet ; is a linear function
1 disoy
T=1—— X=1-5X. 12
Aty dX (12)

For linear thermal stratificatiof is constant and for other variation it can be
represented as a function &f. The boundary conditions (5) then become
U=V=0, T=1-5X at Y =0,
U=T=C—0 as Y — 0.
Equation (7)—(8) subject to the boundary conditions (13) had beestinve
gated by Angirasa and Srinivasan [13] employing the explicit finite diffeee
method.

(13)

3 Transformation of the equations

Let us consider the following transformations
V=X, n=YXT

(14)
wherey is the stream function, defined by
_ 9y oY
U_é?—Y and V__G—X (15)

which satisfies the equation of continuity (5). In (14),6 and ¢ are the
non-dimensional stream function, temperature and concentration fusction
respectively and is the pseudo-similarity variable.

Applying the above transformations we get the following non-similarity
equations:

f”/‘f‘ fo// f/2 +9 B¢ X( a_f o //3_{() (16)

ie” + §f9’ _SXf = (f 96 _ 9'5}’;) (17)
" 3 8925 8f

¢ + 4f¢ X( X a_X> (18)
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with boundary conditions

FX,0) = f(X,00=0, 6(X,0)=1-5X, ¢(X,0)=1,

(19)
F(X,00) = 6(X, 00) = ¢(X, 00) = 0.

In the present investigation we integrate the set of equations (16)—(19)
employing two methods; namely the implicit finite difference method together
with the Keller-box elimination techniques and the local non-similarity method.
The methods of solution are discussed in the following sections.

Once we know the values of, 8 and ¢ and their derivatives, we may
calculate the values of the quantities of physical interest such as the local
Nusselt numberNu, and the local Sherood numbg#h, from the following
relations againsk, the axial distance along the surface of the plate measured
from the leading edge.

The local Nusselt number is

Nu, = — X349 (Y, X). (20a)
The local Sherood number is

Shy = —X%4¢/ (Y, X). (200)

4 Methods of solution

In the present investigation we shall integrate the equations (16) to (9) fo
all values of X by implicit finite difference method as well as the local non-
similarity method.

Implicit finite difference method (FD). For all X, here we propose to
integrate the local non-similarity partial differential equations (16)—(18) s
jected to the boundary conditions (19) by implicit finite difference method
together with Keller-box elimination technique, which was first introduced by
Keller [14]. To begin with the partial differential equations (16)—(18 first
converted in to a system of first order equations. Then these equat®ns a
expressed in finite difference forms by approximating the functions and the
derivatives in terms of the center difference. Denoting the mesh points in the
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X, n-plane byX; andn; wherei = 0,1,...,M andj =0,1,2,3,..., N cen-

tral difference approximations are made, such that those equationsinyalv
explicitly are centered &tX;_;/2,7;_1/2) and the remainder dtX;,n;_,2)
wheren;_/, = (n; — n;—1)/h; etc. This results in a non-linear difference
equation for the unknowns &f; in terms of their values ak; ;. To solve
resulting equations, Newton’s iterations technique together with Keller-box
method is then introduced. Recently this method has been discussed in more
detailed and was used efficiently by Hossain et. al. [15] in studying the
effect of oscillating surface temperature on the natural convection flom f

a vertical flat plate. To initiate the process with = 0, we first prescribe

the profiles for the functiong, f/, f/” and 6,6’ and ¢, ¢’ obtained from the
solution of the equations (16)—(19) by puttidig= 0. These profiles are then
employed in the Keller-box scheme with secondary accuracy to march step
by step along the boundary layer. For a giv€nthe interactive procedure is
stopped to get the final velocity, temperature and concentration distributions
when the difference in computing the velocity, the temperature and the species
concentration in the next procedure becomes less than, i.e. [0f!| <

10~° where the subscript denotes the number of iterations. Throughout
the computations, instead of using equal grid in#hdirection, non-uniform

grids have been incorporated considering- sinh(j /7). This consideration

has saved a lot of computational times and on-board memory space. In the
computations, the maximum, ranged up to 25.0X ranging from 0.0 to
100.0.

Local non-similarity method (LNS). The local non-similarity method
was developed by Sparrow and Yu [16] and has been applied by magsr inv
tigators, for example Minkowycz and Sparrow [17], Hossain [18], tiveso
various non-similar boundary layer problems. This method embodies two
essential feathers. First the non-similar solution at any specific streaen wis
location is found (i.e. each solution is locally autonomous). Second, the local
solutions are found from differential equations. These equationsecaanlted
numerically by well-established techniques, such as forward integratign (e
a Rungr-Kutta scheme) in conjunction with a shooting procedure to determine
the unknown boundary conditions at the wall. The method also allows some
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degree of self-checking for accuracy of the numerical results.

In the local non-similarity method, all the terms in the transformed conser-
vation equations are retained, with thé derivatives discussed by the new
functions f; = 0f/0X, 61 = 00/0X, ¢1 = 0¢/0X. These represent
three additional unknown functions, therefore it is necessary to écitiuee
further equations to determine tlig 6, and¢;. This is accomplished by cre-
ating subsidiary equations by differentiation of the transformed contsenva
equations and boundary conditions (i.¢., 61 and ¢; system of equations)
with respect taX. The subsidiary equations fgi, #; and¢; contain terms
0f1/0X, 00,/0X, 0¢1/0X and theirn derivatives. When these terms are
ignored the system of equations ffirf, ¢, f1, 61 and¢; reduces to a system
of ordinary differential equations that provides locally autonomous saisitio
in the stream wise direction. This form of the local non-similarity method is
referred to as the second level of truncation, because approximatensde
by dropping terms in the second level equation.

To carry the local non-similarity method to the third level of truncation,
all terms are retained in both thé 6, ¢ and fi, 61, ¢; equations. The
X derivatives appearing in thé, 6, and ¢; are disguised by introducing
fo=0f1/0X = 0%f/0X?, 05 = 0601/0X = 0%0/0X?, p3 = 0¢1/0X =
0%¢/0X?. The f1, 6, and¢; and their boundary conditions are then differen-
tiated with respect t&X to obtain three additional equations for the functions
f2, 02 and¢9. In these new equations, terms involviag,/0X, 062/0X,
Jd¢2/0X and theiry derivatives are deleted, so that once again a locally au-
tonomous system of ordinary differential equationsffof, ¢, f1, 61, @1, fo,
f,, andg, can be derived.

The procedure as described above in the formulation of the local non-
similarity method can result in a large number of ordinary differential equa-
tions that may require simultaneous solution. For example, at the third level of
truncation there will be nine equations involviig 8, ¢, fi, 01, ¢1, fo, 02,
and ¢,. It is expected that the accuracy of the local non-similarity method
results will depend upon the truncation level. Below we give only the equsation
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valid up to the third level of truncation:

mo S e Lo _ /af, nOf
P =S 0= Bo = X (f g — 115 ). (21)
Loy 3. ;- , 00 , Of
S0+ L0 - SX [ = X (1o -0 2L, (22)
0 0
s 4o =x(f o8 ¢ o), (29
3 7
i+ fo{/ + Zf”fl —2f'fi + 61— B¢
=X(f'fo+ 2= " f2 = 1), (24)
S g e - S S
= X (f101 + f'02— 0" fo — 01 f1), (25)
7
SO I LR~ [
= X(f'¢2 + f1¢h — &' fo = d1L11), (26)
7
Yk SR LR S o= 37 4 62— Boy
= XL+ 2015 = 20 o = L1, 27)
S O 0+ — 20— 2f{0h — 2SF{ — SX f}
= X210+ fi61 — 260,12~ 0o ), (29)
3 7 1
SO IO LR+ a0 — 26— 210
= X(2f{62+ fobr — 20} o — Bh11). (29

The boundary conditions are
f(X,0)=f(X,0)=0, 6(X,0)=1-S5X, ¢(X,0)=1,
fi(X,0) = f1(X,0) = f2(X,0) = f3(X,0) =0,
01(X,0) = =5, 02(X,0) = ¢1(X,0) = $2(X,0) =0, (30)
f'(X,00) = fi(X,00) = f3(X,00) =0,
01(X, 00) = 02(X,00) = ¢1(X, 00) = $2(X,00) = 0.
At the third level of truncation, equations (28)—(29), the terms with

0f2/0X, 005/0X, 0pa/0X have been neglected. It can be seen that equa-
tions (21)—(30) form a coupled linear system of ordinary differentialetions
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taking as a parameter. Equations (21)—(30) are solved numerically, employ
ing the sixth order implicit Runge-Kutta-Butcher initial value problem solver
along with Nachtsheim-Swigert iteration technique. Here, solutions are ob-
tained, up to the third level of truncation, for different valueSofindPr and

with X from zero to 10. Results for surface heat transfer and mass transfer
are given in the following Table. Comparison between the non-similarity
solutions and the finite difference solutions shows that consideration of the
above equations up to the third level of truncation is sufficient for theeptes
case.

5 Results and discussions

In this present problem two distinct solution methodologies, namely, (i) the
finite difference method together with the Keller-box method fogl(ii) the
local non-similarity method for alK, have been applied to integrate the mo-
mentum, energy and concentration equation (16)—(19). Computed resigts th
obtained in terms of the local Nusselt number and local Sherood number are
shown in tabular form. In Table 1 the numerical values of local Nusselt Bumb
and local Sherood number for = 0.7 and 7.0 andsc = 0.7 and 100 against
X which are found by finite difference method and local non-similarity method
has been shown. We observe that with the increasg,dfoth local Nusselt
number and local Sherood number are increasing. For increasings\aiue
Schmidt numbefc, both Nusselt number and Sherood number increase. In
the present investigation, we have considered the maximum valXetofbe
100 because for higher values &f laminar flow may not be valid. We see
that forS = 0.01, the ambient temperature is equal to the wall temperature at
X =100. If S > 0.01, the temperature of a portion at the top of the surface
will be less than the ambient.

In Fig. 2a the velocity profiles are shown f&r = 100 andPr = Sc = 0.7
for various values of the stratification parameierS = 0 indicates that the en-
vironment is unstratified. We have chosBn= —2 for the two buoyancies aid
each other. An increase in ambient thermal stratification invariably dexgyeas
the velocity profile. The temperature profile’dat= 100 are shown in Fig. 2b
for Pr = Sc = 0.7 and for the same values Sfas above. If thermal stratifica-
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Table 1. Numerical values of the Local Nusselt number andalLeherood

number for different values of the Prandtl numiberand Schmidfc

Pr = 7.0 andSc = 100.0

Pr=0.7andSc = 0.7

Local Nusselt Number

Local Sherood Number

Local Nusselt Number

Local Sherood Number

X FD LNS FD LNS FD LNS FD LNS
0.0 %) 00 %) %) 00 00 00 00
0.2 0.23983 02275 Q70224 Q7061 0.14131 01424 Q14131 01461
0.4 0.40334 03827 118103 11875 0.23766 02395 Q23766 02457
0.6 0.54669 05187 160077 16096 0.32212 03246 Q32212 03330
0.8 0.67834 06436 198625 19972 0.39969 04028 Q39969 04132
1.0 0.80192 07608 234809 23611 0.47251 04762 Q47251 04885
2.0 1.34866 12796 394901 39708 0.79466 08008 Q79466 08215
3.0 1.82797 17343 535250 53820 1.07708 10854 107708 11134
4.0 2.26816 21520 664141 66781 1.33645 13468 133645 13816
5.0 3.07427 25440 785132 78947 1.57992 15922 157992 16332
6.0 3.45106 29168 900179 90515 1.81143 18255 181143 18726
7.0 3.81457 32743 1010506 101608 2.03344 20492 203344 21021
8.0 4.16687 39192 1116948 112311 2.24764 22651 224764 23235
9.0 4.50950 39534 1220105 122684 2.45522 24743 245522 25381

10.0 7.58404 42785 1320430 132772 2.65711 26777 265711 27468

20.0 10.27944 2220689 4.46870 446870

30.0 12.75479 3009929 6.05689 605689

40.0 15.07842 3734740 7.51543 751543

50.0 15.07842 4415123 8.88457 888457

60.0 17.28788 5062077 10.18644 1018644

70.0 19.40671 5682492 11.43490 1143490

80.0 21.45092 6281058 12.63940 1263940

90.0 23.43205 6861155 13.80673 1380673

100.0 25.35878 7425323 14.94200 1494200

s108)J3 AoueAong paulquio) LlIIM MO UONISAUOD [elnfeN



S.C. Saha, M.A. Hossain

Pr=Sc=0.7
B=-2

S=0.0
0.004
0.006
0.008
0.010
0.012

0 S 10 15 0

Fig. 2. Velocity (a), temperature (b) and concentrationpfdfiles for diffe-
rent stratification parametéftakingPr = Sc = 0.7andB = —2, X = 100.

tion is not present the temperature and concentration profiles will be identica
whenPr = Sc. We observe that fof = 0.01 and0.012, values of the non-
dimensional temperature are negative within the boundary layer. Bedause

S = 0.01 the temperature difference between the surface and the ambient at
X = 100 is zero. But fluid coming up from below with the flow sustained
by the other buoyant force will have a temperature that is consideraldy les
than that of the surface or the ambient. This is true o= 0.012 also
accept that the non-dimensional temperature at the surfadge2sand it drops
further before asymptotically reaching zero. Whenrc 0.01 there is positive
thermal buoyancy ak = 100 but in the outer regions the temperatures are
still negative. For higher values of S the temperature in the ambient insrease
rapidly with height.

In Fig. 2c the effect of thermal stratification on concentration boundary
layers is presented. Fdf = 0.012 the increase in concentration boundary
layer thickness is almost double that $f= 0.0 for Pr = Sc = 0.7, thus
indicating strong influence of thermal stratification on species diffusio Th
velocity profiles are qualitatively agreed with those of Angirasa and $sain
[13].

6 Conclusions

In this paper we have investigated problems on natural convection flowéro
vertical plate placed in a stratified media.
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Investigation has been made to the natural convection flow with combined
buoyancy effects due to thermal and mass diffusion in a thermally stratified
medium. Implicit finite difference method and the local non-similarity method,
are employed and investigate the present problem for values of the distanc
variable X in the interval]0, 100] for fluid having values oPr = 0.7 and for
different values of the stratification parameterWe may draw the following
conclusions for the present study:

e Forincreasing the values af both local Nusselt number and local Sherood
number are increasing.

e Ambient thermal stratification is found to decrease the local buoyancy
levels significantly, that reduces the velocities and increases the concen-
trations.

e The temperature defect is more pronounced in doubly diffusive frae co
vection flow.
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