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Abstract. Implicit finite differences are often applied to solve flow models.
A standard technique to solve these equations is Newton’s method. If time
step is too large although the difference equation could be computationally
stable, Newton’s method may fail, and PFI (perturbed functional iterations)
may be fruijtful. This is discussed in this article applying nonlinear D-map-
ping analysis.
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1 Mathematical Preliminaries

Let us consider a stationary iterative process given by:

where £ = (z172...21)7 € D C R, RY — I-dimensional Real space,
a® —value of z a the %™ iteration, A: BRI xR! -R! (A — I x T square matrix).
1f (1) is applied recursively
gl =Agh = A% 1= ... = Ak"'lmﬂ, (2)

where 7% = (2923. .. 29)T € B, (&? - initial value of ;).
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1t is well known [1] that if and only if A is a convergent matrix (which

means lim A% = §, a null matrix)
k=00

lim % =0 (3)

k=00

1t is also known [1], that 4 is a convergent matrix if and only if for some given
norm || 4| < 1 which also implies p(4) < 1, where p(A) = max)|A;|, As’s
are the eigenvalues of A. Let us consider now nonstationary iter;tive process
similar to (1):

2"t = Agab, ()

where zy € Dy, A : Dy x Dy CRE xR+ Dy C R for k. If () is
applied recursively,

gl = AkAk_1mk_1 = AzAg_1... Aomo (3)
In order that klim zF = 0, a necessary and sufficient condition is:
—+00
lim Agdg—1...43=0 (6)
k=00

1t may be noted that if ¥k, Ay is a convergent matrix (6) is not necessarily
valid.

Definition 1. A square matrix 4 is super convergent if
pA) <a<1, (7
where p(A) = the spectral radius of 4.

Lemma 1. A super convergent matrix is also convergent.

Theorem 1. If for all k > K, {Ag} is a sequence of super convergent square
matrices of the same type and if ¥k, Ag’s have the same eigenvectors, then (6)

is valid.
Proaf. Letv = (v1,v%,... v%) be the eigenvectors of A for ¥k. Then

AQ‘UJ = Agj‘i‘.lj, AleiJ = )\Qj)\ljﬂj, PN

. . (8)
Apdp—1... A7 = AgjAnj ... Agi??,
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where Ap,; is the eigenvalue of A, corresponding to the eigenvector 3. From

(8)
(A A - gy = Pagl - Pragl -« Prggl- ]
Since ¥k > K, A is a superconvergent matrix,
|Ak3.-|£a<l vk > K.
Thus
Jm o]« gl - [Aeg] =0,
giving,
lim || (AkAk—l ‘s AQ)‘UJH =0.
k—¥00
Since forall § = 1,2,..., 1,47 is non null,
lim AkAk—l--'AO =0.
k=00

Obviously, the product matrix Az Ag—1 ... Ay is a convergent matrix. O

2 Examples

Example 1. Let

o1 o _[03 0O

A= [0 0.2]’ B= [0 0.4]'

The eigenvalues of A are A1(A4) = 0.1, A2(A) = 0.2, and the eigenvalues
of B are Ai(B) = 0.3, Ay = 0.4. By definition, both are super convergent
matrices. Let us find the eigenvectors of A and B. Let v! = (v}, v3)? be the
eigenvector A cotresponding to Ay (4). Then

0.1 O] [vi] . [vi

o o] [l] =01 [
giving ¥ = 1 and 4 = 0. Similarly corresponding to A (4), if 112(11 'u%)T
0 T

+0)

2
1s
is the eigenvector, 2 = 0, ¥2 = 1. Thus the two eigenvectors of A4 are (1
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and (0, 1)7 corresponding to A1(A) and A2(A). It can be easily seen, that they
are also the eigenvectors of B corresponding to A1 (B) and As(B).
Thus by the Theorem 1, AR must be convergent, and we see that

003 0O

AB = [ 0 0.08]’ A (AB) =003, Ay(AB)=0.08

showing that AB is convergent.

Example 2. Let

0 1 0 0.01
A:[o.m 0]’ B:[l 0]'

Obviously B=AT (Transpose of A). The eigenvalues of A are given by the

equation

‘—A 1

— 2 _ i —
0.01 —A‘_O or A°=0.01 giving A==0.1.

These are also the eigenvalues of B. This may be verified. (Note: 1f A
is an eigenvalue of A, then it is also an eigenvalue of AT. Because if A is an
eigenvalue of A, det|4A — AI| = 0. Also, A = (AT)T and I = I7. Hence,
det |(AT)T — AIT| = 0, giving det [(AT — AI)T| = 0. Since det|4] =
det |AT|, det |AT — AI| = 0. Thus A is an eigenvalue of AT)

Let v* = (v3,15)T = the eigenvectors of A corresponding to ; (¢ = 1, 2),
the eigenvalues of A. Then by definition,

0 1] [vi] _ v]
oo o] o] o[

giving v3 = 0.1v] and 0.01v} = 0.1v3. Thus the eigenvector ¢! = (1,0.1)T
corresponding to the eigenvalue A; = (.1. Similarly,

0 1] [¥f] _ 7
[0.01 O] [’ug] =01 [v% ’

giving v? = —0.1¢% and 0.014% = —0.142. Let v? = 1, then v2 = —0.1. Thus
corresponding to the eigenvalue Ay = —0.1, the eigenvector v? = (1, —0.1)7.
This shows that the eigenvalues of A are 0.1 and —0.1 and the corresponding
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eigenvectors are (1,0.1)7 and (1, —0.1)T. B has the same eigenvalues. Let us

compute its eigenvectors.
0 0.01] [vf v]
=0.1]}
o] ol
giving 0.01v3 = 0.1v] and v] = 0.1v}. Then v{ = 1, v} = 10. Also
0 .01] [+?] o3
oo o

giving 0.01v2 = —0.19% and v3 = —0.1vZ. Then v? = 1, v = —10. Thus,
the eigenvectors of 4 and B are different.

Thus, the eigenvectors of A and B are different. Since p(4) < 1 and
p(B) < 1, both A and B are convergent. However,

0 1|0 0.01 1 0
AB = = .
[0.01 0] [1 0 ] [0 10-4]
Thus, p(AB) = 1. Hence AB is not a convergent matrix. In general two
square matrices of the same type will have different eigenvectors. We need to

look into how the product of square matrices of the same type may behave like

convergent matrices.

Definition 2. 1f a sequence of square matrices of the same type {Ax} be such
that

]jIﬂAkAk_l...AQZO (9)
k=00
then each Ay is called a D-mnatrix.
Theorem 2. If for « given norm || « ||q (where g is fixed)
[Aklle < <1 (10)
Yk = K, Ay is ¢ D-marrix.

Proof. 1n the g-norm

[ AxAg—1--- Aol < [[Ag || Ag—1ll--- [ Aol
= Al ([ Ag=all-- - [ Arcsal]-[| Axc (| A =1+ - [| o
<P (Al - <[l Aol
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lim @*~%*1 = (@ since 0 < @ < 1. Hence lim |4 Ag—1-..4g[g =0
k—o0 k—+oo
which proves the theorem. O

Example 3. Let A3, o = diag(e,1,1), Agp—1 = diag(l,ae,1), Az, =
diag(1,1,a3),n=1,2,3....
vk > K, m]?,x|ak| < a < 1, Ag is a D-matrix. (Note: None of these

matrices is a convergent matrix.)

Definition 3. Let U = (UF UF ... UF)" € D C RI. where U¥ is the
value of U; at some % iteration. Let G : D C R — D C R Ifvk < K,
G'(U*), the Jacobian matrix of G(U*), is a D-matrix, the function G(U) is
called a D-rapping [1].

Theorem. Let an iterative process be given as
Ukt = gU%), (11)

where G : D C RE = D CRL Let U* € D, be the fixed point of G. Then
the iterative scheme (11) converges to U* if and only if G'(U¥) is a D-matrix
(which implies that G is a D-mapping on D).

Proof.
UL _ Ut = GU*) — GU™).
Let ¢ = U* — U*. Then, G(U*) = G(U* — ¢*). Thus
L — GI(gh) - b, (12)
where
gk — (5{‘55 g}‘)TeDand
EF = UF +0;¢F, 0 < 6; < 1for vi.
Applying (12) recursively, we get
e (S RN e (i RPPPRY (3 R
where ¢? = UV — U*. From (9) (since G'(£*) is a D-matrix for Yk > K)

lim ¢ =0
k—roo
if and only if G'(€¥) is a D-matrix. a
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3 Analysis of D-Mapping Compatibility of Nonlinear Solvers

Newton’s method is widely applied to solve nonlinear systems. Thus analysis
of D-mapping compatibility of Newton’s method will be done first. Consider
the nonlinear system

FU)=0, (13)
where U = (U; Up ... Up)T € R In the element form (13) is:
fiU,Us,....Ur) =0, i=12,...,1

Newton’s iterative technique to solve (13) is:

Ukt =k — FI(UR)TIR(UR), (14)
where
[8f1  &f 8f1 7
ath 8tz "t aUr
F'(Uk) = gr% gﬂ% agr% (evaluated at Uk).
8fr  8fi afr
| ol 0 " Ur |

Let I/ = U* —the root € R!. Then
Uk+1 Ut = Uk U — F.'(Uk)—l (F(Uk) _ F(Ut)), (15)

since F(U*) = 0.
Let eb = Uk — [+
In the element form,

k k rrk k& k k
fi(U1—611U2—62a--- Ur —EI)

! 31;Uk 321,
-3 %04 (X )

(16)
&1 k& > fi k 5‘?f5 kK )
+(8U18U2€16 +8U18U3 Ek+"'+8U18U elef)
Ph ek *f; Pfi
+(8U28U3 et +3U23U16k )+ t U0U; U110V L

39



S5.K.Dey

All partial derivatives in the third term (second partial derivatives) are evalu-

ated at Ef‘ = Uf +0;¢5, 0 < 0; < 1 for Vi.

(]

Thus

F(U*) = F(U* — ¢*) = F(U*) — F'(U*)e* + Ay(cF)?
+ AQE% (Gk) + e+ AI_]_E?_]_(E,E),

1n general,

SGRICERY

i=12...1,
[ AR Y
Uz aul
1 18 &f
do= g7 |07 U}
502 aug

'0 862)'1

8 fs

hall 8Uhalh

A]_Z 0 athalls 8T 8Us

8 fr

-0 athalls 8T 8Us

[ a2
00 &8l

8 fa

A? =10 0 U800,

0 0 2h

L &8l

(18a)

(18h)

(18¢)

(184)
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_ & -
00 .. 0 8U;_1<1'3Ur

&
A= 00 .. 0 3UI—1§UI . (18¢)

' &
00 ... 0 z2l

1st {I-1) columns

Substituting (16) in (15) we get,

* = — PI(UR)TH{F' (UF)e* — o}, (19)
where
o :Ao(ek)Q-i—Ale’f(ek) +---+A1_1e’}_1(ek). (20)

From (19) and {20), for some norm

[ < 7 (IF' @) - (| Allmax - (1€* (1 Faxs (21)
where

| 4]/ max = m?XHAj”a i=012....1-1,

[l€*(|max = max ¥, i=1,2,...,L

The inequality (21) is often referred to as the quadratic rate of convergence of
Newton’s method. 1f initial guess is sufficiently close to the root or in other
words, if

[ = U° - U <1, (22)

(21) generates a faster rate of convergence, but the algorithm is not compatible
with the analysis of D-mapping.

For application of PFl (perturbed Functional lterations) [2] (13) is ex-
pressed as

U = GU), (23)
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UcDCR, U=U*-root

In the element form (23) is
Ui = Gi(U1, Ue,...Ur), i=12,...,L (24)

Also, U*= (U Us...UNT € D C R.. Algorithm of PFI consists of three
steps:

Step 1. Compute intermediary iterates

U, =Gi(UF,UE...UF), i=1,2,...1,

U;-" —value of U; at the k*® iteration. (25)
Step 2. Compute perturbation parameters
Wf = G‘(Ul’lr’i?’ﬁ) LI S &
X aU; (26)
8(;;??) —value of gﬁ: at (f:"l,Ug,. . ,U_{").
Step 3. Compute the new (k + 1)* iterates
Ut =wf+ 0, i=12,...,1 (27)
lterations stop, if at some &
max k| < e, (28)

where ¢ is positive and arbitrarily small. 1t may be proved that {28) is both
necessary and sufficient for convergence of PFL.
Let us study the analysis of convergence of PFL

Ul =ub 1 0 -Ur, = (W Wb WD) (29)
From (26),
wk = (I - a6) (¢l - 0), (30)
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where

I—9G = diag (1— G US> 8GI)

8—1713 —8—{;2?...’, _ﬁ

and all partial derivatives are evaluated at ({y, s, . .., U).
Now,

cO)-U=00)- ¢ +U* -0, (31)

since U* = G(U*).
lete=U—U*.
GWU*) = GU — &) = G(U) — G'(T) - & (Neglecting terms of the order
[l€][?). Substituting in (31)
GO -U=(c"0)- 1. (32)
From (29), (30) and (32)
= (I1-9G)HG'(U)-T)e+¢

. (33)
={1-u-9e'1-c@)}¢ '
where e#T1 = 78+ — 7% Now,
e=U-U" = G(U) - GU") = G(U*) - GU* — & (34
= G’(Uk) . Ek. -
Thus, from (33) and (34)
k1l — Ay - By - ﬁk? (35)
where
Ap=1—(I-a) {1 - (D), (36a)
B = G'(U). (36h)
Obviously
[8G1  8G1 a1 7
8@z 9Gz 8@z
By= |8t 802 0 8Ur
9G:  80x Flen
| aln 8l """ 8Ur |
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Considering the co—norm, (with Gij = g%‘%), if By is diagonally dominant,

I
1Bkloo = max 3 |Gﬁj(Uk)| < 1. This implies,
2 :‘.‘=1

I

Vi, 3 |GuUR)| < 1-[Gy(UY)|
i=1
FE

obviously |Gy(U*)| < 1).

(37)

Sincel = |z +1—2] £ |z| +|1 —z]|or 1 —|z| £ |1 — x|, thus from (37)

I
Vi, Z ‘G—jj(Uk)‘ < ‘1 — Gﬁ(Uk) ‘
F=1

iz
Now
[ 0 Gm((}l Glf((}l
1-G11 (TN et 1-G11 {17}
A Gar (07 0 Gas (T Gar (0
k= | 1-Ga=(@) 1—Gaz(TN tee 1—Gaz(l
Gn((}l Gm((}l 0
| 1-Grr(U) 1-Grr (U e

1If (38) is valid,

I ~
G (U
|4kl = max E 7‘ j( )A < 1.
i = ‘I—Gﬁ(U)
=

Then from (35)
¥ oo < [1Mklloo + [1€¥]] o0

where

[Mlloo = [[Aklloo - [ Belloo < < 1.

(38)

(39)

(40)

(41)

(42)

From (41) it is evident that if (37) is valid, or in other words, if B is di-
agonally dominant, the algorithm of PF1 is compatible with the propenties of

D-mapping.
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Since in general, nonlinear systems may not be diagonally dominant, PF1
has recently been modified so that it may be fruitful when diagonal dominance
is not displayed by the nonlinear system.

The new algorithm is: MPF] (modified perturbed functional iterations)
which requires the following steps:

Define,

H(U) = (I -DU+TGW),
T = diag(y1, Y2, -- - Y1)s

i 1 (43q)

By applying the analysis of convergence, it has been found that [3], it is
preferable to choose

1

and T = 8711 — 8G) ™1, where 8=1/(I—1).

These transformations render PF1 more effective to solve a vast number of
nonlinear systems quite accurately, which may not display diagonal dominance
in their linearized versions. The convergence of PFl is global and thus it is

independent of the initial guess.

4 Time Accurate Numerical Solution of Nonlinear Flow Models

A time dependent flow model may be expressed as

Bu
ot

subject to a given set of initial-boundary conditions. A consistent implicit finite

= F(H,Uw,u.ﬂ) (4h

difference approximation of (44) may be expressed as

Ut = 4 qUrth, (43)
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when U™ = (U} UR ... UP)T

Ul = Ul(x;,t,) = the net function corresponding to 7.

x; are the grid points, § = 1,2,... 1, £, = value of £ at the n time frame.

In general, implicit finite difference methods have much better stability
properties, which means that if At is chosen to be large, often much larger
than Ag (mesh size), the error [|U™ — 4| remains bounded which implies
that with an appropriate iterative scheme, solution of (45) is guaranteed. Yet
in several cases Netwon’s method failed. The question is why?

Let us replace U™ by U and express (45) as

U=U"+GU). (46)
This is a nonlinear system and could be solved by iterative scheme

UMt =™ + GUY). (47)
U = UL _ the solution at #,,.1,

Ul = gn 4 GUtL). (48)
Let eft1l = g+l _ prent+l then

k1 = G'(U*) €. (49)

1f G'(U*) is a D-matrix (or could be transformed into a D-matrix by appropri-
ate transformations), k]jllgo e® = 0, and the numerical method must converge,
and the convergence is global, not local which means a large time step Af,
should work. Newton’s method does not require this condition to be satisfied.

lierative solution for (46) always requires an initial guess. The initial
guess for U at £ = #,4y is U™ (which is U at #,). If At = #,41 — #,, is
large, ||U""""'1 — U™|| could be significantly large which should cause any
numerical nonlinear system solver which is only locally convergent to fail.
This also could cause Newton’s method to fail. PFIl is globally convergent.
However, it is dependemt of the properties of D-mapping. 1n many cases
modified perturbed functional iterations (MPF1) was used and results seem

to be quite encouraging.
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5 Applications

Application 1. Let us first consider Burgers” Equation
Ut + Uty = Vilgg. (50)

‘We have considered several sets of initial-boundary conditions. LetQ < z < 1.

Case 1| 10 <z <002 u(z,0) =1, else u(x,0) = —0.5. (51a)

Case2 If0 <z <0.02 u(z,0) =1, (51b)
1f0.02 < z < 0.15, u(x,0) = 0.5, else u(x,0) = —0.5.

Case3 1f0 <z <002 u(z,0) =1, (51¢c)

1f0.02 < =z € 0.15, u(x,0) =0.5,
1 0.15 < z £ 0.25, u(z,0) = 0.13, else u(z,0) = —0.5.
Case4 10 <z <025, u(z,0) =sinnz, (51d)
1f0.25 <z <0.75, u(x,0) =0.5 — z,
If0.75 < z < 1, U(#,0) = sin (r(z — 1)).
The implicit finite difference equation for the Burgers’ Equation (50) has
been obtained by approximating the differential equation by the algorithm

of flux-vector splitting, developed by Steger and Warming [4]. The finite
difference representation of (50) is:

Ut <7 — o{ UBE U — W) + 20 U

— U U+ U |+ b(UR - 2+ U,

(52)

where ¢ = At/(2Azx), b = vAt/(Az?) At— time step, Az — mesh size.
§=12,....J. This equation may be expressed as
Uptt=Up - ¢, U UR),
aG;
3—Uj =
= U7 —2b, if U <.

—2qUt -2, if Ut >0, (53)

The Fig. 1 corresponds to Case 1. Here with v = 1078, Az = 0.01, At =
10Az, the one dimensional motion of the shock is clearly displayed. There
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exists no overshooting or undershooting. The shock is very slightly smeared.
1n general it is quite crisp.

The Fig. 2, corresponds to Case 2. Here with v = 10~7, Az = 0.01,

At = 3.5Agz, the merging of two shocks is depicted. With no over and
undershooting, the shock is relatively crisp.

The Fig. 3, corresponds to Case 3. Here triple shocks merge with each
other with v = 1077, Az = 0.01, At = 3.5Az.

The Fig. 4 corresponds to Case 4. The jump discontinuities occur at & =
0.25 and & = 0.75 respectively.

Here Az = 0.001, At = 3.5Az, v = 10~3. In the Fig. 5, dissipation of
4 can be noticed with no over/under shooting of computational results.

4= .8 DOT= .1 HU= . J0CERe0L

ll\KiH

s

Fig. 1. One dimensional motion of a shock.

D= 81 NT= @33 NiF . QQOERDGE]1

T

Y

I

L

it e m et

F——,
o]
=

Fig. 2. Double shocks merging with each other.
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Dx= .@a1l DT= .33 El= . gaaaaagl

-
—
Pgamt R

Fig. 3. Trple shocks merging with each other.

U 4 p¥= _BAL DT= 8035 HU= _Cos6ce81

i

Fig. 4. Jump discontinuities.

=

b= 881 DT= .8035 HlI= 80080001

Fig. 5. Dissipation of # as time progresses.
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Application 2.
e + Uy + Uy = vAZy. (54)
An exact solution isu = H, A simple implicit finite difference analog
for (54) is:
+1 _ +1 +1 +1
Ug; = U:; - GIUE;.-' (U:{-I,j - U?—l,j)
1 1 1
— U (U3 — Uh)
+ b (U — 205 + UE)
+oa(Uzh - 202+ VT (5%

a1 = Atf(2Az), ap = At/(2Ay),
b = vAt/(AZ?), bo = vAL)(Ay),
i=1,2,...1, §=1,2...J.
1In the code mesh sizes have been chosen as Az = Ay =0.01,0 <z < 1 and
0<y<L

At each time step, the largest error in computations, defined by:

T

B = max o7 — U,

where H?J = u(x;, ¥, 1) = the exact solution has been computed.

With v = 1072, and At = 10°Az = 1000, Emax = 8.5475 x 10~% and
remains the same after n = 600 time steps.

With v = 1073, and At = 10°Az = 1000, Fmax = 8.516792 x 10~* and
remains the same after n = 200 time steps.

With v = 1077, and At = 10°Az = 1000, Emax = 6.5608 x 10~ and
remains the same after n = 3000 time steps.

A mathematical analysis is now under investigation to understand this
pattern of results.

6 Discussions

PF1is indeed a quite powerful method to solve nonlinear differential equations

numerically. The recent modifications of the method [3] given in (43a) and
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(43b) added more to its computational strength. When the initial-boundary
conditions are continuous, G'(U/), the Frechet derivative of G(U) exists and
PF1 does display its properties of global convergence. However, if continuity
of initial-boundary conditions is violated and these discontinuities propagate
with time, PFl could fail if the time step is large. That is why, whereas
At = 10Az for the Case 1, At = 3.0Az for other cases in the Application 1.
For the Application 2, there are no discontinuities and solutions are always
smooth. That is why a large At = 1000 worked quite well signifying the
global convergence of PFL

Let us study how numerical solution by PFl could be affected by errors
introduced in the initial-boundary conditions. Let at £ = #;, these errors be

introduced. Then
Ul=(Up+ ) +GUY) + (b +8), (56)

where U — initial value of IV at £ = ¥, Ul _valueof U/ att = #1,b— boundary
conditions at ¢ = #;, e — small error in U/, # — small errorin b. Let 4 = e+ 3,
then (56) may be expressed as:

U=Uy+GU)+ b+ p. (57)
Let U* = the solution for I/ at ¢ = #;. Then

U*=Uy+GU") +b (58)
The equation (57) is solved by iterations as follows:

UM = Uy + GUF) + b+ p. (59)

Let 6]: =Uk U~
Let us assume that G' (/%) is a D-matrix Vk > K and ||G'(UF)|| < @< 1

for some norm. Subtracting (58) from (59) and linearizing at U*,
Srt1=G'(U") & +p (60)

Let § = G'(U*). Then [|#|| € a < 1 and @ is also a convergent matrix.
Then applying (60) recursively,

Sht1 =08+ (T +0+6 4+ + 65 61
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If for some k = K,
([6x+1] <€, €ispositive and arbitrarily small, (62)

it implies convergence.
Equation (62) is true if

ol 1— o+ .
o1+ - Vool -+ (g ) Il <€ (63

Since [|f|| € @ < 1 and K is large, for convergence of PFL, |
bounded. Also, from (61)

4| has to stay

B _ f 2 & — o -1 .
kh_{goak+1_{kh_fgo(1+9+9+ + )},u (T—0)ty, (69

giving u = (I — 9) k]i}rglo 0k+1. Thus whenever PF1 converges, it implies that
errors from initial/boundary conditions are bounded. (Theoretically they are
damped out.) Thus, theoretically convergence of PF1 is a sufficient condition
that the errors from initial/boundary conditions are damped out.

Let us consider Newton’s method and see how Newton’s iterations may be
affected by small changes in the initial-boundary conditions.

The finite difference equations (52) (or (55)), may be set up as:

F(U)=e¢ (65)

at a given time step 1,1, where e consists of the perturbations given to initial-
boundary conditions. 1f U* is the root, F(U*) = e. Let U? be the initial guess
for U*. Then

e = F(U*) = F(U° + 469, (66)
where 6% = U* — UV, Linearizing (66) we see,

8 =F(U™ (e — F(UY)). (67)
Then U1, the first Newton-iterate is given by:

Ut =0+ PN (e FUY) (68)
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Thus, at each iteration level, an error F/(U*)~le, (k = 0,1,2,...) is added
to the standard Newton’s iterate U*t1 = % — F(UF)~1F(U*). This will
cause enhancement of error caused by perturbing initial-boundary conditions.
The method will converge to U*, if and only if

Jim FUH =0 (69)

The convergence properties of PF1 as we have noticed eatlier, keep the

errors from initial-boundary conditions bounded at each iteration.

7 Conclusion

For the past two decades PF1 has been applied successfully to solve nonlinear
differential equations. Because of its properties of global convergence, several
boundary value problems represented by integro-differential equations were
also solved by PFl [5], where most Newton-type methods involving direct or
indirect inversion of matrices failed.

PF1 linearizes the model only along the diagonal thus it maintains most
information regarding nonlinearities. This is why when it works, the solutions
are highly accurate.
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