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Abstract. The well-posedness of the Cauchy problem, mentioned in ti-
tle, is studied. The main result means that the solution of this problem is
usual C%°- function on the space argument, if the initial function is a real
functional on the conjugate space to the space, containing the fund amental
solution of the comresponding problem. The basic tool for the proof is the
functional analysis technique.
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1 Spaces of Based and Generalized Functions

Let R™ be a n-dimensional Buclidean space, & = (&1s...s&n), ¥ = (Y1305 Yn)
are its elements, (z,4) = Z1y1 + ... + ZpYn is a scalar product on R”,
llz|| = (x,2)'/?, and C°(R™) is a space of all infinite differentiable func-
tions, which are described on R™. For arbitrary ¢ > 0 and 8 > 0 we assign
S8 = {sz C®(R™M|3¢>0,34>0, 3B >0, V{kiq} C Z",
(1)
Vo e R™: |2%Dfp(z)| < cA|‘1|B|k|k‘B"q“q},

where Z’_f; is a set, which consists of n-dimensioned vectors. Coordinates
Him|

N

<oem™ form € Z% andy > 0.

of these vectors are non-negative integer numbers; D7

|m| = m1 + ... +my, M =m]™
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Space Sﬁ is non-trivial for ¢« + 8 > 1 and consists of such functions
@ € C°(R™), which satisfy inequality

‘Dk | <5 cA|k|kﬁk —6”557”1/Inl kec Z?l? 3 E Rﬂ? (2)

with some positive constants ¢, A and &, which depend only on ¢ [1].
The following additional assertions are valid.

Lemma 1. ¥ {9} C S
5.3

1= [ eewerow 3 [poperown=1e), ¢er

[l=l|<r R"
2 T
(here @, — Py, is a limit in a sense of space © topology).
=iy

Proof. According to definition of limit in the space Sg (see [1]), it is enough
to verify the validity of the following conditions:

. EcKCR™
DVkeZl: |Dg(J(6) —JEN =

r—++00

i.e. uniformly on £ € K tends to zero on every compact K from R,

M3¢>0,VA>0,3B>0,V{q;k} CZ}, Vr>0,VEECR™:
‘EquJr(E)‘ < Akl glal gk goa

Taking into consideration that {p;¢} C S% and inequality

‘/ D¢m+§m‘<c/\cp )|do < 400, k€2, E€RT,

we obtain that

DEEEQ - 7O)| < [ |o@)||Dbve +O)ds

[l >7
< ] ()| de =,* 0, keZ?, KCR"
T—=++00
[l |7
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Thus, the first condition is valid.

The second condition also is valid as long as

¥ {p;9} C S5, V{kiq} C 2%, VEER™, ¥r>0:

q

0t @) <3G [ letlot@) e + 9 Db coto + 0
=0 n*
q
< cey Bk % f e~ 8l 4 3 g AleHl (g — pyeled
n» =0
X sup {t‘e_tlm}
>0

< 02A|1Q|B|k|kﬁkqaq,

where (7, is a binomial coefficient; ¢p, A1, B are positive constants, which
are independent on k,¢.r and €; ¢, A, B, § are constants from corresponding
estimations of type (1), (2) for functions ¢ and .

Lemma 1 is proved. O

Lemma 2. if {@; ¢} C S5, and K(r) = {z € R"||«|| < v}, r > O, then for
dl € € R™ funcrion @()4(- + &) is inregrared on the set K(r) in the sense of
spdace Sff topology.

Proof. Let p be an arbitrary fixed partition of the set X (r) and let us consider
upper

J*(p,8) = E oE)P(z! + OAz;, €€ R”
and lower
T 0,6) = D (el )" + €)Am, EER

integral Darboux sums. Then for proving of the Lemma 2 it is enough to show
that

* £% 58
‘J (peg) —J (p,ﬁ)‘ df{}o
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(here d is a maximal diameter of the elements of p-partition of the set K (r));
i.e. that
teKCR?

DVkeZL: [DHI 06 - I ee)| =0

II)3¢>0,34>0,3B>0, V{kiq} CZY, VpVECR":
€XDE (¥ (p, €) — J* (9,€))| < cAlBIIEHRgo

Condition 1 is valid. Really, according to the Lagrange intermediate value
theorem (on finite increases) and {; 9} C $# we obtain that

\ZDg Bt +€) — p(e(at +6)Am

< E_c,:nm:* —afllAz: 5.0,
T

where ¢; are positive constants, which do not depend on £ € R"™, and k € Z%.

Let us verify the validity of the condition 11. Since {34} C S, then for
these functions condition (1) is valid with corresponding constants ¢;, 4;, B;,
i € {1;2}. Thus,

V{k;qt CZY, VEER" Vp:

[€DET" (p, )\

<;(ZCJ ) p(x H (x} +8) D(w )P @z} +§)DAm‘ 5

T
<> (ZCgclAL‘f g — j)*eDes Y BY |kﬁ"3“’)Axa
i =0

< CV’_J:]LIqlBgﬁ|g-goeq,g;,fi’»‘c1
where V; = mesK (r), and ¢, A, By are positive constants, they do not depend
on k., q. £ and partition p.
Similarly it is possible to show that inequality (3) (with the same constants)

is valid for J**(p, ).
Taking into consideration that

|€4DE(T* (p,€) — J** (p,€))| < |E“DET* (p,€)| + |€9DET™ (p, )|,
£eR”, {kq} CZY,
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we obtain the second condition. Q.E.D.

From mentioned above we obtain the following assertion.

Theorem 1. For all @ and v from S2, and for € € R”, function e()P(- + &)
is integrable on R in the sense of space Sff topology.

Further, let (S{f)’ be a space, which is topologically conjugated with Sﬁ.

Fourier transform of generalized function £ € (S4)' and convolution (i f)
of this function with functional of function ¢ type from Sg we define by the
following equalities [1]:

(FIFLF]) = @m)"™(f,9),
(‘P* fﬂ!’) = (f&*"!’): P Esg'

From abovementioned we obtain that
VocSh vie (S8 : Flpxfl=F[fIFlyl. (4)

Definition 1. Functional f from (.S’g)" is called a real-valued functional, if
{f,¢) = {f, ) forall g € S? (here 7 is a number, which is complex conju-
gated to v).

The following assertion is valid.

Theorem 2. Let f be a real-valued functional from (Sff)', and @ € SZ. Then:

1) {f,0(- +&)) € C®(R™);
2) x f = (f, (- +8)).

FProof. Assertion 1) of this theorem is evident. Really, in the space Sg shift
operation is continuous and infinite differentiable [1].

Let us prove assertion 2). Since {f,p(- +£)) € C®(R™) (see assertion
1) of this theorem), then

vie st (Lot +0)9) = [ (9@ +0)ds.
Rﬂ
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Hence, according to Theorem 1, taking linearity and continuity of func-

tional f Into account, we obtain, that

(.0 +8)), ) = (L]d) oo +€)d )

:<f999*14b)
:<‘P*.f&1&b)& ﬂbE Sg

Theorem 2 is proved. O

2 Cauchy Problem

Let ¢ > 0, F be a unit operator, A is n-dimensioned Laplace operator. Note
that fractional degree -y > 0 of operator (aE—A)% is called pseudo differential
Bessel operator of 'y—order with positive parameter a [2] (denote it as ﬁg )- In
[3] it is obtained that B (Sﬁ) (S{f)', and

Vie(S8: Blf=gi+f, v#2%, keN,

where N is a set of natural numbers, ¢ is a regularisator in the space (Séf)' of
Bessel kernel with positive parameter and negative order (detailed see in [3]).
Note that according to the assertion of the Theorem < from [3]

(Bif, o) = {$,F (e + &) Fg]),
fe(shy, eesi, az1, g>0

where y > 0 and v # 2k, k € N, and F~! is inverse Fourier transform.

Let us consider equation

Ault, x)
ot

= (P(t1 E::)u) (tax)1 (t1 x) cN= (05 +00) x R™, (5)

m
where P(t, BS)u = ij(t)Bf;?u, m €N, a; >0, q; > 0and o; # 2k,
i=0
k € N, j € {0;1;...;m}, and b;(-) are continuous, defined on (0; +o0),
bounded on module, complex-valued functions. Let us assume that only one
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maximal number exists among ¢;,§ € {0; 1;...;m}. Denote this number as
oy. Let function f;(-) be so that

38>0,¥t>0: Reh(t) < —0d.

From these assumptions for polynomial P(t, (a+(-1%) %), t > 0, from
equation (5) (further we denote it as P(#,-)) we obtain that the following

condition is valid
3§ >0,3d> L Vt> 0, Vo e RY, |z| > d: ©
ReP(t,z) < —6* (a +27)? '

(here and further @ = a3, v = o).
t
Let 6¢(-) = exp { fP(T,-)d'r}, t > 0. The following additional asser-
0
tions characterize the properties of this function.

Lemma3. ¥£>0: &) c Si.
7y

FProof. We analyze the proof scheme in case of n = 2 (to simplify the calcu-
lations). With the help of mathematical induction method this scheme can be
applied for arbitrary natural n > 2.

Function #¢(-),# > 0 is infinite differentiable. Therefore it is enough to
show that

36 >0,38%>0,3¢>0,3I4> 0, Vke 22, Vo € R?, V> 0:

- (7
|D§9t(x)‘ < ced2t (t4) &l gk g =1 el
where
i= btz
1, 0<t<l.

According to the Faa de Bruno formula of composite function differentia-
tion, we obtain

D8 00 35 i L) (42"

o qlljl1h1| Pl 1ldz
Lo\ (drpz)\™
X ( 2!dz(z:2)) '"(LlldngLz) 2 ER, b€ Zy
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(here summation symbol extends to all solutions in integer non-negative num-
bers of the equation k1 = q1 + 251 + ... + L1 k1, and numberp; = ¢ + §1 +
.. + A1). Hence we obtain that

Vke Z% :
| D364(=)| < Z
where
¢ ¢ .
- _ aP(r,x) , & FP(r,x) , \*
P(t,m):(/illaml d'r) (/7211%% d'r) X oo
0 0

t
1p h1
X md’r s t>0,xER2.
Lllaxf‘l

(8)
AR ch B, ) |00z

With the help of Faa de Bruno formula we obtain that

VTEZ_’_:

‘D"B(x)‘<ir7!‘9 (/‘813"’
z O] =  goljol...hn) 1 119z

t
" (/ 2 P(1,x)
L218$§2
0
wherepo =q@o+ fo+ ... + ho, and r = g5 + 245 + ... + Loho.
Since

¢
/ & P(r,x)
vidas
0
where A4 is a positive constant, which does not depend on¢ > 0, v € Z4 and

Kit]
reR% Y = J%%{‘bj(t)‘}, a* = Gggxm{aj}.

Taking into consideration (6) and the following inequalities:

p21
g, Zl< 2e

)”x...

a2
d’r) , ze€R? >0,

dr <Y A% (a* + 27)3,
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(here po = g2 + j2 +... + ho, and r = g2 + 242 + ... + Lohp) we obtain that
| D5,66(x)| < cre®t(FAr)/rIrlee /el O

where ¢1, §1, A1 are positive constants, that do not depend on z € R%, £ > 0
and r € Z, p = min{d*, §}.
Fora > 0,{r; L} C Z_ andz € R?

+r a;‘2 211 2@2
- (CH-Lx Z x29(9—1)x
Llrldzyoxs, 31'3'1' - ioljol 2 12
X (%—(m —|—p2)+1) @+ 2%) 3 @rte2)

Z

(10

< ¢ AR (@ +22)% Z

< e AbtT (a4 27)5,
where ¢o, A3 are positive constants, that do not depend on v, L and &, and

Pk =tk + Jk. k€ {152}, L =141 + 241, r = d2 + 2jo. Therefore

t
A+ P(71, )
J Lirlgzi o],

31131 3213}21

dr| < te AFT (0 + 22)F

(here constants ¢4 >0, As>0 independent of £ 0,z €R? and {L;r} C Z4),
then
V{v;L;h} CZ,, V>0, Vz € R?:

Q=)

h—p
S P e
= 2t
P 0, h<p
i i
HP(1,z) & ‘ « Ot P(r, x) ir “
Lozi oz " L1810zt 0xs
0

< V1AL (beg AL (a* + 22)3)%,
p=i+i+..+p, v=i+2f+..+ 3y,

69



V. Litovchenko

where Ay, ¢g, Ag are positive constants, independent of ¢, z, v, L and h.
Further,

\DJ Ptm\

C"2 X+
b‘z—ﬂ
Vi, -2 ¢ 6L1_1P( 1
L1—1 VL —3—VL -1 T:m)
Eaafr ((/(L ) o
VLl—l—'D 0 1 : 1

t
h1
X |Dyit ( 78“}3(7;‘?)(11_)
5 Lllaxl

v V-2

< 1AL AB (eo(a* + 22)7/? m(i 3 1)&

=0 1ra=0 Lr‘Ll—l:':'
j€Zi,t>0, xR
Taking into consideration inequalities (8), (9) and the following inequality
VL, -2

Z Z Z (§ +Ei : 3 < eitia-1

D‘j_—':'lf2—':' VLl—l—C'

we obtain estimation (7). Q.E.D.
1 S%/'r
Lemma 4. V@ € S}_{: AR oo @(+).
FProof. 1t is enough to obtain that the following conditions are valid:

D) Vk € Z7 : DE(0,(2)p(2)) 5E.EchtR Dy(x);

I1) 36; >0, Je; >0, 34, >0, Vt € (051), Vh € Z¥, Vo € R™:
‘Dg(ﬂt(m)rp(m))‘ < clALk|kke—61”$”'T.
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Note that
|%|

D}(64)p(@)) = 0.(@) Dy () + Y CLDI8(x) D} 7 (a),
l7l=1

keZli, zc R

Since for every compact set K from R™

D0 (x) D1 p(x) o 0, O(x) o 1

uniformly on z € K forall |§| € {1;2;...;]k|}, then condition 1) is valid.
Let us prove the validity of condition 11) for n = 2. Since ¢ € Si,
5
then 3dg > 0, Jep > 0, I4g > 0, Vk € Z7, Vz € R? : [Dip(z)| <
CQAJ)’ﬂkke—éollwll“’_
Hence, taking inequality (7) into consideration, we obtain that

k|
‘Dﬁ (9t(x)=ﬁ(m))‘ < Y Ci|Dig,(x)|| D p(w)| < cp ARl
Jil=0

where cp, Ag, 8 are positive constants, that do not depend on k € Z2 , z € R?
and ¢ € (0; 1). Thus for n = 2 condition 11) is valid.

In case of n > 2,n € N with the help of mathematical induction method
the validity of condition 11} is proved analogously. Lemma 4 is proved. O

Lemma 5. Function 0,(-) is differentiable ont > 0 in the sense of space 8%
>
topology.

Proof. 1t is enough to show that limit relation
1
Dat(z) = At [B(e+ae) () — Bel()] At—_*mp(tf x)0¢(x)
is valid in the following sence:
" sEKCR? k
DVk€ZT, VE> 0: DE@Ay(7) At:»,ﬂ DE(P(t,2)8(2));
—}

II)Je3 >0, 343> 0,383 > 0, Yk € Z%, Yz € R,V > 0,
VAte (—1;1),t+ At > 0:
|DE® g (z)| < c‘o,A‘L,k'k"e_‘s"l""‘l'A’.
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Function 8¢(-),# > 0 is differentiable on # in ordinary sense, therefore
Pag(®) = PE+0AL 2)0¢inne (@), t+0AL>0,0<n< ], z€ R

Thus,
LI _ _
Dg(pﬁf(x) = Z C,%D.%P(t +nAt1m)Dg_39(t+ﬂAt) (x)?
[71=0
t+pAt>0,0<p<l, 2R, kcZ™

(12)

Since
. . seKCR™ | .
DIP(t+ 1, 2) DY H0igunnn() " = DLP(,)DE04(w),

then from (12) condition 1) is obtained.

The validity of condition 11) follows from (12) and inequalities of type
(7), (10), taking into consideration, that functions b;(-), 7 € {0;1;...;m} are
bounded by module at (0; +o0).

Lemma 5 is proved. O

The following corollary is valid, taking into account that operator F~1 is

continuous in the space Sg [1].

Corollary 1. ¥t > 0:

Pl [Eﬂf(-)] = EF_IW')]'

at ot
1f for equation (5) the following initial condition is given
ult, Yoo = f, £ € (S5), (13)

then the solution of Cauchy problem (5), (13) in the space (Sg)" is called such
function # from this space, that

VeeSt: <%—P(t,§{?)u,w> =0,

i.e. this function satisfies equation (5) in weak sense and initial condition (13)

: S8y

in the sense that u(#, ) (4) f-
t—++0
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Let G¢(-) = F71[0(2)] (-). ¢ > 0. From Lemma 3 we obtain that for

1

arbitrary fixed £ > 0 function G¢(-) belongs to the space Sy .

The following assertion is valid.

1
Theorem 3. If f from (S]) is « real-valued functional, then for Cauchy
1

problem (5), (13) i the space (Sf )" there exists a solution, that is uniqgue,
differentiable on t, infinite differentiuble on x i ordinary sense, and it satisfies

the following conditions:

HF [%u] = %F[’u],t > 0
2) U‘(tam) = Gt(m) * f (tix) € L.

FProof. Suppose, that for solutions of equation (5) in the space (Sf ) the con-
dition 1) of this theorem is valid. Since

Yo 31%9 Vi>0: (P(ta gc?)ua ‘P) = (Qﬂ)n(P(tag)ﬁ'a @)7

1
(here and further §§ = F[u]), then equation (5) in the space (S}’ ) is equivalent

to equation

o _

o P(t, )3, t>0 (14)
in the space (§%)’. The initial condition (13) is valid if and only if
r
GV
a(t, - . 15
@), 1o S (15)

1

Thus, question on correct solvability in the space (S;")' of the Cauchy
problem (5), (13) is equivalent to the question on correct solvability in the
space (S1)’ of the Cauchy problem (14), (15).

=
Note, that (1<) is a differential equation with separable variables. lts gen-
eral solution is

@(t,) = C()9(-), t>0. (16)
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Taking into consideration assertion of Lemma 4 and condition (15), we
obtain from (16) that @(t,-) = f8(-),# > 0 is a solution of Cauchy prob-
lem (14), (15) in the space (§1)'. Uniqueness of this solutions is proved by
contradiction. !

According to Lemma 3 and equality (4) we obtain that

-

”‘(t&') = Gt() * f& f € (Sf),e t> 0.
Since f is a real-valued functional, then from assertion 2) of Theorem 2
and from Lemma 5 we obtain that

W) _(De)) s, resiy, >0

From here, taking into consideration that f is real-valued functional from

1
(S7 ), and from Corollary 1 and equality (4), we obtain that

Vi>0:
[ 2] = FiAr[ 2.6u0] = FIAS (Flou0))
= 2 (rler+ 1) = 2rwl

Thus, condition 1) of this theorem is valid for the solution of the Cauchy
1

problem (5), (13) in the space (S ).

1t follows from Theorem 2 and Lemma 5 that the solution of the Cauchy
problem (5), (13) is differentiable on £ and infinite differentiable on & in ordi-
nary sense.

Theorem 3 is proved. O

1 1

Note that if f from (S;" )’ is a convolutor in the space S7", then correspon-
1

ding solution of the Cauchy problem (5), (13) is an element of Sf_" for arbitrary
fixed ¢ >> 0. This solution satisfies equation (5) in ordinary sense, if instead of

operator BY we consider its narrowing on the space S (here S is a Schwartz

space [1]).
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