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Abstract. Neurons in the brain receive synaptic inputs delivered as random
trains. Mathematical theory was developed to relate the rate of threshold
crossings with statistics of membrane fluctuations evoked by random point
input process. Integrate-and-fire neuronal model was used to check validity
of theoretical results. Mathematical theory approximated firing rate for low
level of activity and showed that dependence of threshold crossings on mean
rate of membrane potential change brings about very fast response to small
signals.
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1 Introduction

Communication between neurons takes place via stochastic spike trains. Since
synaptic transmission itself is random [1], the processing in neuronal sys-
tems unavoidably becomes stochastic. Indeed, intracellular recordings i vivo
have revealed strong stochastic membrane potential fluctuations [2, 3]. To
understand the principles of neuronal information processing it is necessary to
describe the influence which stochastic signals have on the statistical properties
of membrane potential and firing.

This problem was introduced several decades ago, when simplified inte-

grate-and-fire models of neurons receiving stochastic inputs were analyzed [4].
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Later work steadily broadened the scope of analysis by introducing leaky in-
tegrate-and-fire models [5], by applying techniques for calculation of firing
statistics [6], and recently by analyzing nonstationary inputs [7] and correlated
inputs [8]. The question of how the signal detection depends on the properties
of noise was intensively studied in a range of natural and artificial systems
[5, 10] including neurons [11]. 1n this work, we investigated how the detection
of single postsynaptic potential is influenced by the strength of noise in the
model of integrate-and-fire neurons. 1t was shown that a population of similar
neurons can response very fast to small signals imbedded in noise.

2 Model Definition and Mathematical Description

We used a system of simplified one-compartment model neurons in which
spike generation occurs when the fluctuating membrane potential crosses a
threshold level. Although simple, threshold crossings in such a leaky integrate-
and-fire system can be made similar to the firing of more realistic neuronal
models with Hodgkin-Huxley spike generating mechanism [12]. Our simpli-
fied system was governed by equations that described the dynamics of neuronal
membrane potential, V, (as deviation from the resting potential):

dVidt = -Vt + () /C. (1)

Here, T, is the membrane time constant {ms), €' is the neuron’s capaci-
tance (uF'), and input 5(2) = 3 a;3(¢ — ¢;). The function s(# — ;) describes
7

the time course of unitary synaptic current as an exponential, exp [—(t—tj)/’rs] ,
where 7, is the synaptic time constant; 3(f — #;) is equal to 0 if £ < ¢;. The
random amplitude of synaptic current is a, and #; is the arrival time of the
synaptic event, j.

The probability to cross a given threshold level, V4, from below with some
rate of potential change, V! = dV/d¥, is equal to w (V?, Vi, )8V 8V, where uy
is the joint probability density for membrane potential and its rate of change.

After noticing that 8V = V'8, we can obtain an expression for the rate of
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threshold crossings from below [13, 14]:
o0
fi= [V vaviav
O

Let us consider a case when the neuron receives a single synaptic input
with amplitude A, "signal”, embedded in stationary random input. The rate
of threshold crossings, fi, also describes a response of a pool of similar neu-
rons receiving single synaptic input as a shared input. Deterministic “signal”
changes the threshold for action potential and mean rate of membrane poten-
tial change, but leaves other statistics of the membrane potential unchanged.
For stationary stochastic input, the membrane potential and its rate of change
are independent variables; thus, wy is equal to a product of two probability
densities. When the total synaptic input rate is high, these probability densities
may be approximated by Gaussian function [8]. After taking the integral the
expression for the rate of threshold crossings becomes:

1 exp [_ (Ve — )2
V2roy 203, )
) 2

v/ ; v/
X ﬁw[o%,exp (— 20—%’) +'rovr‘/§erﬁc(— v@ovf)]-

In the latter equation oy and oy are standard deviations for membrane

fi=

potential and the rate of change accordingly, r is the postsynaptic potential in
response to “signal” synaptic input, and erfc is the complementary error func-
tion. Postsynaptic potential, r, can be calculated by integrating equation (1).

For synaptic current g the postsynaptic potential:

v = TsTm [ exp(—{t — to}7s) —exp(—{t — to}/7m)] / [C(ts — tm)],

and r = Av.

The standard deviation for ¥ and ¥’ can be obtained from auto-correlation
function. The membrane potential correlation function, k(%;,%5), was calcu-
lated previously [8] by comparing characteristic functionals [14, 15] derived
for membrane potential as a continuous stochastic process and as a random
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point process generated by input trains [8]:

k(t1,19) =(a® + 0?) j g1 (vt — )ty — t)dt
(3)

where g, and o, are mean and standard deviation for synaptic amplitudes with
normal distribution, gy is the total input rate, and g2 is correlation function for

the input trains. In case when the input trains are stationary and uncorrelated

[B]:
k(r) = 0% [roexp (= I7|/7.) — Fmexp (= I7l/7m)

where 1 =#; — # and

OV = TmTs {(aﬁ + 0?)91/(2{?}7; + Ts})] 1f2/0-

Consequently, the standard deviation for V/: oy = o/ (7,,7,) /2.
Simulations were done in order to check applicability of the analytical
results. Neuronal model had leak conductance equal to 2n.S, membrane time
constant was 5 ms, and synaptic time constant was 3 ms. The total synaptic
input rate was 10 kHz. The distribution for synaptic amplitudes was normal
and had mean equal to 0; thus, mean membrane potential was the same as at
rest. The standard deviation value was changed to get different noise strength.
The ”signal” synaptic input with the amplitude A = 0.03586 nA was injected
with the period of 50 ms. Equation (1) was solved numerically using the
implicit trapezoidal scheme [16] with a time step of 0.05 ms. Synaptic in-
put was simulated by generating continuous stochastic process with Gaussian
probability density and exponentially decaying correlation function [17]. The
correlation function was calculated by using equation (3) with 8 substituted for
i according to the theoretical description of the process for the net synaptic
input [8]. In these simulations, spike event was registered when the membrane

potential crossed the threshold level equal to 15 mV. The crossings also evoked
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hyperpolarizing current by activating conductance with the reversal potential
of -30 mV and with decay time constant of 5 ms. The conductance amplitude
was equal to the leak conductance. Runs of 5000 s were simulated to collect
statistics for firing rate.

3 Influence of Strength of Noise on the Response

To investigate how the integration of small signals in neurons depends on the
strength of noise we calculated the rate of threshold level crossings. Small
”signal” synaptic input causing postsynaptic response with the amplitude of
5 mV was injected (Fig. 1, lower panel). The strength of noise was changed

by choosing different values for the standard deviation of synaptic amplitude.
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Fig. 1. Dependence of the firing rate on time after injection of “signal”

synaptic input (lower panel). Different strength of the noise was achieved

by changing standard deviation of the synaptic amplitude. Note very fast
response in case of stronger noise.

As can be seen from Fig. 1 the dependency of firing rate on time changed
with different strength of the noise. For weak noise, the change of firing rate
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in time was reminiscent of evoked ”signal” postsynaptic membrane potential
(Fig. 1, lower panel); although, the maximum of firing rate occurred earlier.
For stronger noise, the rate jumped just at the moment of injection of "’signal”
synaptic input when mean membrane potential was not changed yet. In agree-
ment with equation (2), this means that the threshold crossings are strongly
dependent on the mean rate of potential change.

From a physical point of view this can be explained as follows. 1n case of
stronger noise membrane potential fluctuations occur near the threshold quite
often. However, because the firing rate is still low, fluctuations approach the
threshold with a low rate. At the moment of injection of “signal” input, the
mean rate of potential change jumps to a new value, and, thus, the probability
to cross the threshold increases very sharply.

Equation (2) not only describes the mechanism for the fast response, but
also approximates the firing rate quite well. The approximation was better
for very low firing rate since the model neuron included spile afterhyperpo-
larization, which repolarized membrane potential below the threshold level.
For faster firing rates this brought about discrepancy with the mathematical
prediction because some threshold crossings were eliminated.

The results presented suggest that ubiquitous spontaneous activity in the
brain could serve several functions: first, the noise can help in detecting small
subthreshold signals; second, fluctuations of membrane potential could keep
neurons ready for very fast response to subthreshold signals.

4 Discussion

We used a simple integrate-and-fire neuronal model without resetting. Such
threshold model was investigated before and equations for the rate of thresh-
old crossings were derived for periodical input [18]. However, in the brain,
unitary synaptic currents transfer information between neurons. 1n this study
we analyzed temporal dependency of probability to fire in response to a single
synaptic current imbedded in noise. We noticed that a very fast increase in
firing probability takes place after the onset of a single synaptic current.
Changes of firing rate in response to single synaptic currents were analyzed

theoretically in integrate-and-fire neurons for high firing rates [19]. The theory
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derived required numerical solution of integral equations [19] and did not allow
explicit analysis of firing rate dependency on stimulus parameters. 1n our
study, the derived equation (2) describes a relation between the probability to
cross the threshold and the rate of change of mean membrane potential induced
by a synaptic current. Although fast firing response to the step onset of injected
current was reported previously [20], a possibility for a single synaptic current

to cause fast changes in mean firing rate was not acknowledged.

5 Conclusions

The derived mathematical relations together with modeling results suggest that
a population of neurons receiving stochastic input can respond to a subthresh-
old shared synaptic input with a very fast increase of the mean firing rate.
The effect is brought about by stochastic membrane fluctuations near the firing
threshold at the moment of onset of the shared input.
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