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Abstract. The matrices of a substructure ensuring minimum modal errors of
the whole structure are obtained by using optimization approach. The mass
and stiffness matrices of a small component domain of selected dimension
are obtained by applying the modal synthesis of a limited number of close-
to-exact modes such that after assembling a larger joined domain model the
modal convergence rate of the latter should be as high as possible. The
goal is achieved by formulating the minimization problem for the penalty-
type target function representing the cumulative relativemodal error of the
joined domain and by applying the gradient descent minimization method.
After the optimum matrices of a component domain are obtained, they can
be used in any structure as higher-order elements or super-elements. The
“combined” mass matrices can be treated as a special case of the presented
approach. The performance of the obtained dynamic models isdemon-
strated by solving short wave pulse propagation problems byusing a only
few nodal points per pulse length.

Keywords: modal synthesis, modal error, wave propagation.

1 Introduction

Modelling of short wave propagation processes is of key importance forso-

lution of very different engineering problems. The measurement methods

based on wave phenomena present an important and challenging field of wave

modelling applications. Identification and recognition of defects in continuous

structures, detection of impurity particles or coagulation centres in liquids,
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recognition of geometric shapes of objects by measuring reflections of waves,

etc., can be mentioned as examples. The term “short wave” is actually the

matter of a scale, however, it is usually understood that the length of the

short wave is hundreds or thousands times less than the dimensions of the

structure in which the propagation of the wave is analysed. The inherent

distortions of propagating short wave pulses in discrete meshes, sometimes

physically interpreted as “refractions form the nodes” usually are avoided by

using very dense meshes that make transient short waves and wave pulses

simulation computations complex and requiring huge computational resources.

The main difficulties arising in ultrasonic measurement process simulation

are caused by: a) computational models of very large dimensionality (the

smallest 2D problems of any practical value require to use models consisting of

106–107 elements); b) very large number of time integration steps (inversely

proportional to the linear dimension of elements); c) adequacy of continua-

based models to reality.

The correct representation of transient short wave pulses in discretemodels

is possible if all the modes of the continuous domain the frequencies of which

are close to spectral components of the wave pulse are represented correctly by

the discrete model of the domain. In other words, the refinement of the model

has to be dense enough to ensure the convergence of the above mentioned

modes. If the convergence of necessary modes could be achieved in a mesh

having less nodal points, such a rough mesh could be used for modelling the

short wave propagation with no losses in accuracy.

Already in 1980-s different modal convergence features of dynamic mo-

dels obtained by using lumped and consistent forms of mass matrices have

been noticed [1]. However, only during the last decade this problem has

been examined more thoroughly and practical recommendations regarding the

form of the mass matrix have been presented. The simplest way to improve

the modal convergence of dynamic models is to use the “combined” form of

the mass matrix obtained as a weighted superposition of the two traditional

forms, [2]. In [3] the dispersion effects of discrete solutions of propagating

waves have been analysed with the consistent, lumped and higher-order mass

matrices. The penta-diagonal mass matrix with reduced coupling has been
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obtained yielding improved phase and group errors, and the combined mass

matrix has been shown to improve the dispersion characteristics of both the

reduced and full integration elements. The resulting mass matrices are non-

diagonal, however, considerable savings are obtained because of thepossibility

to use elements of larger linear dimensions. Approaches concentrating on

improvement of modal convergence properties and retaining the diagonalform

of the mass matrix have been presented as well, [4]–[7]. The basic idea was the

re-distribution of the amounts of mass between the diagonal entries of higher

order elements.

The modal synthesis is a modelling technique which permits a complex

structure to be represented by a reduced number of degrees of freedom (DOF).

In most cases, the substructures are described in terms of a limited number

of modal displacements and subsequently the coupled system of equations

describing all the structure is obtained. The problem is that by direct coupling

of modes of free substructures, the modal convergence of the resultingdynamic

model of the whole structure is not always good. Appropriate methods of

substructure coupling have been developed [8, 9]. As a special case, modal

synthesis may be used in order to obtain the matrices of elements or substruc-

tures having the prescribed dynamic properties.

Generally, the non-diagonal mass matrices can be designed to produce

models of higher modal convergence rate than the diagonal ones. They require

more computational effort to obtain the transient solution by time integration

of the dynamic equations, however, the total efficiency of the scheme improves

as the required time step size becomes also greater with the increase of the size

of elements. By selecting the appropriate form of structural matrices, the time

step ensuring stability of an explicit integration scheme may become 2–5 times

larger as it was necessary when the models were based on the lumped mass

matrix. In this way the accuracy requirement and not the algorithmic stability

governs the time step size selection.

This work presents a systematic way for obtaining the mass and stiffness

matrices by modal synthesis of a limited number of close-to exact modes of

a free component domain. Exact or very close-to-exact modal shapesare

projected on a rough mesh the number of DOF of which is equal to the number
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of the modes taken into consideration. The way the exact modal shapes canbe

projected upon a rough mesh is not unique, and the proper method of approx-

imation ensures the optimum result. The requirement is to obtain the matrices

of a small component domain of selected dimension such that after assembling

the component domain matrices to a larger model the modal convergence of

the latter should be as high as possible. The goal is achieved by formulating the

minimization problem for the penalty function representing the modal error of

the assembled domain and by applying the gradient descent method in order to

minimize it. After the optimum matrices of a component domain are obtained,

they can be used in any structure as higher-order elements or super-elements.

2 Lumped, consistent and combined mass matrices

Finite element models of small vibrations and waves in elastic or acoustic

continua are presented by the well known semi-discrete structural dynamic

equation as

[M]{Ü} + [C]{U̇} + [K]{U} =
{
R(t)

}
, (1)

where [M], [K] – structural mass and stiffness matrices,R – nodal vector

containing the lumped forces. The structural damping forces are assumedto

be very small and expressed by means of the proportional damping matrix

[C] = α[M]. In many practical problems of ultrasonic measurement they can

be neglected by assumingα = 0.

When using explicit techniques for solving equation (1), practically ac-

ceptable solutions of a propagating wave pulse are obtained if at least 15–17

mesh points per wavelength of the highest harmonic component are used. The

latter estimation is valid for models with the “lumped” (diagonal) version of

the mass matrix obtained by distributing the element mass in equal portions

between the nodes of the element. Very similar element size estimation is valid

for consistent mass matrices. Though consistent mass matrix models usually

give better convergence for lower modes, the convergence of highermodes is

not significantly better as in the case of the lumped mass matrix. Therefore, in

practice lumped mass matrices are commonly used as requiring less computa-

tional resource by using explicit time integration numerical schemes.
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It well known that lumped mass matrices[Me
L] have a tendency to produce

the diminished values of all modal frequencies. On the contrary, consistent

mass matrices[Me
C ] produce enlarged modal frequency values in the lower

and mid-frequency range. The optimum choice often is the “combined” mass

matrix obtained as weighted sum of the two. For uni-dimensional elements the

optimum choice is close to[Me
comb] = 0.53[Me

C ]+0.47[Me
L]. The sum of the

weight coefficients at the lumped and consistent components is always unity,

however, their values are rather individual for different types of elements.

Practically, by using the combined mass matrix the performance of the model

can be improved significantly. The linear dimension of the element can be

increased to 3–5 times in comparison with the element dimensions required by

the lumped mass matrix models. A deeper numerical study is presented further

in Sections 5.1, 5.2.

3 Matrices of domains obtained by modal synthesis

The quality of performance of transient short wave propagation models de-

pends heavily upon the convergence rate of modal frequencies over all range,

including mid-frequency and higher modes of the domain.

Definition 1. An “ideal” n×n discrete model of wave propagation in a closed

domain represents the modal frequencies of alln modes close enough to exact

modal frequencies of the continuous domain of the same shape. Moreover, the

correct representation of alln modal frequencies should be satisfied for any

value ofn.

Under such condition the “wavelength against frequency” relationship (“the

dispersion characteristic”) of the discrete model of a linear domain is a straight

line and the model is able to represent the maximum number of spectral com-

ponents of the investigated propagating wave package correctly. Unfortu-

nately, in reality the problem of making the model close to “ideal” is not

simple and, may be, it is impossible to satisfy exactly the requirements posed

in the above mentioned definition. However, discrete models presenting good

approximations to “ideal” ones can be built. Their matrices are non-diagonal,

however, the element sizes can be increased significantly.
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Consider an unconstrained elastic or acoustic domain meshed uniformly

and presented by structural matrices of dimensionN×N as[M]N×N , [K]N×N .

In the following we call it the “original model”. By solving the eigenvalue

problem we obtain modal frequenciesω1, ω2, . . . , ωN and modal shapes[Y] =[
{y1}, {y2}, . . . , {yN}

]
. Assume that firstn modal frequencies are good

enough approximations to their exact values, however,n ≪ N . Now we build

a new “rough model” of dimensionn × n of the same domain. The matrices

of the rough model possessing alln values of natural frequencies equal to

those calculated from the original model can be obtained by using the modal

synthesis technique as

[M̃] =
(
[Ỹ]T

)−1
[Ỹ]−1,

[K̃] =
(
[Ỹ]T

)−1
[diag(ω2

1, ω
2
2, . . . , ω

2
N )][Ỹ]−1

(2)

whereω1, ω2, . . . , ωn are the lower modal frequencies of the original model

of dimensionN × N , and[Ỹ] =
[
{y1}, {y2}, . . . , {yn}

]
– the lower modal

shapes of the original model approximated in the rough mesh. If the number

of linearly independent modal shapes modesn and the number of DOF of the

rough model are equal,rank
(
[M̃]

)
= n and no problems occur in calculating

[M̃]−1 necessary for implementing the direct integration scheme.

Relations (2) ensure that alln modal frequencies of the new rough model

of the domain have the values very close to exact, and, as a stand-alone model,

it is “ideal” . However, our goal is to use further the obtained model as a com-

ponent domain in order to compose larger joined domains. Unfortunately, the

modal frequencies of the joined domain composed of several such component

domains, as a rule, will not be close to the exact values. The problem to be

solved now is as follows:

Problem 1. Obtain the matrices[M̃], [K̃] of a component domain such that

the joined domain of any geometric shape formed by assembling together the

matrices of component domains would have as many as possible close-to-exact

values of modal frequencies.

The key to the solution of the Problem 1 is that the matrices synthesized

by using (2) are not unique. Though we know all exact values of the modal

frequencies of the rough model, the higher modal shapes in the rough meshare
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not able to approximate closely the exact modal shapes available in the original

mesh. Rather rough approximations inevitably have to be made. In Fig. 1 the

explanation for the 1D case is presented that can be easily extended to 2D and

3D cases as well.

Fig. 1. Approximation of the exact modal shape of a 1D domain in a rough
mesh.

The least squares approximation is obtained by using the error minimum

condition fori-th modal shape as

∂

∂{ỹe
i }

( Nel∑

e=1

∫

V e

({
yi(x, y, z)

}
−

[
Ñe(x, y, z)

]
{ỹe

i }
)T

({
yi(x, y, z)

}
−

[
Ñe(x, y, z)

]
{ỹe

i }
)
dV

)
= 0,

(3)

where
{
yi(x, y, z)

}
is the displacement of point(x, y, z) on the i-th exact

modal shape,{ỹe
i } – displacements ofi-th modal shape of elemente in the

rough model,
[
Ñe(x, y, z)

]
– form functions interpolating the displacement

field within elemente of the rough model,Nel – number of elements of the

rough model.

From (3) the equations for each element are obtained as

[Ãe]{ỹe} = {b̃e},
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where

[Ãe] =

∫

V e

[Ñe]T[Ñe]dV, {b̃e} =

∫

V e

[Ñe]T
{
yi(x, y, z)

}
dV.

The element matrices[Ãe], {b̃e} are assembled in order to form the struc-

tural matrices of the entire component domain and finallyi-th modal shape of

the rough model is obtained by solving the equation

[Ã]{ỹi} = {b̃}. (4)

The modal shapes in the rough mesh can be obtained by using different

approximating functions[Ñe]. As the first choice we take form functions[Ñe
c]

of the element. In this way we take into account the interpolated displace-

ments over all volume of the element in order to determine the approximation

error (3). Alternatively, functions[Ñe
δ] may be used containingδ-functions

Ve

ne
δ(xi, yi, zi), whereVe – volume of the element,ne – number of nodes of the

element. By using[Ñe
δ] as interpolation functions, only displacements of nodes

of the element are taken into account when determining the approximation

error (3).

For the 1D element the above mentioned functions read as[Ñe
c] =[

1−
x

l
;
x

l

]
; [Ñe

δ] =
[Al

2
δ(0);

Al

2
δ(l)

]
. It is worth to notice that[Ñe

c] and[Ñe
δ]

are the form functions used in consistent and lumped mass matrix formulations

correspondingly, so the analogy between the two forms of error approximation

and the two forms of the mass matrix is evident.

The best result is obtained by combining both types of functions as[Ñe] =

βl
i[Ñ

e
δ] + (1 − βl

i)[Ñ
e
c], where0 < βl

i < 1 is the coefficient used for appro-

ximation ofi-th modal shape. In practical computation, the coefficient matrix

and the right-hand side vector used in (4) have different values for each mode

and are obtained by combining the consistent and lumped forms of matrix[Ãe]

as

[Ã] = βl
i[Ãl] + (1 − βl

i)[Ãc], (5)

and of vector{b̃e} as

[b̃] = βl
i

Ve

ne
{ỹil} + (1 − βl

i)[b̃c], (6)
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where [Ãc], [b̃c] – the consistent forms of the matrix and vector obtained

by using approximation functions[Ñe
c], [Ãl] – lumped form of the matrix

obtained by using approximation functions[Ñe
δ], {ỹil} – i-th modal shape of

the rough model the displacements of which coincide with the displacements

of exact modal shapes at nodal points of the rough mesh, see curve (-o-) in

Fig. 1.

The values ofβl
i may be selected for eachi-th mode individually, or the

same value for all modes may be used. Anyway, the selection ofβl
i value offers

a certain amount of flexibility in defining the modal shapes of the rough model

and may be used as “design parameters” in order to obtain the model of a com-

ponent domain able to produce the best spectral properties of joined domains.

Simultaneously, the correct physical essence of the modes approximated inthe

rough mesh is preserved at any value ofβl
i ∈ [0; 1].

4 Optimum spectral properties of component domains

A joined domain obtained by assembling together “ideal” component domains

may have significant modal errors. Much better spectral properties of the

joined domain may be obtained by assembling component domains that have

slightly distorted modal spectrum with respect to the “ideal” one. In following

we develop asystematic approach to optimum modification of spectral prop-

erties of a component domain in order to produce the minimum modal error of

joined domains.

Consider a component domain the matrices of which are obtained by using

(2). Itsn modal frequencies can be presented as0, . . . , 0, ωr+1, ωr+2, . . . , ωn,

where r – number of rigid body modes, and itsn modes read as[Ỹ] =[
{ỹ1}, . . . , {ỹr}, {ỹr+1}, . . . , {ỹn}

]
. The spectral properties of the model

of the domain can be slightly changed by modifying the values of modal

frequencies, as well as, the modal shapes. The modifications must preserve the

physical essence of the finite element model of an unconstrained domain, i.e.,

the lowerr modal frequencies have to be zeroes, and the modal shape vectors

have to be orthogonal and express essentially the same shapes as before the

modification. Also the total mass of the domain must remain unchanged.

The above mentioned requirements will be satisfied if the modal frequen-
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cies will be modified as
[
diag(0, . . . , 0, αω

r+1ω
2
r+1, α

ω
r+2ω

2
r+2, . . . , α

ω
r+nω2

n)
]

=
[
diag(ω2)

]
{αω}

(7)

and the modal shapes modified as
[
{ỹ1}, . . . , {ỹr}, α

y
r+1{ỹr+1}, . . . , α

y
n{ỹn}

]
= [Ỹ]{αy}, (8)

where{αω}T= {1, . . . , 1, αω
r+1, . . . , α

ω
n}, {αy}T= {1, . . . , 1, αy

r+1, . . . , α
y
n}

are coefficients the values of most of which are close to unity.

Finally, we reformulate the above mentioned Problem 1 as follows:Find

the values of coefficients{αω}, {αy} and βl
i, i = 1, . . . , n, determining the

modal properties of a single component domain that minimize errors of modal

frequencies of the joined domain obtained by joining together several compo-

nent domains.

Consider a joined domain presented by structural matrices of dimension

N̂ × N̂ as [M̂]
N̂×N̂

, [K̂]
N̂×N̂

assembled of component domain matrices

[M̃]n×n, [K̃]n×n. The solution of the eigenvalue problem of the joined do-

main gives the modal frequencieŝω1, ω̂2, . . . , ω̂N̂
and modal shapes[Ŷ] =[

{ŷ1}, {ŷ2}, . . . , {ŷN̂
}
]
.

The modal error minimization problem can be formally presented as

min
{αω},{αy},βl

k

Ψ, (9)

where the penalty-type target function presents the cumulative modal error and

reads asΨ =
N̂∑

i=r+1

( ω̂i − ω̂i0

ω̂i0

)2
, whereω̂i – modal frequency ofi-th mode

of the joined domain,̂ωi0 – exact value of the modal frequency ofi-th mode,

known theoretically or obtained by using a highly refined finite element model.

The formulation of Problem 1 does not fix exactly how many component

domains the joined domain should include and what should be its geometric

shape. However, the goal is that the by assembling the obtained component

to a joined domain of any geometric shape the same percentage of correctly

represented modal frequencies should be ensured.

Practically we solve the problem step-by-step as follows. If the joined

domain consists of only one component domain, the solution{αω} = 1,

12



Optimum Mass Matrices

{αy} = 1, βl
i = 1, i = 1, . . . , n gives the minimum of the target function

Ψ = 0. Then the joined domain model consisting of two component domains

is analysed and problem (7) is solved by taking the previously obtained solu-

tion as initial approximation. After that we analyse the model made of three

component domains, etc. At each step, except the very first one, the exact

minimum of the target functionΨ is not easy to find. The target function

minimization process can be facilitated by applying the gradient techniques.

For implementing the gradient descent method, the gradients
∂Ψ

∂{αω}
,

∂Ψ

∂{αy}
,

∂Ψ

∂βl
j

, j = 1, . . . , n are employed. They are obtained by

using variation relations as

∂Ψ =
N̂∑

i=1

ω̂i − ω̂i0

ω̂2
i0ω̂i

∂ω̂2
i , (10)

∂ω̂2
i = {ŷi}

T
(∂[K̂]

∂α
− ω2

i

∂[M̂]

∂α

)
{ŷi}δα,

α = αy
j , α

ω
j , βl

j , j = 1, . . . , n

(11)

By combining (10), (11) the gradients are expressed as

∂Ψ

∂αy
j

=
N̂∑

i=1

ω̂i − ω̂i0

ω̂2
i0ω̂i

{ŷi}
T

(
∂[K̂]

∂αy
j

− ω2
i

∂[M̂]

∂αy
j

)
{ŷi},

∂Ψ

∂αω
j

=
N̂∑

i=1

ω̂i − ω̂i0

ω̂2
i0ω̂i

{ŷi}
T

(
∂[K̂]

∂αω
j

− ω2
i

∂[M̂]

∂αω
j

)
{ŷi},

∂Ψ

∂βl
j

=
N̂∑

i=1

ω̂i − ω̂i0

ω̂2
i0ω̂i

{ŷi}
T

(
∂[K̂]

∂βl
j

− ω2
i

∂[M̂]

∂βl
j

)
{ŷi}.

(12)

The derivatives
∂[K̂]

∂αy
j

,
∂[M̂]

∂αy
j

,
∂[K̂]

∂αω
j

,
∂[M̂]

∂αω
j

,
∂[K̂]

∂βl
j

,
∂[M̂]

∂βl
j

of the matrices of the

joined domain are assembled of corresponding derivatives of the matricesof

component domains
∂[K̃]

∂αy
j

,
∂[M̃]

∂αy
j

,
∂[K̃]

∂αω
j

,
∂[M̃]

∂αω
j

,
∂[K̃]

∂βl
j

,
∂[M̃]

∂βl
j

as usual struc-

tural matrices.
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5 Numerical investigations

5.1 Dynamic properties of models using lumped, consistent and
combined mass matrices of a uni-dimensional waveguide

We begin the modal convergence analysis with the uni-dimensional waveguide

models. Modal frequencies of the same uni-dimensional domain obtained by

using models of different mesh density are presented in Fig. 2.

Fig. 2. a – modal frequencies of the same uni-dimensional domain against the
number of DOF of the model; b – relative modal frequency errors. Position

of markers correspond to modal frequencies.

Each curve in Fig. 2a corresponds to the discrete model having a diffe-

rent number of DOF and demonstrates how the value of a particular modal

frequency depends upon the number of DOF of the model. By increasing

the number of DOF, the curves are asymptotically approaching the dashed

lines marked by crosses that present theoretical values of modal frequencies
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obtained asωi0 =
π(i − 1)

l

√
E
ρ

, whereE, ρ – stiffness modulus and density

of the material,l – length of the waveguide,i – number of the mode. Markers

on the same solid line correspond to frequencies of different modes obtained

by using the same model.

The lumped mass matrix[ML] models always give diminished values of

modal frequencies, whereas the consistent mass matrices[MC ] always cause

the oversized values. Generally, the behaviour of models using the combined

mass matrix[M] = kC [MC ] + kL[ML] depends upon the weight coefficient

valueskC , kL. Here we present the results obtained by using one of reasonable

choices of the combined mass matrix ensuring the minimum relative error of

lower and middle modal frequencies. In order not to overload the picture,only

modal frequencies of the3rd, 4th, 5th an6th modes are presented in Fig. 2a

for models using lumped, consistent and combined forms of the mass matrix.

However, the same character of relationships holds for all remaining modesas

well. The left-hand end of each curve in Fig. 2a presents the highest modal

frequency obtainable by using the model of the particular dimension.

The relative modal errors as
ωi − ωi0

ωi0
may be examined in Fig. 2b. The

error of the zero-mode(i = l) is negligible in the case of any form of the

mass matrix as the eigenvalue very close to zero is always obtained because

of the singular stiffness matrix of an unsupported structure. The relativeerrors

of the very highest frequency given by using models of any dimension are

constant and individual for each form of the mass matrix. The values of the

highest modal frequency errors are∼ 37% for the lumped mass matrix and

only ∼ 10% for the consistent one. However, the maximum errors (∼ 20%)

obtained by using the consistent matrices are in the middle modal frequency

range rather in the higher one. Very similar modal frequency error values in

the middle frequency range are obtained also by using the lumped mass matrix.

Though the total modal error of consistent mass matrix models is less than of

the lumped ones, practically both models produce very similar level of errors

in the wave pulse propagation modelling.

The performance of the considered models in short wave pulse propagation

modelling is illustrated in Fig. 3. For the sake of comparison in Fig. 3a the

“exact” solution is presented. Practically, the solution obtained by using a
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Fig. 3. Typical distortions of the shape of a propagating wave pulse in a
rough equally spaced mesh: a – “exact” solution of a propagating wave pulse
excidted by one period of harmonic forcing law at the left-hand end of the
waveguide; b – obtained by using roughly meshed model (12 nodal points
per wavelenght) with the lumped mass matrix; c – obtained by using roughly
meshed model with the consistent mass matrix; d – obtained byusing roughly
meshed model with the combined mass matrix as[Me]=0.53[Me

C ]+0.47[Me
L].

dense mesh (∼ 35 nodes per wavelength) can be reasonably treated as exact

one for comparison purposes in order to evaluate the accuracy of solutions

obtained in coarser meshes. The shape of the wave is presented at the time

point of the fourth passage of the wave along the waveguide (the wave is three

times refracted from the free ends of the waveguide, see the scheme of the

“path of the wave” at the top of the figure).

In Fig. 3b,c the distorted wave pulse shapes corresponding to the lumped

and consistent mass matrix models are presented. The character of distortions

is different in each case. The lumped mass matrix models are inclined to

generate the numerical noise that follows the main signal, whereas the con-

sistent matrix models produce the numerical noise propagating in advance

of the pulse. However, the amount of distortion is very similar. A rough

mesh having 12 nodes per pulse length has been selected for demonstrating

the behavior of the models in order to make the distortions clearly visible. The

same characteristic numerical noise is more or less observed in models of any

mesh roughness. The combined mass matrix models produce errors presented

by lines marked by dots in Fig. 2b. While having errors of∼ 20% for the very
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highest frequency, their modal errors in lower and middle frequency range

are about 10 times less when compared with the two traditional models. The

practical result of this can be seen in Fig. 3d demonstrating the distorted pulse

shape at the same propagation conditions and mesh density as in Fig. 3b,c.

As mentioned above, here we analyze the mesh density of 12 nodes per wave

pulse length excited by single period of a harmonic signal. However, it is

worth to notice that the frequency highest harmonic component participating

in presenting the single-period shaped pulse is at least three times greater than

the main frequency. So, practically we used only∼ 4 nodes per shortest

wavelength.

The total modal error can be minimized by choosing the values of coef-

ficients kC = 0.74; kL = 0.26. However, the results presented in Fig. 4

demonstrate that the model gives much greater pulse shape distortion as in

the casekC = 0.53; kL = 0.47 presented in Fig. 3d. Obviously, it is much

Fig. 4. Relative modal frequency errors of an uni-dimensional waveguide (a)
and distortion of propagating wave pulse (b) in the case of the combined mass
matrix [M] = 0.74[MC ] + 0.26[ML] minimizing the cumulative (SRSS)

relative modal error.

better to ensure negligible modal errors in low and middle frequency range

than to “distribute” the error among all modes. The latter conclusion can be

considered as a general one and may be used for establishing the modal error

minimization criteria for all types of the synthesized mass matrices.

5.2 Properties of models using lumped, consistent and combined
mass matrices of an acoustic problem in a square shaped closed
cavity

As a two-dimensional example we present the modal error relationships for

the acoustic problem formulated in a square shaped closed cavity. The exact
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modal frequencies can be expressed asω(m,n)0 = π

√
E

ρ

√(m

a

)2
+

(n

b

)2
,

wherea, b – lengths of the sides of the rectangular. Here the s quare domain is

being analysed,a = b. The basic properties of models described by using

different forms of mass matrices are briefly explained in Fig. 5. Relative

modal frequency errors of the square domain obtained by using the consistent,

lumped and combined mass matrices are presented in Fig. 5a. Qualitatively,

the general character of the curves is very close to the results obtained for

a uni-dimensional domain presented in Fig. 2b. Evidently, there exists an

optimum weighted combination of the combined and lumped matrices[M] =

kC [MC ] + kL[ML]. The reasoning for the choice of valuekC can be under-

stood from Fig. 5b, where the relationships of average modal frequency error

taken as square root of sum of squares
1

N

√
N∑

i=1

(ωi − ωi0

ωi0

)2
against the value

kC are presented. Each curve describes the cumulative error values obtained by

taking sums over a different number of modes:N (summation over all modes),

3∗N/4, N/2, etc. As it is impossible to get very small error values over all

modal frequency range, the optimum values ofkC are slightly different in each

case. Practically, for minimum numerically caused distortion of propagating

wave pulses a reasonable choice iskC = 0.7, kL = 1 − kC = 0.3.

Fig. 5. a – modal frequency errors of an acoustic problem in 2Dsquare shaped
closed cavity; b – relationships of average relative errorsof modal frequencies
against the weight coefficient of the consistent component of the combined

mass matrix.
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5.3 Optimization of the modal spectrum of component domains

Consider a wave pulse propagating along a uni-dimensional elastic waveguide.

The finite element model of the waveguide consists ofNSUB uni-dimensional

component domains joined at their ends. The domains are all identical and

presented by stiffness and mass matrices obtained by using the modal synthesis

technique described in Section 3. Examine the dynamic properties of models

of approximately the same sizeNT ≈ 60 dynamic DOF obtained by joining

together component domains the number of DOF of each isn such thatNT =

(n − 1) × NSUB + 1 ≈ 60. It means, we analyse the model consisting

of the single domain containingn = 60 dynamic DOF , or assembled of

two domains containingn = 31 dynamic DOF each, or made of 3 domains

containingn = 21 dynamic DOF each, etc.

The aim of investigation is to synthesize matrices of component domains

producing the “optimum” modal errors of joined domains (as discussed in

Subsection 5.1, minimum cumulative error is not the optimum) ensuring as

small as possible distortions of propagating wave pulses. The ultrasonic pulse

is being excited at the left-hand end by the force developed by the input trans-

ducer. As a rule, the width of the spectrum of pulses usually used ultrasonic

measurements contain harmonic components up to2.5 − 3ω, whereω – the

frequency of the main harmonic component of the pulse.

Fig. 6. Scheme of an uni-dimensional wave pulse propagationmodel made
of NSUB component domains.

For illustrating the basic ideas we consider an uni-dimensional waveguide

model (64 nodes in total) assembled of 7 component domains having 10 nodes

each. Optimization of matrices has to be performed on the base of the penalty-
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type target function of the domain assembled of at least 3-4 component do-

mains or more. Optimization of matrices of large component domains is a

time consuming task as the modes of all joined domain have to be calculated

at each optimization step.

In Fig. 7 modal frequency errorŝ
ωi − ω̂i0

ω̂i0
of the waveguide model are

presented. As described in Section 4, component domains having all modal

frequencies equal to their exact (theoretical) values are obtained by taking the

modal frequency and modal shape correction coefficient values asαω
i = αy

i =

βl
i = 1. However, such component domain matrices assembled to a joined

domain produce poor results. Fig. 7a demonstrates the up to4% modal error

values of the joined domain d istributed over all modal frequency range. If

more component domains are used to form the joined domain, modal errors

increase even more and the model performs worse than the models using the

combined mass matrix.

Fig. 7. Modal frequency errors of the uni-dimensional waveguide model (64
nodes in total) assambled of 7 component domains of 10 nodes each: a – non-
optimized case: matrices of component domain obtained by using coefficient
valuesαω

i = αy
i = βl

i = 1; b – optimized by taking the sum over all̂N = 64
modal frequencies of the joined domain; c – optimized by taking the sum over
all N̂ = 55 modal frequencies of the joined domain (exact modal frequency
of the component domain preserved); d – optimized by taking the sum over
all N̂ = 55 modal frequencies of the joined domain (exact modal frequency

of the component domain detuned from their theoretical values).

The modal error of the joined domain is minimized by employing the

gradient method described in Section 4. If the matrices of 10-node component
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domains are designed in order to ensure the minimum of the target function

Ψ =
64∑
i=1

( ω̂i − ω̂i0

ω̂i0

)2
, (i.e., by taking the sum over̂N = 64 modes of the

joined domain), we obtain the result presented in Fig. 7b. It is clear that the

eight higher modal frequency values (comprising about∼ 12% of the total

number of modes of the model) cannot be made close enough to the theoretical

ones. Even better results are obtained by carrying out the optimization process

of the target function where the sum is taken over onlyN̂ = 55 modes, see

Fig. 7d. The minimization parameters areαω
i ; αy

i , β
l
i, i = 2, . . . , N̂ . The non-

unity αω
i values mean that the component domains have to have the modal

frequencies not equal to the theoretical ones. If we enforce the requirement

αω
i = 1 and carry out the optimization only in space of parametersαy

i ; βl
i, i =

2, . . . , N̂ , the result is presented in Fig. 7c and is significantly worse than the

one in Fig. 7d.The detuning of modal frequencies of the component domain

from their theoretical values can be regarded as an inherent requirement for

synthesizing optimum dynamic models.

It is very important that the optimized component domain models preserve

their features when being used in a joined domain models of any dimension.

Without any theoretical proof we merely present illustration of this in Fig. 8,

where the obtained 10-node component domains were used in order to make

Fig. 8. Modal error distribution in joined domains assembled of 6 (a and
c) and 24 (b and d) 11-node component domains presented by optimized
matrices: a,b – optimized by taking the sum over allN̂ = 64 modal
frequencies of the joined domain; c,d – optimized by taking the sum over

all N̂ = 55 modal frequencies of the joined domain.
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the joined domains of different size. The distribution of modal errors overall

the frequencyand the percentage of error-free modes is independent from the

dimension of the joined domain, therefore component domain matrices canbe

treated as high order well-convergent elements.

Fig. 9 presents the modal errors of a joined domain assembled of opti-

mized component domains of different size. The advantage of synthesized

component domains in comparison with the combined mass matrix is obvious.

The combined mass matrix models are able to produce about35% error free

modal frequencies of the joined domain, meanwhile the models based upon

10-node component domains provides86% of error free modal frequencies.

On the other hand, not all the sizes of component domains can be optimized to

Fig. 9. Modal errors of the joined domains assembled of several component
domains. a – 30 DOF models assembled of lumped, consistent, combined
mass matrices and optimized component domains of dimensionn = 5 and
n = 10; b – 240 DOF models assembled of component domains of dimension

n = 5, 10, 15, 20 and30.

give the result of the same quality. E.g., in our investigations we distinguished
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component domains of dimension 5 and 10 as producing the highest percent-

age of error free modes. The increase of the component domain dimension

to 15, 20 and 30 does not give any advantage as the percentage of correctly

represented modes in joined domains does not increase any more, see Fig.9b.

The performance of the 10-node component domain used in the 64 node

model of the waveguide simulating the wave pulse propagation is presented

in Fig. 10. The figure presents the shape distortion of the propagating wave

pulse after∼ 3.5 passages through the joined domain of the waveguide (see

the path of the wave at the top of Fig. 10a). 12 or even 7 nodes per pulse length

are enough for simulating the pulse propagation over quite a large distance,

Fig. 10a,b. The model actually works satisfactorily also at very rough meshes

of 5 or 4 points per pulse length, Fig. 10c,d. At the same conditions, the

conventional lumped or consistent mass matrix models produce the numerical

noise larger then the signal itself and no resemblance of the pulse shape would

be seen in the picture.

Fig. 10. Shape distortion of apropagating wave pulse in the model assembled
of seven 10-node component domains. Nodes of the mesh per pulse length:

a – 12 nodes; b – 7 nodes; c – 5 nodes; d – 4 nodes.

6 Conclusions

A regular approach has been presented for obtaining the mass and stiffness ma-

trices of component domains such that after assembling the component domain
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matrices to a larger model the convergence of modal frequencies is as highas

possible. The method is based upon the minimization of the modal frequency

errors by employing the gradient descent technique. The best performance

is obtained by using component domains the modal frequency spectrum of

which is appropriately detuned from their theoretical values. The obtained

mass matrices are non-diagonal. Once calculated, the component domain

matrices can be used to form any structure and may be interpreted as higher-

order elements or super-elements.

When compared with lumped, consistent or combined mass matrices, the

matrices obtained by modal synthesis and optimization produce significantly

better results. The models able to present very close-to-exact modal frequency

values of more than∼ 80% of the total modal frequency number can be ob-

tained. Though the method is illustrated basically by means of uni-dimensional

examples, it is formulated for 2D and 3D domains as well.

The dynamic models able to present high percentage of close-to-exact

modal frequencies can be used primarily for modelling short transient waves

and wave pulses propagating in elastic or acoustic environments. The distin-

guishing feature of such models is their ability to present the wave pulse by

using very few nodal points per wavelength.

The natural limitation of the presented approach is that it is oriented to

produce very efficient discrete models of large uniform zones of structures in

which the wave propagation is investigated. Actually, the most efficient appli-

cation may be found in implementing models based on the domain decomposi-

tion, where large uniform domains can be presented by means of rough meshes

and considerable computational resource savings may be obtained. In irregular

zones they can be joined with conventional finite element meshes. The matri-

ces of each component domain are fully populated, and any the transformation

of them to the band form will make the modal convergence worse. Therefore

a reasonable choice is to use well-optimized small component domains.
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