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Abstract. The matrices of a substructure ensuring minimum modal eofbr
the whole structure are obtained by using optimization eg@gh. The mass
and stiffness matrices of a small component domain of sdedimension
are obtained by applying the modal synthesis of a limited lmemof close-
to-exact modes such that after assembling a larger joinethitomodel the
modal convergence rate of the latter should be as high asbfmssThe
goal is achieved by formulating the minimization problem tlee penalty-
type target function representing the cumulative relatiaeal error of the
joined domain and by applying the gradient descent minitiiranethod.
After the optimum matrices of a component domain are obthitiey can
be used in any structure as higher-order elements or silgraents. The
“combined” mass matrices can be treated as a special cake pfdésented
approach. The performance of the obtained dynamic modedenson-
strated by solving short wave pulse propagation problemssiyg a only
few nodal points per pulse length.

Keywords: modal synthesis, modal error, wave propagation.

1 Introduction

Modelling of short wave propagation processes is of key importancedfor
lution of very different engineering problems. The measurement methods
based on wave phenomena present an important and challenging fiedgtef w
modelling applications. Identification and recognition of defects in continuous
structures, detection of impurity particles or coagulation centres in liquids,
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recognition of geometric shapes of objects by measuring reflections elswav
etc., can be mentioned as examples. The term “short wave” is actually the
matter of a scale, however, it is usually understood that the length of the
short wave is hundreds or thousands times less than the dimensions of the
structure in which the propagation of the wave is analysed. The inherent
distortions of propagating short wave pulses in discrete meshes, sometimes
physically interpreted as “refractions form the nodes” usually are adolxy

using very dense meshes that make transient short waves and wags puls
simulation computations complex and requiring huge computational resources.
The main difficulties arising in ultrasonic measurement process simulation
are caused by: a) computational models of very large dimensionality (the
smallest 2D problems of any practical value require to use models consikting o
105-107 elements); b) very large number of time integration steps (inversely
proportional to the linear dimension of elements); ¢) adequacy of continua-
based models to reality.

The correct representation of transient short wave pulses in discoetels
is possible if all the modes of the continuous domain the frequencies of which
are close to spectral components of the wave pulse are representadlgdry
the discrete model of the domain. In other words, the refinement of the model
has to be dense enough to ensure the convergence of the above ntentione
modes. If the convergence of necessary modes could be achieved sha me
having less nodal points, such a rough mesh could be used for modelling the
short wave propagation with no losses in accuracy.

Already in 1980-s different modal convergence features of dynamic mo
dels obtained by using lumped and consistent forms of mass matrices have
been noticed [1]. However, only during the last decade this problem has
been examined more thoroughly and practical recommendations regareling th
form of the mass matrix have been presented. The simplest way to improve
the modal convergence of dynamic models is to use the “combined” form of
the mass matrix obtained as a weighted superposition of the two traditional
forms, [2]. In [3] the dispersion effects of discrete solutions of pgaiag
waves have been analysed with the consistent, lumped and higher-ogter ma
matrices. The penta-diagonal mass matrix with reduced coupling has been
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obtained yielding improved phase and group errors, and the combined mass
matrix has been shown to improve the dispersion characteristics of both the
reduced and full integration elements. The resulting mass matrices are non-
diagonal, however, considerable savings are obtained becausegoggibility

to use elements of larger linear dimensions. Approaches concentrating on
improvement of modal convergence properties and retaining the diaigomal

of the mass matrix have been presented as well, [4]-[7]. The basic idsth&va
re-distribution of the amounts of mass between the diagonal entries of higher
order elements.

The modal synthesis is a modelling technique which permits a complex
structure to be represented by a reduced number of degrees afrfrBXDF).
In most cases, the substructures are described in terms of a limited number
of modal displacements and subsequently the coupled system of equations
describing all the structure is obtained. The problem is that by directiogup
of modes of free substructures, the modal convergence of the resiytiagic
model of the whole structure is not always good. Appropriate methods of
substructure coupling have been developed [8, 9]. As a special waskl
synthesis may be used in order to obtain the matrices of elements or substruc-
tures having the prescribed dynamic properties.

Generally, the non-diagonal mass matrices can be designed to produce
models of higher modal convergence rate than the diagonal ones. ddugyer
more computational effort to obtain the transient solution by time integration
of the dynamic equations, however, the total efficiency of the scheme iegprov
as the required time step size becomes also greater with the increase of the size
of elements. By selecting the appropriate form of structural matrices, the time
step ensuring stability of an explicit integration scheme may become 2-5 times
larger as it was necessary when the models were based on the lumped mass
matrix. In this way the accuracy requirement and not the algorithmic stability
governs the time step size selection.

This work presents a systematic way for obtaining the mass and stiffness
matrices by modal synthesis of a limited number of close-to exact modes of
a free component domain. Exact or very close-to-exact modal stapes
projected on a rough mesh the number of DOF of which is equal to the number
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of the modes taken into consideration. The way the exact modal shaples can
projected upon a rough mesh is not unique, and the proper method ofkappr
imation ensures the optimum result. The requirement is to obtain the matrices
of a small component domain of selected dimension such that after assembling
the component domain matrices to a larger model the modal convergence of
the latter should be as high as possible. The goal is achieved by formulaging th
minimization problem for the penalty function representing the modal error of
the assembled domain and by applying the gradient descent method in order to
minimize it. After the optimum matrices of a component domain are obtained,
they can be used in any structure as higher-order elements or supemnide

2 Lumped, consistent and combined mass matrices

Finite element models of small vibrations and waves in elastic or acoustic
continua are presented by the well known semi-discrete structural dynamic
equation as

[MJ{U} + [C|{U} + [K]{U} = {R(t)}, @)

where [M], [K] — structural mass and stiffness matric&,— nodal vector
containing the lumped forces. The structural damping forces are assomed
be very small and expressed by means of the proportional damping matrix
[C] = a[M]. In many practical problems of ultrasonic measurement they can
be neglected by assuminag= 0.

When using explicit techniques for solving equation (1), practically ac-
ceptable solutions of a propagating wave pulse are obtained if at leabt 15—
mesh points per wavelength of the highest harmonic component are used. T
latter estimation is valid for models with the “lumped” (diagonal) version of
the mass matrix obtained by distributing the element mass in equal portions
between the nodes of the element. Very similar element size estimation is valid
for consistent mass matrices. Though consistent mass matrix models usually
give better convergence for lower modes, the convergence of higbdes is
not significantly better as in the case of the lumped mass matrix. Therefore, in
practice lumped mass matrices are commonly used as requiring less computa-
tional resource by using explicit time integration numerical schemes.
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It well known that lumped mass matricBel{ | have a tendency to produce
the diminished values of all modal frequencies. On the contrary, consisten
mass matrice§M¢,| produce enlarged modal frequency values in the lower
and mid-frequency range. The optimum choice often is the “combined” mass
matrix obtained as weighted sum of the two. For uni-dimensional elements the
optimum choice is close ¢ 1 = 0.53[Mg]+0.47[MS ]. The sum of the
weight coefficients at the lumped and consistent components is always unity
however, their values are rather individual for different types ofmelets.
Practically, by using the combined mass matrix the performance of the model
can be improved significantly. The linear dimension of the element can be
increased to 3-5 times in comparison with the element dimensions required by
the lumped mass matrix models. A deeper numerical study is presented further
in Sections 5.1, 5.2.

3 Matrices of domains obtained by modal synthesis

The quality of performance of transient short wave propagation models d
pends heavily upon the convergence rate of modal frequencies lovange,
including mid-frequency and higher modes of the domain.

Definition 1. An“ideal” n x n discrete model of wave propagation in a closed
domain represents the modal frequencies ofathodes close enough to exact
modal frequencies of the continuous domain of the same shape. Morinay
correct representation of ath modal frequencies should be satisfied for any
value ofn.

Under such condition the “wavelength against frequency” relationsthie (
dispersion characteristic”) of the discrete model of a linear domain is alstraig
line and the model is able to represent the maximum number of spectral com-
ponents of the investigated propagating wave package correctly. tunfor
nately, in reality the problem of making the model close to “ideal” is not
simple and, may be, it is impossible to satisfy exactly the requirements posed
in the above mentioned definition. However, discrete models presenting good
approximations to “ideal” ones can be built. Their matrices are non-diagonal,
however, the element sizes can be increased significantly.
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Consider an unconstrained elastic or acoustic domain meshed uniformly
and presented by structural matrices of dimensionNV as[M]n « v, [K]nx -
In the following we call it the “original model”. By solving the eigenvalue
problem we obtain modal frequencies, wo, . . ., wy and modal shapd¥| =
[{y1}. {y2},..-.{yn}]. Assume that firs. modal frequencies are good
enough approximations to their exact values, howevet; N. Now we build
a new “rough model” of dimension x n of the same domain. The matrices
of the rough model possessing allvalues of natural frequencies equal to
those calculated from the original model can be obtained by using the modal
synthesis technique as

M) = ([Y]5) Y)Y,

K v1T) 11 .4: 2 2 2 1—1 (2)
[K] = ([Y] ) [dlag(wbw% e awN)HY]

wherewy,ws, ... ,w, are the lower modal frequencies of the original model
of dimensionN x N, and[Y] = [{y1},{y2},. .., {yn}] — the lower modal
shapes of the original model approximated in the rough mesh. If the number
of linearly independent modal shapes modemnd the number of DOF of the

rough model are equalank ([M]) = n and no problems occur in calculating
[ﬁ]—l necessary for implementing the direct integration scheme.

Relations (2) ensure that allmodal frequencies of the new rough model
of the domain have the values very close to exact, and, as a stand-aloeke mod
itis “ideal” . However, our goal is to use further the obtained model asva co
ponent domain in order to compose larger joined domains. Unfortunately, the
modal frequencies of the joined domain composed of several such cemipon
domains, as a rule, will not be close to the exact values. The problem to be

solved now is as follows:

Problem 1. Obtain the matrices@ﬁ], [K] of a component domain such that
the joined domain of any geometric shape formed by assembling together the
matrices of component domains would have as many as possible clesaeto
values of modal frequencies.

The key to the solution of the Problem 1 is that the matrices synthesized
by using (2) are not unique. Though we know all exact values of theaimod
frequencies of the rough model, the higher modal shapes in the roughameesh
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not able to approximate closely the exact modal shapes available in the brigina
mesh. Rather rough approximations inevitably have to be made. In Fig. 1 the

explanation for the 1D case is presented that can be easily extended tal2D a
3D cases as well.

— exact modal shape
—+ rough mesh, least squares approxirmation
3 _\l —e— tough mesh, the points matching the exact shape i

displacement

5 1 1 1 | 1 1 1 1 1
0 002 004 006 003 01 012 014 016 018 02
distance along the domain

Fig. 1. Approximation of the exact modal shape of a 1D domaia rough
mesh.

The least squares approximation is obtained by using the error minimum
condition fori-th modal shape as

0

Nel ) )
o (;V[({yl'(x,y,z)} - [N(z,9,2)] {Yz‘})T

@
({rito )} = (NG 2} 553 )av ) =0,

where {y;(z,y,z)} is the displacement of poirtr, y, z) on thei-th exact
modal shape{y¢} — displacements of-th modal shape of elemeatin the
rough model,[ﬁe(:c,y,z)] — form functions interpolating the displacement
field within elemente of the rough modelN,; — number of elements of the
rough model.

From (3) the equations for each element are obtained as

(A5} = {b°},
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where

A¢] = / N[NV, (B¢} = / N Ly, y, 2) bV
Ve Ve
The element matricg\¢], {b¢} are assembled in order to form the struc-
tural matrices of the entire component domain and finatly modal shape of
the rough model is obtained by solving the equation

[Al{3:} = {b}. (@)

The modal shapes in the rough mesh can be obtained by using different
approximating function&N¢]. As the first choice we take form functiofiN¢]
of the element. In this way we take into account the interpolated displace-

ments over all volume of the element in order to determine the approximation

error (3). Alternatively, function$ﬁ§] may be used containing-functions

Eé(xi, vi, zi), whereV, — volume of the element,. — number of nodes of the
n

e

element. By usingﬁg] as interpolation functions, only displacements of nodes
of the element are taken into account when determining the approximation
error (3).

For the 1D element the above mentioned functions readNg$ =
[1 - %;ﬂ; [N¢] = [%5(0); %6(1)} . Itis worth to notice thafN¢] and[N¢]
are the form functions used in consistent and lumped mass matrix formulations
correspondingly, so the analogy between the two forms of error ajppation
and the two forms of the mass matrix is evident.

The best result is obtained by combining both types of functiomﬁa]s:
BINE + (1 — BH[NE], where0 < 3! < 1 is the coefficient used for appro-
ximation ofi-th modal shape. In practical computation, the coefficient matrix
and the right-hand side vector used in (4) have different values &br m@de
and are obtained by combining the consistent and lumped forms of rfﬁﬁ]ix
as

[A] = Bi[A)] + (1 - B)[A, ()

and of vector{b¢} as

[b] = ﬂfn%{%z} +(1- 8o, (6)

10
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where [A.], [b.] — the consistent forms of the matrix and vector obtained
by using approximation functioniN¢], [A;] — lumped form of the matrix
obtained by using approximation functio[ﬁg], {yu} —i-th modal shape of
the rough model the displacements of which coincide with the displacements
of exact modal shapes at nodal points of the rough mesh, see caryén(-
Fig. 1.

The values of3! may be selected for eagkth mode individually, or the
same value for all modes may be used. Anyway, the selectiGhwvaflue offers
a certain amount of flexibility in defining the modal shapes of the rough model
and may be used as “design parameters” in order to obtain the model of a com-
ponent domain able to produce the best spectral properties of joinedrdoma
Simultaneously, the correct physical essence of the modes approximéted in
rough mesh is preserved at any valuegpt [0; 1].

4 Optimum spectral properties of component domains

A joined domain obtained by assembling together “ideal” component domains
may have significant modal errors. Much better spectral propertieseof th
joined domain may be obtained by assembling component domains that have
slightly distorted modal spectrum with respect to the “ideal” one. In following
we develop asystematic approach to optimum modification of spectral prop-
erties of a component domain in order to produce the minimum modal &fro
joined domains.

Consider a component domain the matrices of which are obtained by using
(2). Itsn. modal frequencies can be presente@.as.,0, w11, Wrt2, ..., Wn,
wherer — number of rigid body modes, and its modes read agY] =
{3} Ay e}, - {¥n}]. The spectral properties of the model
of the domain can be slightly changed by modifying the values of modal
frequencies, as well as, the modal shapes. The modifications mustertse
physical essence of the finite element model of an unconstrained domain, i.e
the lowerr modal frequencies have to be zeroes, and the modal shape vectors
have to be orthogonal and express essentially the same shapes astihefor
modification. Also the total mass of the domain must remain unchanged.

The above mentioned requirements will be satisfied if the modal frequen-

11



R. Barauskas

cies will be modified as

[dla'g(07 ce 707 04‘1:)+1w3+17 a$+2w1%+27 te a$+nw721)] (7)
= [diag(wQ)]{a“’}
and the modal shapes modified as
[{F1} - AT b ol T - 08 {Ta}] = [Y){e), ®)
where{a“}T={1,..., 1,04, ,,..., a2}, {a¥}T={1,..., 1,0, |,..., a0}

are coefficients the values of most of which are close to unity.

Finally, we reformulate the above mentioned Problem 1 as folldvrsd
the values of coefficientsn”}, {a¥} and 8l,i = 1,...,n, determining the
modal properties of a single component domain that minimize errorodaim
frequencies of the joined domain obtained by joining together several@omp
nent domains.

Consider a joined domain presented by structural matrices of dimension
N x N as [ﬁ]ﬁxﬁ- [IA{]NXN assembled of component domain matrices
[M]nxn, [R]nxn- The solution of the eigenvalue problem of the joined do-
main gives the modal frequenciés, o, ...,w5 and modal shape[é?] =
[{F1ihAve) - AT R

The modal error minimization problem can be formally presented as

min v, 9)
{a} {av},0;,
where the penal:[y-type target function presents the cumulative modabedo
reads asl = } % <@>2 wherel; — modal frequency of-th mode
of the joined é?)ﬁ;in&io iOexact value of the modal frequencyieth mode,

known theoretically or obtained by using a highly refined finite element model.

The formulation of Problem 1 does not fix exactly how many component
domains the joined domain should include and what should be its geometric
shape. However, the goal is that the by assembling the obtained component
to a joined domain of any geometric shape the same percentage of correctly
represented modal frequencies should be ensured.

Practically we solve the problem step-by-step as follows. If the joined
domain consists of only one component domain, the solufiefi} = 1,

12
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{a¥} =1, B! = 1,i = 1,...,n gives the minimum of the target function
¥ = 0. Then the joined domain model consisting of two component domains
is analysed and problem (7) is solved by taking the previously obtained solu
tion as initial approximation. After that we analyse the model made of three
component domains, etc. At each step, except the very first one, #oe ex
minimum of the target function?’ is not easy to find. The target function

minimization process can be facilitated by applying the gradient techniques.

For implementing the gradient descent method, the gradients
ov ov ov

o{a=} dfav}’ 35 7
using variation relations as

= 1,...,n are employed. They are obtained by

0V =y =00}, (10)
=1 WioWi
o /OK] OMI\ . -
2 AT (E> 2 )
o0} = 5" (G — et D) e (11)
a:a?,a‘?},ﬁé’j:l"..’n
By combining (10), (11) the gradients are expressed as
o _ ooy IK]  ,0M]
il 1T Wil (T 2 ~
O GG, (0K 0N\ .
2= s Y — W} 4 12
801]“5} Z @20@2 {yl} (aaw Wi 8(1‘?’){}%}’ ( )
=1 G i j
ov v Wi — Wio T<8[f(] 28[ﬁ}) R
o~ 2 a0 o o )19

The derivativesa[K] , oM] , OlK] , oM ) IIK] ) oM]

0af’ daj ' o’ 0oy’ 9pL T 9p
joined domain are assgmblgq of cgrrespgwdingﬁerivgt{ives of the matfices
. J[K] oM] JK] oM] 90|K] o[M]
component domains

daf’ 0af ’ 0ay’ dak’ 85; ’ 8[5’;

of the matrices of the

as usual struc-

tural matrices.

13



R. Barauskas

5 Numerical investigations

5.1 Dynamic properties of models using lumped, consistentnd
combined mass matrices of a uni-dimensional waveguide

We begin the modal convergence analysis with the uni-dimensional waeeguid
models. Modal frequencies of the same uni-dimensional domain obtained by
using models of different mesh density are presented in Fig. 2.

FEOT T T
"""" exact
—&— consistent
—+— corbined | B modal frequency

—m— lomped | ATETEIEITRU S BEEEEE Smmmnnn PR 4

5k [P PR L P, ceo .

Smudil‘freq ency | g

4 modal frequency

dimensionless modal frequencies

*
3 modal frequency
! : L nurpber of d,o f of the model | |
4 ) B 7 g 9 10 1 12

maodal frequency errors

B g
number of modal frequency

Fig. 2. a—modal frequencies of the same uni-dimensionabiloagainst the
number of DOF of the model; b — relative modal frequency atrétosition
of markers correspond to modal frequencies.

Each curve in Fig. 2a corresponds to the discrete model having a diffe-
rent number of DOF and demonstrates how the value of a particular modal
frequency depends upon the number of DOF of the model. By increasing
the number of DOF, the curves are asymptotically approaching the dashed
lines marked by crosses that present theoretical values of modatfreigs

14
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. — 1 . .
obtained asv;p = M %, whereE, p — stiffness modulus and density

of the material] — length of the waveguideé — number of the mode. Markers
on the same solid line correspond to frequencies of different modes etitain
by using the same model.

The lumped mass matriV ;] models always give diminished values of
modal frequencies, whereas the consistent mass mafN€e$ always cause
the oversized values. Generally, the behaviour of models using the cainbine
mass matri{M] = kc[M¢] + k,[M] depends upon the weight coefficient
valueskc, k1. Here we present the results obtained by using one of reasonable
choices of the combined mass matrix ensuring the minimum relative error of
lower and middle modal frequencies. In order not to overload the piautg,
modal frequencies of th&’?, 4" 5% an6t modes are presented in Fig. 2a
for models using lumped, consistent and combined forms of the mass matrix.
However, the same character of relationships holds for all remaining nagdes
well. The left-hand end of each curve in Fig. 2a presents the highestlmoda
frequency obtainable by using the model of the particular dimension.

The relative modal errors a&— -2 may be examined in Fig. 2b. The

error of the zero-modéi = [) is r%ué?;ligible in the case of any form of the
mass matrix as the eigenvalue very close to zero is always obtained because
of the singular stiffness matrix of an unsupported structure. The rekatioes

of the very highest frequency given by using models of any dimensien ar
constant and individual for each form of the mass matrix. The valueseof th
highest modal frequency errors axe 37% for the lumped mass matrix and
only ~ 10% for the consistent one. However, the maximum errer2(0%)
obtained by using the consistent matrices are in the middle modal frequency
range rather in the higher one. Very similar modal frequency error safue

the middle frequency range are obtained also by using the lumped mass matrix.
Though the total modal error of consistent mass matrix models is less than of
the lumped ones, practically both models produce very similar level of errors
in the wave pulse propagation modelling.

The performance of the considered models in short wave pulse ptapaga
modelling is illustrated in Fig. 3. For the sake of comparison in Fig. 3a the
“exact” solution is presented. Practically, the solution obtained by using a

15
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Fig. 3. Typical distortions of the shape of a propagating evpulse in a
rough equally spaced mesh: a — “exact” solution of a propagatave pulse
excidted by one period of harmonic forcing law at the leftwthand of the
waveguide; b — obtained by using roughly meshed model (1alnpaints
per wavelenght) with the lumped mass matrix; ¢ — obtaineddyguroughly
meshed model with the consistent mass matrix; d — obtainegibg roughly
meshed model with the combined mass matrifdd§=0.53[Mg H0.47[MS].

dense mesh~ 35 nodes per wavelength) can be reasonably treated as exact
one for comparison purposes in order to evaluate the accuracy of swslutio
obtained in coarser meshes. The shape of the wave is presented at the time
point of the fourth passage of the wave along the waveguide (the waweés th
times refracted from the free ends of the waveguide, see the scheme of the
“path of the wave” at the top of the figure).

In Fig. 3b,c the distorted wave pulse shapes corresponding to the lumped
and consistent mass matrix models are presented. The character of distortio
is different in each case. The lumped mass matrix models are inclined to
generate the numerical noise that follows the main signal, whereas the con-
sistent matrix models produce the numerical noise propagating in advance
of the pulse. However, the amount of distortion is very similar. A rough
mesh having 12 nodes per pulse length has been selected for demonstrating
the behavior of the models in order to make the distortions clearly visible. The
same characteristic numerical noise is more or less observed in models of any
mesh roughness. The combined mass matrix models produce errorggdesen
by lines marked by dots in Fig. 2b. While having errors«020% for the very

16
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highest frequency, their modal errors in lower and middle frequencgera

are about 10 times less when compared with the two traditional models. The
practical result of this can be seen in Fig. 3d demonstrating the distortesl puls
shape at the same propagation conditions and mesh density as in Fig. 3b,c.
As mentioned above, here we analyze the mesh density of 12 nodes ger wav
pulse length excited by single period of a harmonic signal. However, it is
worth to notice that the frequency highest harmonic component participating
in presenting the single-period shaped pulse is at least three times graater th
the main frequency. So, practically we used orly4 nodes per shortest
wavelength.

The total modal error can be minimized by choosing the values of coef-
ficientskc = 0.74; k;, = 0.26. However, the results presented in Fig. 4
demonstrate that the model gives much greater pulse shape distortion as in
the caséic = 0.53; kr = 0.47 presented in Fig. 3d. Obviously, it is much

005
£ 3] — exact soltion |

[P7= ShaNN Wyl
W VNV T A

2 4 B 8 10 12 [t} 1 2 3 4 5 3
number of modal frequency dirensionless propagation distance

mmodal frequency errors

Fig. 4. Relative modal frequency errors of an uni-dimenaiovaveguide (a)

and distortion of propagating wave pulse (b) in the caseettmbined mass

matrix [M] = 0.74[M¢] + 0.26[M ] minimizing the cumulative (SRSS)
relative modal error.

better to ensure negligible modal errors in low and middle frequency range
than to “distribute” the error among all modes. The latter conclusion can be
considered as a general one and may be used for establishing the modal e
minimization criteria for all types of the synthesized mass matrices.

5.2 Properties of models using lumped, consistent and conm®d
mass matrices of an acoustic problem in a square shaped clase
cavity

As a two-dimensional example we present the modal error relationships for
the acoustic problem formulated in a square shaped closed cavity. Ttie exa

17



R. Barauskas

. E m\ 2 n\ 2
modal frequencies can be expressed;g,gm)o = Ty /;,/ (Z) + (5) ,

wherea, b — lengths of the sides of the rectangular. Here the s quare domain is
being analysedq = b. The basic properties of models described by using
different forms of mass matrices are briefly explained in Fig. 5. Relative
modal frequency errors of the square domain obtained by using thisteis
lumped and combined mass matrices are presented in Fig. 5a. Qualitatively,
the general character of the curves is very close to the results obtained f
a uni-dimensional domain presented in Fig. 2b. Evidently, there exists an
optimum weighted combination of the combined and lumped matfiBs=
kc[Mc] + kr,[Mp]. The reasoning for the choice of valie can be under-
stood from Fig. 5b, where the relationships of average modal freguemnar

Wi — Wio

1 N 2 .
taken as square root of sum of squaﬁ > ( ) against the value
=1

wio
k¢ are presented. Each curve describes the cumulative error valugseoldist
taking sums over a different number of mod@s(summation over all modes),
3*N/4, N/2, etc. As it is impossible to get very small error values over all
modal frequency range, the optimum valueg@fare slightly differentin each
case. Practically, for minimum numerically caused distortion of propagating

wave pulses a reasonable choicéds= 0.7, k;, = 1 — ko = 0.3.

02 : : T T 0.05

0.2 fee . P T R

relative madal errar

,,,,,,,,,,,

-0.4

average relat

—e— MC (consistent)
—e— ML (lurnped)
—a W= MG 3L ; ; . : : :
0 20 40 60 ) o0 120 0 02 0.4 0.6 08 1
number of d.of. of the model {4 weight coefficient of the consistent part (kC)

a h

0.6

Fig. 5. a—modal frequency errors of an acoustic problem is@iare shaped

closed cavity; b — relationships of average relative embrsodal frequencies

against the weight coefficient of the consistent componétitedo combined
mass matrix.
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5.3 Optimization of the modal spectrum of component domains

Consider a wave pulse propagating along a uni-dimensional elastic wdgegu
The finite element model of the waveguide consist&¥ 68U B uni-dimensional
component domains joined at their ends. The domains are all identical and
presented by stiffness and mass matrices obtained by using the modagy/nthe
technique described in Section 3. Examine the dynamic properties of models
of approximately the same siZ€T ~ 60 dynamic DOF obtained by joining
together component domains the number of DOF of eaalsisch thatVT =
(n—1) x NSUB +1 =~ 60. It means, we analyse the model consisting
of the single domain containing = 60 dynamic DOF , or assembled of
two domains containing = 31 dynamic DOF each, or made of 3 domains
containingn = 21 dynamic DOF each, etc.

The aim of investigation is to synthesize matrices of component domains
producing the “optimum” modal errors of joined domains (as discussed in
Subsection 5.1, minimum cumulative error is not the optimum) ensuring as
small as possible distortions of propagating wave pulses. The ultrasdse pu
is being excited at the left-hand end by the force developed by the inpigt tra
ducer. As a rule, the width of the spectrum of pulses usually used ultcason
measurements contain harmonic components upie- 3w, wherew — the
frequency of the main harmonic component of the pulse.

Individual domain of

# dynamic d.o.f. .
\ Propagating wave pulse
-1l [ EVAERSEE - [
\|
\\ //
For(;e NSUB domains
excitation comprising the model

of total dimension NT

Fig. 6. Scheme of an uni-dimensional wave pulse propagatiodel made
of NSU B component domains.

For illustrating the basic ideas we consider an uni-dimensional waveguide
model (64 nodes in total) assembled of 7 component domains having 10 nodes
each. Optimization of matrices has to be performed on the base of the penalty-
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type target function of the domain assembled of at least 3-4 component do-
mains or more. Optimization of matrices of large component domains is a
time consuming task as the modes of all joined domain have to be calculated
at each optimization step. L

In Fig. 7 modal frequency errorw of the waveguide model are

presented. As described in Section 4(,0180mponent domains having all modal
frequencies equal to their exact (theoretical) values are obtained ing tiie

modal frequency and modal shape correction coefficient valueg as«a! =

ﬁg = 1. However, such component domain matrices assembled to a joined
domain produce poor results. Fig. 7a demonstrates the 4 tmodal error
values of the joined domain d istributed over all modal frequency range. If
more component domains are used to form the joined domain, modal errors
increase even more and the model performs worse than the models using the
combined mass matrix.

e T : ;
Frargetfunction 5.8915102-006

o 13 L
[u] 10 20 30 40 50 B0 0 10 20 30 40 an 60
mode number mode number

modal frequency error
o
=)
=

0 #torearatastotnn,

Target function_6,906241e-00
008

10 20 30 40 0 B0 [u] 10 20 30 40 a0 B0
rade nurmber maode number

modal frequency error
o
=
5]

0.02
1)

Fig. 7. Modal frequency errors of the uni-dimensional waidg model (64
nodes in total) assambled of 7 component domains of 10 n@ads e — non-
optimized case: matrices of component domain obtained img esefficient
valuesay = of = B = 1; b — optimized by taking the sum over &l = 64
modal frequencies of the joined domain; ¢ — optimized byrtgkhe sum over
all N = 55 modal frequencies of the joined domain (exact modal frequen
of the component domain preserved); d — optimized by takiegsum over
all N = 55 modal frequencies of the joined domain (exact modal frequen
of the component domain detuned from their theoreticaleg)lu

The modal error of the joined domain is minimized by employing the
gradient method described in Section 4. If the matrices of 10-node comipone
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domains are designed in order to ensure the minimum of the target function

8 Wi —wio\? . : =
v =73 (A—) , (i.e., by taking the sum oveN = 64 modes of the
i=1 wio

joined domain), we obtain the result presented in Fig. 7b. It is clear that the
eight higher modal frequency values (comprising abeut2% of the total
number of modes of the model) cannot be made close enough to the theoretical
ones. Even better results are obtained by carrying out the optimizatioegsroc
of the target function where the sum is taken over dﬁly: 55 modes, see
Fig. 7d. The minimization parameters arg; o, Bf,z’ =2,... ,JV. The non-
unity o’ values mean that the component domains have to have the modal
frequencies not equal to the theoretical ones. If we enforce thereagent
a% = 1 and carry out the optimization only in space of parametérss!, i =
2,..., N, the result is presented in Fig. 7c and is significantly worse than the
one in Fig. 7d.The detuning of modal frequencies of the component domain
from their theoretical values can be regarded as an inherent requinéfioe
synthesizing optimum dynamic models

It is very important that the optimized component domain models preserve
their features when being used in a joined domain models of any dimension.
Without any theoretical proof we merely present illustration of this in Fig. 8,
where the obtained 10-node component domains were used in order to make

0.0z T T T T T T 0.0z

0.m

1}
0.m

-0.02

maodal frequency error

Target function  1.256522e-004

0 0 20 30 40 50 EOD o 50 100 150 200 250
mode number mode number

002 —— 002

0.03

o

0oz
004

maodal frequency error

-0.08

[Target function  4.228460e-005

[Target function 1185308008 |
008 0.8
0 0 20 3 40 &0 E0 0 5 00 180 20 250
made number mode number

Fig. 8. Modal error distribution in joined domains asserdbt# 6 (a and

c) and 24 (b and d) 11-node component domains presented byiogd

matrices: a,b — optimized by taking the sum over &l = 64 modal

frequencies of the joined domain; c,d — optimized by taking sum over
all N = 55 modal frequencies of the joined domain.
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the joined domains of different size. The distribution of modal errors aller
the frequencyand the percentage of error-free modes is independent from the
dimension of the joined domain, therefore component domain matricdsecan
treated as high order well-convergent elements.

Fig. 9 presents the modal errors of a joined domain assembled of opti-
mized component domains of different size. The advantage of synttesize
component domains in comparison with the combined mass matrix is obvious.
The combined mass matrix models are able to produce aétterror free
modal frequencies of the joined domain, meanwhile the models based upon
10-node component domains provid&ss of error free modal frequencies.

On the other hand, not all the sizes of component domains can be optimized to

04 /z
008 lumped mass matrix, =2
—&— consistent mass matrix, n=2
008 —— combined mass matrix, n=2
—%— optimized mass matrix, n=5
_ 004 —— aptimized mass matrix, =10
5
- 002
2
L PURES SRR
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: X
0.04 %\
0.08 \%
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mnde nimher
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o e XN
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5 00zt ”:;g ,%
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mode number

Fig. 9. Modal errors of the joined domains assembled of s¢wermponent

domains. a — 30 DOF models assembled of lumped, consistemt)ined

mass matrices and optimized component domains of dimemsien5 and

n = 10; b — 240 DOF models assembled of component domains of dimensi
n = 5,10, 15, 20 and30.

give the result of the same quality. E.qg., in our investigations we distinguished
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component domains of dimension 5 and 10 as producing the highest percen
age of error free modes. The increase of the component domain dimension
to 15, 20 and 30 does not give any advantage as the percentageaidtigor
represented modes in joined domains does not increase any more, s#e Fig.
The performance of the 10-node component domain used in the 64 node
model of the waveguide simulating the wave pulse propagation is presented
in Fig. 10. The figure presents the shape distortion of the propagating wav
pulse after~ 3.5 passages through the joined domain of the waveguide (see
the path of the wave at the top of Fig. 10a). 12 or even 7 nodes per putgh le
are enough for simulating the pulse propagation over quite a large distance,
Fig. 10a,b. The model actually works satisfactorily also at very rough esesh
of 5 or 4 points per pulse length, Fig. 10c,d. At the same conditions, the
conventional lumped or consistent mass matrix models produce the numerical
noise larger then the signal itself and no resemblance of the pulse shajok wo
be seen in the picture.

C
path of the wave

— exact solution
03| —— n=10,N=64

l b
|
L

A
A
fl
&
r
!
]

o |
) J
]

0 1 2 3 1 5 3 0 2 4 6 [ 10
distance dimensionless propagation distance

Ase 2 A
YVovyy

0 5 10 15 0 5 10 15 2
dimensionless propagation distance dimensionless propagation distance {

Fig. 10. Shape distortion of apropagating wave pulse in théehassembled
of seven 10-node component domains. Nodes of the mesh & jewigth:
a—12 nodes; b — 7 nodes; ¢ — 5 nodes; d — 4 nodes.

6 Conclusions

Aregular approach has been presented for obtaining the mass anekstiffia-
trices of component domains such that after assembling the component domain
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matrices to a larger model the convergence of modal frequencies is aashigh
possible. The method is based upon the minimization of the modal frequency
errors by employing the gradient descent technique. The best perice

is obtained by using component domains the modal frequency spectrum of
which is appropriately detuned from their theoretical values. The obtained
mass matrices are non-diagonal. Once calculated, the component domain
matrices can be used to form any structure and may be interpreted as higher
order elements or super-elements.

When compared with lumped, consistent or combined mass matrices, the
matrices obtained by modal synthesis and optimization produce significantly
better results. The models able to present very close-to-exact mogiaéfrey
values of more thar- 80% of the total modal frequency number can be ob-
tained. Though the method is illustrated basically by means of uni-dimensional
examples, it is formulated for 2D and 3D domains as well.

The dynamic models able to present high percentage of close-to-exact
modal frequencies can be used primarily for modelling short transienrésvav
and wave pulses propagating in elastic or acoustic environments. The distin-
guishing feature of such models is their ability to present the wave pulse by
using very few nodal points per wavelength.

The natural limitation of the presented approach is that it is oriented to
produce very efficient discrete models of large uniform zones of tstres in
which the wave propagation is investigated. Actually, the most efficient appli-
cation may be found in implementing models based on the domain decomposi-
tion, where large uniform domains can be presented by means of rougjlesnes
and considerable computational resource savings may be obtaineaghnar
zones they can be joined with conventional finite element meshes. The matri-
ces of each component domain are fully populated, and any the transfamma
of them to the band form will make the modal convergence worse. Tlrerefo
a reasonable choice is to use well-optimized small component domains.
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