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Abstract. This paper provides analysis on successful combining &eahi
action and geometric zeta-function, investigating disttion of the zeta-
function poles (spectrum).
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Euclidean action plays a fundamental role in physics. There is a method to
compute it by using the “universality” property of the Riemann zeta-function
[1]. But we will try to apply some different approach which is based on
geometric zeta-functions. We will use geometric zeta-function to find infor-
mation about Euclidean action, not calculating it, but finding distribution of
geometric zeta poles. First, we will create a fractal string with scaling factors
r; which will generate fieldsy(n) at lattice pointsn. Secondly, we will
take scaling factors to geometric zeta-function and investigate its distribution
of poles (spectrum) by defining a suitable test functiorfin our case we
will use some analogy with partition functions). This method is indirect, and
the information we get is much more complicated, but it is a powerful tool
extending Euclidean action to new horizons.

We begin with some definitions. Let, as usull, Z, N and C denote
the sets of all real numbers, integer numbers, positive integer numbers an
complex numbers, respectively.
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A fractal stringL is a bounded open subset®f which consists of coun-
tably many open intervals, the lengths of which are denoted by i, > ...
>0,andl;' €N, j=1,2,....

The dimensionD = Dy, of the fractal stringl is defined by

DL:inf{a>0: Zl}’<oo}.

J=1

Let s = o + it be a complex variable. Thgeometric zeta-functiony (s)
of the fractal stringl is given by

Co(s)=> L.
j=1
Thescreen S is the contour
Sit)=r(t)+it, teR, i=+v-1,

with some continuous function: R — [—oco, Dy].
The set

W={seC:o>r)},

is called thewindow. We assume that the functianp (s) has a meromorphic
continuation to a neighborhood @f with set of poles

D(W)={weC: (,(s) hasapoleab},

called thevisible complex dimensions of the fractal string’.
The total lengthl* of the fractal stringl is

L =¢ (1) =) 1
j=1
Note thatZ* is a finite number and equals to the Lebesgue measutdzjt

Let N > 2, and let given positive numbers, rs, ..., ry satisfyr; > ro >
.. > ry. Assume that

N
R .= er < 1.
j=1
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Thenry, ry, ..., N are calledscaling factors.

Given an open interval of length* we construct aelf-similar string L
with scaling factorss, o, ...,y by procedure reminiscent of the construc-
tion of the Cantor string. Subdivide an intervAlinto intervals of length
r1L,roL, ...,rn L. The remaining peace of lengti{1 — R) is the first member
of the string. Repeat this process with the remaining intervals.

Theorem 1. Let L be a sdlf-similar string, constructed as above with scaling
factors r1, 79, ...,7n. Then the geometric zeta-function of this string has a
meromor phic continuation to the whole complex plane given by

L a-ny
CL( ) 1—2?[:17’]5-

Proof can be found in [2].

, seC.

Now we will define the Euclidean action and relate it with geometric zeta-
function. The Euclidean action on a lattice of step sizdor a finite time
interval (0, L*), is given by

v—1 m2a v v
5(6) = 5= 3 (6(m) — S(resn))* + 20 ) +a 3 V(9m),
v=1 v=1 v=1

whererv = L*/a is a number of lattice points.¢(z) is a physical field
(set of continuous real functions)(x, ) is its value at the-th lattice point
T, = va,v = 1,2,..,v. HereV is a continuous real function, and denotes
the mass. Assume that a set of fields defines a (functional) fractal string
Ls = ¢(x1), #(x2), ..., o(x,) which lengths are continuous real functions.
We can create a set of fractal strings = {L1, Lo, ...} which are generated
by scaling factors{?j}j]‘il. Ly, consists of fractal string Iength@{llj};";l,
{l2;}52,, .- }. Then for every functionp(z,), v = 1,2,...,v ande > 0
we can find|Ly(x,) — ¢(x,)| < €, whereLyx(x,) means that we are taking
fractal string lengthi,;. Perform this operation for all the functioggzx, ) at

all the pointsz,. Finally, we will get a set of fractal strings which were used,
so we will obtain scaling factor$?j}§vzl, N < M, which were applied to
approximates(x, ).
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Denotingr = (71,72, ..., 7v) We can write thescaled Euclidean action
N—-1 N N

SE) =c1 Y (F =71+ 7 +es Y V(7))
j=1 j=1 j=1

= 1Ry + c2Ra + c3f(T),

where we can interpret Ry, co R2 andes f (T) := c3R3 as new scaling factors.
We can normalize this sum by choosing constants> andcs such that

3
Z cp Ry < 1.
k=1

The latter condition is not necessary. Then we can write geometric zeta-
function for Euclidean action
1

Cr(s) 1_ 22:1(%Rk)5 :
From now we turn from the direct Euclidean action investigation to the in-
direct investigation through the zeta-function. We will examine the complex
dimensions of,(s). Complex dimensions of the geometric zeta-function with
scaling factors;, Ry, k = 1,2, 3), is the set of solutions of the equation

3

Z(CkRk)w =1, weC.
k=1

The next logical step is to study the distribution of these complex dimensions.
To do that we will extend previously analyzed geometric partition function [2]
defining two new partition functions.

The geometric partition functiod;(7) of an ordinary fractal string

L= ()52, 1s
Or(1) = Zeiﬁiﬁl, for 7>0.
=1
Let
67”/23:/3
p(z) = N 1)
e7n/ac/3
W) = g @
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Defineq andp geometric partition functions of an ordinary fractal stribg

-1
Orp(m) = p(l; e ™, 7>0,

J

Il
—

Oa(r) = al;H)e ™, 7 >0,

M

I
—

J

Note thatp(m) andq(m), m € N, are the main terms of partition functions
of decomposition ofn. We can choosg partition function when repetition of
elements is important, andwhen repetition must be ignored.

To investigate the distribution of poles of geometric zeta-function we must
generalize a concept of a fractal string and geometric zeta-function.

Given a complex measung there exists a positive measure denojigd
which measures the total variationpf

Inl(J) = SHPZM(Ji)!,

where the supremum is taken over all partitiang; of J into measurable
subsets/;. The measurén| is called thetotal variation measure associated
with . Recall thain| = n if 7 is positive.

A local positive measureis just a standart positive Borel measurg0rmo)
which satisfies the following local boundedness condition:

n(J) < oo, for all bounded subinterval$ of (0, co).

More generally, we will say, that a set functignon (0, c0) is alocal
complex measure on (0, co) if, the following conditions are satisfied: () A)
is well defined for any Borel subset of [a,b], and (ii) the restriction of
to the Borel subsets dfi, b] is a complex measure dn, b| in the traditional
sense. We will use the following notions.

1. A generalized fractal string is either a local complex or a local positive
measure) on (0, co) such that

[n1(0, z0) =0

for some positive number,.
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2. The dimension of), denotedD = D,, is

D = D, = inf {U eR: /x_(’n|(d:17) < oo}.
0
3. The geometric zeta-functiaf(s) of ) is given, foro > D,, by

o0

Gy(s) = /x_sn(dx).

0

To introduce the generalized geometpi@nd ¢ partition functions for a

generalized fractal string , we need some notation.

Let us denote b)l\c[f] the k-th primitive (or k-th antiderivative) oflV,,

vanishing at 0. Thus
r k-1
wo_ [ (@—y)
0

forx > 0andk =1,2,.... In particular,N,[f] = 7. The distributional formula
describegs; as a distribution. On a test functign » acts by

(e}

() = / () n(dz).

0

The k-th primitive of this distribution will be denoted by!*l7. More pre-
cisely, PI*ly is the distribution given for all test functionsby

(PMn, o) = (—=1)F(n, PHp) = (—1)ktr(pletuly, o0y,

wherep®) is the u-th derivative, so a test functiop must bey times conti-
nuously differentiable o0, co). We can write

00 00 . k1
(Pn) = [ [0 etw) dantay).
0

Y
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For a generalized fractal string geometrigp andg partition functions,, ,,(t)
and@,, ,(t) will be defined as

%Mﬂ—/@wumw@—uﬂm¢mx 3)
0
%Aw:/@mwmww:uﬂm¢wx )

0

where, forz € R, andt > 0,

erp(x) = plx)e™™, (5)
Prq(x) = q(z)e ™. (6)

Assume thatg, satisfies the following growth conditions [2]: there exists
real constants: > 0 andC > 0, and a sequencéT), },cz of real num-
bers tending tatoo asn — +oo, With T, < 0 < T, forn > 1 and
lim, 400 T /|T-n| = 1, such that

(Hy) Foralln € Z and allo > r(T3,),
|Cn(‘7 + ZTn)’ < CIT|%

(Hp) Forallt € R, |t| > 1,
|G (r(t) +it)| < C [t

wherer is the Lipschitz continuous function i.e., there exists a nonnegative
real numbet|r| ., such thatr(z) — r(y)| < [|r||lLiplz — y| forall z,y € R,
which bounds the screehn

Hypothesis(H; ) is a polynomial growth condition along horizontal lines
(necessary avoiding the poles @f), while hypothesigHy) is a polynomial
growth condition along the vertical direction of the screen.

We shall denote by the Méllin transform of a (suitable) functiog on
(0, 00), it is defined by

e}

ﬂ$=/¢@f4ﬂgs€C
0
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Henceforth, we denote baes (g(s);w) the residue of a meromorphic func-
tion g = g(s) ats = w. Fork > 1 we shall define the symbdk); by
() =s(s+1)...(s+k—1).

Assume that, b are complex numbers independent on the variabnhen
the differential equation

2
(1—z)%+ (b— (a—I—l)z)j—Z —au=0

is called ahypergeometric eguation.

If b % —m, m € NUO, then the function

a+m (b) def
§ 2™ — F(a:b:
I‘ b+ m) ml” (a3 b; 2)

is aregular solutlon of the hypergeometric equation at the poia®), and the
function 1F(a; b; z) is called thehypergeometric function with parameters,
b.

Now we can state a modified version of Theorem 4.20 which will be useful
for our aim.

Theorem 2. Let n be a generalized fractal string satisfying (H;) and (Hz).
Letk € Z, and let 4 € N besuchthat £ + p > k + 1. Further, let ¢ bea
test function x times continuously differentiable on (0, co). Then the action of
Py on atest function ¢ is given by

(P, ) = res( )P+ k)
weD%:(W) ( (8)k >
1 k—1 E—1 } - ‘
s () eease-s
—jEW\D,,

. res((n( )(S(S+k),a>+<R,[7’“],so>,

acW\Dy, )k
ag¢{0,....k—1}

where R[k] isthe distribution given by

(RIM, ) = %/Cn(s)ﬁ(s—l-k)(jﬁ.
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Proof is analogous that of Theorems 4.12 and 4.20 from [2].

After stating this theorem we can formulate two new theorems, where
we will find explicit formulas forp and ¢ geometric partition functions (for
a generalized fractal string), (3) and (4). These results can be considered as
an extension of results given in [2] for geometric partition function. Theg g
the distributions( P1%, g(x)e=™*) and( Py, p(z)e="*) of an actionP%ly,
on test functions, , andy- ),

We begin with the following statement.

Theorem 3. Let 7 be a generalized fractal string satisfying (H;) and (Hs)
and let ¢ , be a test function given by (6). Then ¢ geometric partition function
6,.4(7) isgiven by

On,q(T) = Z res(Cn $)Prq(s )w)

weDy(W)
1 2 (=1)krh 3 1 n?
T kzl 1 P\ 127
3/4—keW\D,, (7)
T = (=)l 1 3 72
T ZZ; AV P2 127
1/4—leW\D,
+ (RO . o),

where, for 7 > 0,

- T 3 3

1
2
T 1 13 72
-7 — 2 F _-.2. 0
t A <8 4)1 1<S 4’2’12¢>

1 ~
<Rw[70}7907-,q> = %/gn(S)SOT,q(S) ds.

and

Proof. Let us begin with the first term of (7). By Theorem 2 we must calculate
the Mellin transform of our test functiop, , , and sum over residues of poles
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of zeta-function. To obtain the second and the third terms in (7) we will Yyse (4
and Theorem 2. First we calculate the Mellin transform of the functign

Orqls) = /@T,q(:v)xs_l dz.
0

For this purpose we will take expressiongf:) given by (1) and insert it into
(5), so we need to calculate such an integral

o0

~ 1 T/ x/3—Tx,.s—T/4
SOT,Q(S) = m/e / x / dx.

0

After integration we obtain the expression (8) with conditierts 3/4, 7 > 0.

By Theorem 2 we must calculate residues of that function, but we must take
only those poles which are not dimensions of zeta-function. It is easily see
that the first term in (8) has poles &4 — 1, 3/4 — 2, ... and the second at
1/4—1,1/4 -2, .... Itis well known that gamma function has poles with
residues, forn € NU {0},

Res I'(s) = Res T’ (s - §)

s=—m s=3/4—m 4
_ m
= Res T s—l :( D) .
s=1/4—m 4 m!

Now we can decompose (8) into two terms and calculate residues for each
of them. After that we just sum the residues and obtain the second and the
third terms in (7). The last term is the same form as in Theorem 2. This term
is called the error term, and for it the growth conditiq#$;) and (Hs) are
required, because only then we can choose such a widipfior which the

error term is absolutely convergent. O

Theorem 4. Let n be a generalized fractal string satisfying (H;) and (Hs)
and let ¢, beatest function given by (5). Then p geometric partition function
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6,.»(7) isgiven by

Opp(r) = > 1e5(y(8)Brp(s)iw)

weDy (W)
1 = (=1)kF 1 72
— T (- k)F (ks —
+ 4\/3 kz k! Cn( )1 1 ,27 -
1—keW\D, 9)
s > (1) 1 3
ME P R e SRl R QUi
1/2—leW\D,
+(RY o7 ),

where, for 7 > 0,

7.1/275

~ 1 w2
Prp(s) = Wi {\/EF(S—I)J*H(S—I >

;§;a

2 1 1 3 72
Colls— 2V (s — 2. 2. 0
+\/;r <S 2)1 1(5 2’2’67)}

and

211
S

(R, 7 p) = L / Co(8)Prp(s) ds.

Proof. The proof is similar to the previous theorem. We must calculate the
integral

~ 1 m\/2x/3—tx .52
s) = e % “ dx.
SOt,P( ) 4\/§ J

and repeat the same steps as in the proof of Theorem 3 we obtain a ré&sult.

The last unanswered question is can we relate obtained distributions for
different test functions. The answer is positive, and now we will fincsé¢he
relationships.
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Theorem 5. Let n be a generalized fractal string. Let 7 > 0 and & € N, then
there exist the following relations between test functions ¢-(z), ¢-4(z) and

Prp(T):

1° (PW 7, SOT,q <P[k77 or(x)e Tr\/_>

4 . 31/4
< I, or(2)e™V2/3Y,

( 7)) =
2° (P, o p(2))
3° (PMn, o q(2)) = <P[ ]n rpl(@)(3z) /AemVEBI-VDY,
4° (PW, 0. (@) = (PP, o 4(2) (3) /e ™AV,

Proof. First of all we will find relations between test functions, and later we
will fit it to the distribution formulas.

We have thatp,(x) = e~ "*. First two equalities are trivial, so we will
give details for the third and the fourth, only.

From (5) we find

67{'\/2213/3—7'1‘ [o2
In QOT’p(CU) =In <W> =T ? — T — In (4\/§$>

:71'\/2—'%*7'1‘*1114*11113*111:6.
3 2

Similarly, from (6) we find

m\/x/3—Tx 1 3
e T
IHQOT,q(CL'):ln <m> :W\/;T.Cl?lnllzln?)zlnl‘
2 1
= (W\/—$7xln4—ln31nx>
3 2
/2 1 1
-7 ?x—l—w\/g—l—zlni%—i—zlnx

=Ilnp,, + w\/g (1 - \/5) + In(32) /4.

Finally, we can relate ,(x) andy, ,(z) test functions

Or () = @r (@) (32)/ 2e™VEBA-VD)
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Analogically

1
Ing,,(x) = (ﬂ\/g—mv—lnll— Zln3— 21111‘)
x 2z 1 1
DY AP i R N S
W\/;—i-ﬂ T "1 n3 1 ne
— _alE (1= _ 1/4
=lnp,q—7 3 1 —v2) —In(3z)4,

after what we get

Prp(T) = rq(@)(3z) M4 mV/BI-V2),

This completes the proof. O

Alternatively we can define modifigdandq geometric partition functions

o0
-1
0 ,=> ™) >0,
j=1

o0
—1
0Lp = E e ) >0,
j=1

and investigate its distribution of poles, but in this case calculations are be-
coming more and more tricky, as we must calculate integrallono) of the
function

o ey (e (rv/275) ).

We will leave it to the future.
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