
Nonlinear Analysis: Modelling and Control, 2003, Vol. 8, No. 2, 71–82

FDVis: the Interactive Visualization and Steering
Environment for the Computational Processes Using

the Finite-Difference Method∗

A. Kurtinaitis 1, R. Vaicekauskas2, F. Ivanauskas3

1Vilnius University, Naugarduko 24, 2600 Vilnius, Lithuania
andrius.kurtinaitis@maf.vu.lt

2Vilnius University, Naugarduko 24, 2600 Vilnius, Lithuania
rimantas.vaicekauskas@maf.vu.lt

3Vilnius University, Naugarduko 24, 2600 Vilnius, Lithuania
Institute of Mathematics and Informatics, Akademijos 4, 2600 Vilnius, Lithuania

feliksas.ivanauskas@maf.vu.lt

Received: 24.07.2003
Accepted: 30.09.2003

Abstract. In this paper a specialized software environment for visualiza-
tion and steering of finite-difference computations is presented. The user
requirements are identified and the architecture of the environment is sum-
marized. The advantages of such a specialized system over some available
universal visualization systems are discussed and conclusions and future
research issues are given.

Keywords: scientific visualization, computational steering, finite-differen-
ce, numerical simulation.

1 Introduction and problem statement

Every computational simulation produces a set of numbers. If this set is not

very large, one can easily comprehend it or compare it with the expected

results. However, there are cases, where one cannot compute shortcharacte-

ristics for the modeled phenomena or such short characteristics are not known.

Then we have to look through the large amount of numerical data and try to

∗This work was supported by Lithuanian State Science and Studies Foundation, project
No. C-03048.

71



A. Kurtinaitis, R. Vaicekauskas, F. Ivanauskas

intuitively analyze it. The larger the amount of data is, the harder one can

understand the meaning of this data. Scientific visualization can make the

numerical data visible to the human eye. Scientific visualization is a computa-

tional process that transforms the data objects of scientific computations into

visible images on a computer display screen [1].

Often it is not enough to see the final result of the computations. The

intermediate data can also be of major importance. It could happen, that for

certain values of input parameters of the computation, the desired result willbe

computed earlier than expected. It could also happen, that at the very beginning

of the simulation process the intermediate result shows, that further simulation

makes no sense. Therefore, it is also important to have a possibility:

• to observe the state of the computations;

• to stop the simulation and to change the values of the input parameters.

These properties of a simulation system are called computational steering.

An interactive steerable software system can save much computing resources

and time of the scientist. Authors and users of steerable systems also note

that the possibility to observe the state of the computations and to interactively

change the input parameters allows to develop more intuition about the effect

of problem parameters. It also helps to detect program bugs, to developin-

sight into the operation of the algorithm, or to deepen an understanding of the

physics of the problem being studied [2].

Most traditional numerical computation systems use separate unrelated

programs for the computation and for its visualization. The visualization of

the resulting data in such a system can be a lengthy and tedious task, because

it demands much manual work of the scientist. He may be required to import

the data into the visualization program. It can also be necessary to convertthe

data to a format, which the visualization program can handle. The scientist

needs to specify how the data should be displayed. The required user actions

to visualize the data are almost identical in a series of a similar experiments,

therefore it is preferable to automate them.

Universal interactive numerical computation environments build a possible

automated solution. Such a system incorporates all the processes of the nu-

merical experimentation: geometric modeling, specification of the input data,

72



FDVis: the Interactive Visualization and Steering Environment

computations and the visualization – everything is running under the control of

one program. The advanced instances of universal computation environments

areSCIRun[2] and CUMULVS[3]. Some scientific software packages also

provide a means to create an environment for visualization of computations.

Those are:MATLAB[4], SCILAB[5] andOctave[6]. The third possibility to

create such an environment is to use scientific visualization frameworks.The

Visualization Toolkit[7] andVisAD[8] are widely used ones. A detailed survey

of the existing computational steering and visualization environments can be

found in [9]–[11].

Every group of a universal solutions we mentioned above has their own

drawbacks:

• They are difficult to adjust and apply for a particular problem. The ad-

justing requires often some programming. This is especially true for

scientific software packages.

• Universal systems are very complex and therefore they require much time

to learn before one can use them.

• They are not portable.

• They provide a limited user interface (scientific software packages).

• They are expensive and are not accessible to many scientists.

• The computing performance is not always good, especially when using

interpreted code in scientific software packages.

Our goal is to create an interactive visualization and steering environment

for finite-difference simulations which overcomes the trade-offs of the avai-

lable universal systems listed above. One way to do this is to restrict a set ofthe

problems which could be solved with the help of the environment. The more

specialized environment is easier to learn. It can also provide a much better

user interface because it should not take into account the requirements of every

possible numerical simulation problem, which is the case with a universal

environment.

The presented software systemFDVis is an efficient interactive visualiza-

tion and steering environment specialized for computations based on the finite-

difference method. In this paper we outline the major steps of creating simple

scientific computation environment and share the experience we earned and

73



A. Kurtinaitis, R. Vaicekauskas, F. Ivanauskas

the lessons we learned. First we identify common properties of the finite-

difference computations, which allow to simplify the environment. Then we

discuss usual requirements of the scientist and usual experimentation scenarios

which together form the requirements for the software system being created.

We demonstrate the use of the environment for solution of real problems and

define a class of problems for which it is useful.

2 Common properties of the finite-difference algorithms

The finite-difference method is a method for solving differential equations.

A numerical problem which is expressed as a differential equation, always

consists of:

• the differential equation, which describes the modeled process;

• the physical area, where the problem has to be solved;

• the initial and boundary conditions.

In the beginning, the numerical characteristics of the modelled pheno-

menon at the boundaries and the relations of these characteristics inside the

area are known. These relations are expressed by the means of (a system

of) differential equations. When solving the equations using finite-difference

method, the differential operators of the equations are approximated by the

finite-differences on certain area points – on the grid. Using boundary condi-

tions and difference equations we build a system of algebraic equations (often

linear) to find values of the unknown grid points. Most applications of the

finite-difference method compute new grid points in subsequent layers accor-

ding some dimension of the area. Using this property of layered computation,

we can state the following assumptions for the visualization and steering sys-

tem:

• the results of the finite-difference computation are split in layers;

• the computing program works as a filter transforming the known values of

the previous layer to the new layer;

• the layers are computed sequentially one by another;

• every layer is an intermediate result of the computation, it represents some

step of the computation along some axis.

74



FDVis: the Interactive Visualization and Steering Environment

We also noticed another property which holds for most of the finite-diffe-

rence computations. The finite-difference method is used for problems with

relatively simple geometry of the physical area and unsophisticated initial and

boundary conditions (usually given by some analytical formulas). Although

theoretically this method can be used with problems with physical areas and

boundary conditions of any complexity, in such cases other methods are mostly

used, for instance, finite elements. When creating the visualization and stee-

ring systemFDVis, we followed the following principles:

• We do not need a geometric modeling subsystem to specify the geometry

of the area. It is enough to give some scalar parameters: length, width,

step count and so on.

• To specify boundary and initial conditions of the problem it is also enough

to give some scalar parameters, which define the boundary values or the

constants in formulas if the boundary conditions are specified as some

analytical formulas.

3 User requirements

When performing numerical experimentation, the following scenario is usually

used by the scientist: first the input parameters for the computation are speci-

fied, then the necessary computations are performed and finally the numerical

results are visualized and analyzed. To achieve maximum usability of the

computation environment, all the steps mentioned above should be accessible

using a consistent user interface. Following the three steps of the experimenta-

tion, we specify further requirements for the user interface of the systembeing

created:

3.1 Input parameter specification

• any finite number of scalar input parameters can be specified;

• every input parameter should have its unique name;

• the parameters can be of various types; at least integer, real and string

valued parameters must be supported;

75



A. Kurtinaitis, R. Vaicekauskas, F. Ivanauskas

• the input parameters for the entire series of experiments can be specified

by varying the value of some selected parameters;

• input parameters can be specified as expressions of other parameters;for

instance, by taking the value of time step parameter equal to the step along

some space axes or by specifying physical value of some parameter but

using the normalized value of it.

3.2 Computations

• the computations can be observed by inspecting the intermediate numeri-

cal results;

• the computations can be aborted without loosing the already computed

intermediate results;

• the series of computations can be started using the specified input parame-

ters for all the series.

3.3 Visualization

• Many characteristics of the numerical results can be visualized at the same

time. For instance, by modeling the generation of the ultrashort laser

pulses it is important to see the duration of the pulse and its energy distri-

bution on some plane of the crystal.

• During the computation one can select which of the many available cha-

racteristics of the numerical results should be visualized.

• During the computation one can choose one of the many visualization

techniques for the selected characteristics. For instance, two-dimensional

array of the intensity values of the laser pulse can be visualized as a three-

dimensional surface, as a set of two-dimensional iso-lines or as a color

map.

• The visualization should be possible not only during the computations,

but also after them, using saved numerical result data. The system should

allow to select the experiment out of the series and the numerical charac-

teristic which should be visualized.

• The results of the visualization should be usable for the further processing

– for creating presentations, publications and so on.

76



FDVis: the Interactive Visualization and Steering Environment

The integrated visualization and steering software system should provide

a comfortable user interface to meet the requirements listed above.

4 System architecture

When creating the interactive visualization and steering environmentFDVis,

we followed the properties, which are common to all finite-difference com-

putations: (1) the results are computed in layers and (2) the geometry of the

problem area and the boundary conditions can be specified relatively simply.

The previous section defines the functional requirements for the software sys-

tem. We have also some non-functional requirements. One of them is the

overall system efficiency. The possibility to interactively visualize and steer

computations should not create any significant slowdown of the computations

itself. The system should be flexible enough and easily adaptable to the dif-

ferent problems. To separate the parts of the system which can be exchanged

by adapting to the new numerical problem, we decided to split the system into

individual components (Fig. 1).

(java application)
User interface Visualization

commands (gnuplot)
Display engine Computer display

screen

Experiment
parameters

Computation
results

Images:
GIF
EPS

SVG

Computation
engine

Fig. 1. FDVis system architecture overview.

The first module which can be different for another numerical problem is

a computation engine. It is a program that performs numerical computations

which simulate the problem being solved. Usually, the computation engine is

created by the expert of the problem domain. We created the computation

engine forFDVis which simulates the generation of ultrashort laser pulses

[12]. Its executableshgsolvereads the initial laser pulse characteristics as

input parameters and computes the intensity and other characteristics of the

laser pulse in a number of crystal layers. The essential requirement forthe

computation engine is the efficiency. Therefore the computations are usu-

77



A. Kurtinaitis, R. Vaicekauskas, F. Ivanauskas

ally implemented using the compiled programming language like C, C++ or

FORTRAN. There are cases where we may want to use an old computation

engine in the visualization system. Such a computation engine cannot have

any information about the visualization and steering system attached to it. We

use a computation engine as a separate executable module, which reads the

file with the input parameters and in the process of computation, generates the

files with the numerical result data of the layers along some dimension of the

numerical problem area.

Another component of the systemFDVis, which performs a clearly defined

function and is potentially separable, is the display engine. It is a module,

which transforms the numerical data into the images on the computer dis-

play screen. This transformation is often numerically intensive, so it is also

important that the module is implemented in an efficient way. The efficient

visualization of the numerical data is a very well researched area. Thereare

many software packages for data visualization – both free and commercial.

So we decided not to reinvent the wheel and use one of those packages– the

gnuplot. The following properties ofgnuplothave determined the choice:

• It is functional. It can display both two-dimensional and three-dimensional

data in many different ways.

• It is fast (written entirely in C).

• It is portable (written in portable C).

• It is flexible and easily used as a utility program.

• It is free. It costs nothing and is free to modify to fit our needs.

When needed thegnuplotcan be easily replaced with another visualiza-

tion package which meets some specific needs, because it is also a separate

executable module and is interfaced only through its standard input stream.

The third component of theFDVis system, which binds all the system

together, is the user interface module. It knows the interfaces of other two

components and does the actual steering. It observes the progress ofthe com-

putation, waits for the new numerical results and passes them to the display

engine for visualization. It also provides graphical user interface which allows

to work with the numerical experiments in a convenient way:

78



FDVis: the Interactive Visualization and Steering Environment

• to define the series of the numerical experiments;

• to specify the input parameters for the experiments;

• to start and to stop the experiments;

• to observe the progress of the computations;

• to select the characteristics for visualization.

Because the usability and portability of the user interface is more important

than its speed, we implemented the user interface module in the interpretative

high level languageJava. At the moment it is probably the only solution,

providing comfortable user interface capabilities on many computer platforms.

The three components of the system are used as the separate executable

modules. The communication between the modules is performed using the file

system and the standard input/output streams. All the exchange of the data

is performed using standard textual ASCII format. This way of integration

provides many advantages. Some of them are: simplicity, good support of

different operating environments and easier verification and debuggingof the

system.

The main development work was performed on a Linux platform using

mostly free UNIX development tools and utilities. According to the recomen-

dations for the application development for the UNIX operating environment,

described in [13], the programs should perform only one function and ex-

change the information in a clearly defined and simple way. Then these pro-

grams are easy to combine and form a qualitative new system. These re-

comendations are also particularly useful when creating a system for numerical

visualization and steering.

5 Application example

FDVissystem has been successfully used when modeling ultra-short laser pul-

ses using second-harmonic generation in nonlinear environments [14]. The

equation system we solved is presented below:

∂Al

∂z
+ al

∂Al

∂t
+ ibl

∂2Al

∂t2
+

icl

r

∂

∂r

(

r
∂Al

∂r

)

= idlϕl + elAl. (1)

79



A. Kurtinaitis, R. Vaicekauskas, F. Ivanauskas

HereAl(r, t, z) are complex valued functions,l=1, 2, 3;al, bl, cl, dl andel are

real constants;ϕl are nonlinear functions, depending onA1, A2 andA3:

ϕ1 = A∗

2A3e
−iκz, ϕ2 = A∗

1A3e
−iκz, ϕ3 = A1A2e

iκz. (2)

System (1) was solved in the areaQ = [0, R] × [0, Z] × [0, T ] ⊂ R × R × R.

The picture below shows the common view of the computational work-

bench when running one of the experiments: A typical computational work-

Fig. 2. A typical computational workbench when usingFDVissystem.

bench when running one of the experiments is depicted in Fig. 2. The GUI

component on the left side of the picture allows to observe the status of the

experiment called “A01e = 0.5”. Currently the layer “75” is ready, laser pulse

characteristics (visual views) “A1” and “Intensity” are selected. The right side

of the screen shot contains rendered plots of the selected characteristics: “A1”

as a surface, “Intensity” as three curves on one plot area.

6 Conclusions

In this paper we described the creation ofFDVis. The result of the work is a

fully functional system with a comfortable user interface. It allows the scientist

with the minimal or even without programming knowledge to perform the

usual numerical simulation tasks: to define a series of experiments, to run and

steer the computations and finally to analyze the results and use the resulting

data for the publications.

80



FDVis: the Interactive Visualization and Steering Environment

Although the systemFDVis was develop specially for the computations

based on the finite-difference method, it is also useful for other computations,

which use a similar data model and provide the data in layers. The methods in

question include finite-elements and some others as well.

Our experience has shown that an intuitive user interface is very important

for numerical simulation work. It allows to perform all the needed simulation

and analysis tasks by the expert of the problem area without the need of a

programmer. It also helps to see the result the algorithm’s input parameter

changes more quickly and to develop some intuition about it.

The goal of the work described by this paper was to create a simple yet

useful tool for scientific visualization and steering of the finite-difference sim-

ulations. The specialized system we created has the basic functionality of

visualization and steering system. However, there is a number of ways how

we can further enhance the system. Some of the desirable features are already

addressed by other, universal visualization and steering systems.

It could be possible and useful to capture more semantical information

about the underlying numerical data. The visualization could then be done

in a more automated way. The system could perform some analysis of result

data structures and automatically reject the inappropriate ways to visualize it.

The user would be supplied with a choice of suitable visualization alternatives.

This problem is deeply researched in the works of Hibbard [1, 8].

There would also very nice to have a possibility to continue the stopped

computations from some position with possibly new parameters. This fea-

ture is already implemented in some integrated computation environments like

SCIRun.

Also, no possibility to perform visualization and steering of the distributed

computations was considered. Taking into account, that we are using portable

and loosely-coupled system components inFDVis, the extension in that direc-

tion is also thinkable.

References

1. Hibbard W.Visualizing Scientific Computations: A System based on Lattice-
Structured Data and Display Models,Univ. of Wisc. Comp. Sci. Dept., 1995

81



A. Kurtinaitis, R. Vaicekauskas, F. Ivanauskas

2. Johnson C., Parker S. “The SCIRun Parallel scientific Computing Problem
Solving Environment”,Ninth SIAM Conference on Parallel Processing for
Scientific Computing,1999

3. Geist G.A., Kohl J.A. Papadopoulos P.M. “CUMULVS: Providing Fault-
Tolerance, Visualization and Steering of Parallel Applications”, International
Journal of High Performance Computing Applications,11(3), p. 224–236,
1997

4. The MathWorks,Inc. Getting started with MATLAB, 2002,
http://www.mathworks.com/access/helpdesk/help/techdoc/learnmatlab/learn
matlab.shtml

5. Gomez C.Engineering and Scientific Computing with Scilab,Birkhauser,
Boston, 1999

6. Eaton W.GNU Octave Manual,Network Theory Ltd., 2002

7. Schroeder W., Martin K., Lorensen B.The Visualization Toolkit: An Object-
Oriented Approach To 3D Graphics,Prentice-Hall Inc., Upper Saddle River,
NJ, 1998

8. Hibbard W., Rueden C., Emmerson S., Rink T., Glowacki D., Whittaker T.,
Fulker D., Anderson J. “Java distributed objects for numerical visualization in
VisAD”, Communications of the ACM,45(4ve), p. 160–170, 2002

9. Mulder J.D., van Wijk J.J., van Liere R. “A survey of computational steering
environments”,Future Generation Computer Systems,15(1), p. 119–129, 1999

10. Parker S.G., Johnson C.R., Beazley D. “Computational Steering Software
Systems and Strategies”,IEEE Computational Science & Engineering,4(4),
p. 50–59, 1997

11. Gu W., Vetter J., Schwan K. “An Annotated Bibliography ofInteractive Pro-
gram Steering”,ACM SIG-PLAN Notices,29(9), p. 140–148, 1994

12. Kurtinaitis A., Dementjev A., Ivanauskas A. “Modeling of pulse propagation
factor changes in type II second-harmonic generation”,Nonlinear Analysis:
Modeling and Control,6(2), p. 51–69, 2001

13. Ganzarc M.The Unix Philosophy,Digital Press, 1995

14. Dement’ev A., Ivanauskas F., Kurtinaitis A. “Modeling of compression
dynamics and change of pulse quality during the type II second harmonic
generation”,Proceedings of the XV-th Byelorussian-Lithuanian seminaron
Lasers and optical nonlinearity,p. 74–82, 2002

82


