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Abstract. In this paper we consider a prey-predator system where the
prey population is infected by a microparasite. Local asl wslglobal
stability properties of the interior equilibrium point adéscussed. The
stochastic stability properties of the model are investidasuggesting that
the deterministic model is robust with respect to stochgsiturbations.
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1 Introduction

There has been growing interest in the study of diseases in a pregtqred
system. It is observed in nature, species does not exist alone. Whiliespe
spreads the disease, it also competes with the other species for spaod,or f

or is predated by other species. Therefore it is more of biological signifie

to consider the effect of interacting species when we study the dynamical
behaviour of epidemiological models so an appropriate mathematical model
is essential to study the effect of disease on interacting species. Fre¢tima
studied a predator-prey system in which some members of the prey population
and all predators are subjected to infection by parasites and derinddioas

*This work was supported by UGC, Govt. of India (Grant No. PSW-022ERO),
14.8.2001).
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for persistence of all the populations and global stability criterion of the in-
terior equilibrium. Anderson and May [2] showed that invasion of a redide
predator-prey or host parasite system by a new strain of parasitdsldiand
Freedman [3] observed a similar phenomena. Mukherjee [4] analyzed-a g
eralized prey-predator system with parasitic infection and obtained camslitio
for persistence and impermanence. Recently some works have beemdone
this area (see [5][7]). In this paper we incorporate the predat@dbas the

basic epidemiological model, namely te— I model in order to investigate

how the predation process influences the epidemics. We consider the case
where the predator eats infected prey only. This is in accordance withdhe f
that the infected individuals are less active and be caught more eadihg or
behaviour of the prey is modified such that they live in parts of the habitat
which are accessible to the predator (fish and aquatic snails staying close to
water surface, snails staying on the top of the vegetation rather than under
plant cover [8].) Peterson and Page [9] have indicated wolf attacks oseno

are more often successful if the moose is heavily infectetHapinococcus
granulosus” Thus we present the following model:

(o= 5 o).

dt K

dl

O 1B —c—p¥ —al, @
dy

whereS(t),1(t),Y (t) are the population density of the susceptible prey, in-
fected prey and predator respectively at a give timeéderer is the intrin-
sic birth rate. K denotes the carrying capacity of the environmerit.is
the transmission coefficient,andd are the death rate of infected prey and
predator respectivelys andb denote the intraspecific competition coefficient
the infected prey and predator respectively. The coefficient in eeimgeprey
into predator ig; (0 < ¢ < 1). p represents the predation coefficient.

In this model we have considered the effect of intraspecific competition
between infected prey as well as on predator which are not consiitej4le-
[7]. Also the stochastic stability properties of the model are not studied in
earlier papers.
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The topological type of a differential equation in a neighbourhood of a
generic singular point is determined by the linearization of the field at the point
(see the Grobman-Hartman Theorem [10].)

In this paper we consider the problem of the robustness of the model
(1) with respect to white noise stochastic perturbations around its positive
endemic equilibrium. This paper is organized as follows. In Section 2, we
discuss boundedness of solutions and dynamical behaviour of hguasa
well as interior equilibrium point of the deterministic model. In Section 3,
we introduce the stochastic model and in Section 4 we carry out an andlysis o
its stability properties by means of Lyapunov functions methods. We conclude
a short discussion in Section 5.

2 Boundedness, boundary equilibria and stability

In this section, we first show that solutions of system (1) are bounded.
Theorem 1. Systen{l) is dissipative.

Proof. Let (S(t), I(t), Y (t)) be any solution with positive initial conditions
(So, Ip, Yo). Since

ds S
< _ =
it = Sr<1 K)
by a standard comparison theorem we have

tlim supS(t) < M where M = max {S(0), K }.
Consider the function

W=S+1+Y.
The time derivative along a solution of (1) is
aw S+1
o= sir(-=5) -t}

+I{3S —C —pY —al} +Y{—d+qpl —bY}
<S(r+1)—S—cl—-dY
<M(r+1)—mW
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wherem = min{1, ¢, d}.
dw
Applying a theorem in differential inequalities [11] we obtain
M(r+1)
m
M(r+1)
m

0<W(S,I1,Y) < + W (5(0),1(0),Y(0))/e™

and fort — oo, 0<W <
enter into the region.

. Therefore all solutions of system (1)

M(r+1)

Bz{(S,I,Y)GRi:Wﬁ +e, forany£>0}.

This completes the proof. O

Now we discuss the boundary and interior equilibrium point. The model
equation (1) has the following non-negative equilibria namely

Ey = (0,0,0), E;=(K,0,0), Ei2=(S,1,0)

where

c+al 7o r(KpB —c)
B 7 Cra+rf+ KB?

The interior equilibrium poinE* = (S*, I'*, Y*) where

rK (g8 + ab) + (r + KB)(be — dp)

S =

S* = ,
r(gB? + ab) + (r + KB3)3b
I BS*b — be + dp
 qp*+ab
yr - —dtaol”
b
. . r(KB — c)gp
Th 2. f K thenE f le. If — = _thenE*
eorem 3 > cthenE;, is feasible d<m+rﬂ+K52 en

is feasible.

It can be easily shown thf, is unstable F; is unstable if5 K > c. Eqsis
globally asymptotically stable in th& — I plane.E* is locally asymptotically
stable. We now show thaf™ is globally asymptotically stable whenever it
exists.
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Theorem 3. If E* is feasible then it is globally asymptotically stable.

Proof. Define a Lyapunov functioiV (S, I, Y) such that

V(S,1,Y)=C1(S— 8" —S*"InS/S*)+ Co(I — I" —I*"InI/I")
+C3(Y =Y =Y *InY/Y™)
whereC;,7 = 1,2, 3 are positive constants to be chosen later. Evideritig
a positive definite function in the regids except att* where it is zero.

Calculating the rate of change bf along the solutions of system (1), we
get

dv N N LY
= OIS =52+ Coll = )7+ (Y =Y 5

= C1(S - S*){r(l - %) - m}
+Co(I = I"){BS —c—pY —al}
+ C5(Y — Y*)(—d + qpI — bY)

=S =) = (-5~ (5 +8)U -1}
oI = T){B(S — §%) = p(Y = Y*) — a(I - I)}
+C3(Y =Y {qp(I — ") = b(Y = Y*)}.

ChoosingCy8 — C4 (% + ﬁ) =0, C3q — Cy = 0. If follows that

‘il—‘t/ = —C1(S = 5%)% = Coa(l — I*)* — C3b(Y — Y™*)?

and henceV is negative. So the largest invariant set at which= 0 is
the equilibrium point and by LaSalle’s invariance principlg; is globally
asymptotically stable. O

3 Thestochastic model

Stochastic perturbations were introduced in some of the main parameters in-
volved in the model equations.

In this paper, instead we allow stochastic perturbations of the variables
S, 1,Y around their values at the positive equilibriutii, in the case when it
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is feasible and locally asymptotically stable. Local stabilityFsfis implied

by the existence condition df*. So, in model (1) we assume that stochastic
perturbations of the variables around their value&“asire of white noise type,
which are proportional to the distances$fl, Y from valuesS*, I*,Y*. So
system (1) results

ds = S[r(l - %) - m}dwal(s — §%)del,
dI = I[BS — ¢ — pY — al] dt + oo(I — I*) d€2, (2)

dY =Y[—d + qpI —bY]dt + o3(Y —Y*)d&}

wheres;, i = 1,2,3 are real constants; = &;(t),i = 1,2, 3 are independent
from each other standard Wiener processes [12]. We wonder whibibe
dynamical behaviour of model (1) is robust with respect to such a kind of
stochasticity by investigating the asymptotic stability behaviour of the equilib-
rium E* for (2) and comparing the results with those obtained for (1).

We will consider (2) as the Ito stochastic differential system.

4 Stochastic stability of the positive equilibrium

The stochastic differential system (2) can be centred at its positive atuiib
E* by the change of variables

ule—S*, UQ:I—I*, U3:Y—Y*. (3)
The linearized SDEs arounfd* take the form

du(t) = f(u(t))dt + g(u(t))de(t) (4)
whereu(t) = col(u1(t), ua(t), us(t)) and
_2rS S*(BK +7)

K K 0
flu®) = gr —oal* _prr | ul®), (5)
0 qpY ™ —2bY*
g1Uq1 0 0
g(u) = 0 ogug 0 |. (6)
0 0 o3us
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Of curse in (4) the positive equilibriurB™* corresponds to the trivial solution
u(t) = 0.

LetU be the seU = (t > ty) x R", to € RT. HenceV € C§(U) is a
twice continuously differentiable function with respecti@nda continuous
functions with respect to

With reference to the book by Afanas’ev et al. [13], the following theore
holds.

Note that, with reference to (4)

_ OV (t,u) T, OV(tbu) 1 r, (O?V(tu)
LV (tu) = T + T () 2 + ST () T g ()]
where
oV ov oV oV
50 = (Gur 9ur )
0V (t,u) o0*V .
o2 (aujau)’ ni=123

and ‘T’ means transposition.

Theorem 4. Suppose there exists a functibiit, u) € C$(U) satisfying the
inequalities

Kilul? <V (t,u) < Kslul?, ()
LV(t,u) < —K3|u\p, K;>0, p>0. (8)

Then the trivial solution of4) is exponentially-stable fort > 0.

Note that, if in (7), (8),p = 2, then the trivial solution of (4) is globally
asymptotically stable in probability. For definitions of stability again we refer
to [13].

*

4
Theorem 5. Suppose that} < ro , 05 < 4al*, o3 < 4bY*. Then the
zero solution of(4) is asymptotical@ mean square stable.

Proof. Let us consider the Lyapunov function

1
V(u) = §[w1u% + wgug + wgug] 9)
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wherew; are real positive constants to be chosen in the following. It is easy to

check that inequalities (7) hold true with= 2.
Furthermore

2rS* r .
LV (u) :wl( - w (? + B)S uz>u1
+ wo (Bl uy — 2al*ug — pI*ug)usg
+ w3 (qu*UQ — 2bY*U3)U3
1 v OV
+5Tr[g" (W) G g (w)].

Now remark that

aQV w1 0 0
22 = wz 0
0 0 ws
and hence
92y wiotu? 0 0
gT(U)Wg(U) = 0 wyou3 0
0 0 w3o3u?
with
1 0%V 1
ST (W 57 9(w)] = Slwiotud +weodul +wsoud)

If in (10) we choose
w1<% + 5) =woBI* and wol* = w3qY™,

from (11) it is easy to check that

According to Theorem 4 the proof is completed.
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5 Discussion

In this paper we have analyzed a prey-predator system where theprey
pulation is divided into two groups, infected and non-infected. Intrafpec
competition of the infected prey and predator are also incorporated i thelmod

system. The threshold paramejer= K—ﬁ controls the dynamics of the
system. It is observed that if > 1, the boundary equilibrium poink,, is
feasible. If the death rate of the predator remains a certain threshold value
then the positive equilibrium is feasible. Moreover all the solutions coeerag
to the positive equilibrium. We observed that deterministic model is robust
with respect to stochastic perturbations. It is to be noted that Whef*, Y*
increases the asymptotic mean square stability property is achieved.
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