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Abstract. A mathematical model of amperometric biosensors has been 
developed. The model bases on non-stationary diffusion equations containing 
a non-linear term related to Michaelis-Menten kinetic of the enzymatic 
reaction. The model describes the biosensor response to mixtures of multiple 
compounds in two regimes of analysis: batch and flow injection. Using 
computer simulation, large amount of biosensor response data were 
synthesised for calibration of a biosensor array to be used for characterization 
of wastewater. The computer simulation was carried out using the finite 
difference technique. 
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1 Introduction 

Biosensors are devices that combine the selectivity and specificity of a 
biologically active compound with a signal transducer and an electronic 
amplifier [1–4]. The transducer converts the biochemical signal to an electronic 
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signal. The biosensor signal is proportional to the concentration of measured 
analyte or a group of analytes. The biosensors are classified according to the 
nature of the physical transducer. Amperometric biosensors measure the current 
on an indicator electrode due to direct oxidation of the products of the 
biochemical reaction. In case of the amperometric biosensors the potential at the 
electrode is held constant while the current flow is measured. The amperometric 
biosensors are reliable, relatively cheap and highly sensitive for environment, 
clinical and industrial purposes.  

Starting from the publication of Clark and Lyons [1], the amperometric 
biosensors became one of the popular and perspective trends of biochemistry. 
The understanding of the kinetic regularities of biosensors is of crucial 
importance for their design. Mathematical models can explain such regularities. 
The general features of amperometric response was analyzed in the publications 
of Mell and Maloy [5,6]. Some later reports were also devoted to the modelling 
and investigation of the amperometric biosensor response [7–11].  

The goal of this investigation is to make a model allowing an effective 
computer simulation of amperometric biosensor response to a group of analytes 
(mixtures). The developed model is based on non-stationary diffusion equations 
[12], containing a non-linear term related to Michaelis-Menten kinetic of the 
enzymatic reaction. The model allows to simulate the biosensor action in batch 
and flow injection regimes. In the flow injection analysis the biosensor contacts 
with the substrate for short time whereas in the batch analysis the biosensor is 
assumed as immersed in the substrate solution of infinite volume and during 
long time [13]. The digital simulation of the biosensor response was carried out 
using the semi-implicit finite difference scheme [14,15]. 

The developed software was employed to generate multiple biosensor 
response data for four specific analytes of eight different concentrations. The 
generated data was then used for the amperometric calibration of a biosensor 
array [16]. Data needed for a biosensor calibration can be produced by multiple 
physical experiments. However, computer simulation is much cheaper and 
faster than  the physical experiment. Development of methods of analysis of 
mixtures with a biosensor array and chemometrics using a multivariate 
calibration is following [17]. The software for characterisation of wastewater 
(alarm system) is under development. 
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2 Mathematical Model 

During an enzyme-catalysed reaction 

Kkkk ,...,1,PS E
=→  (1) 

the mixture of substrates (compounds) (Sk, k = 1,...,K) binds to the enzyme (E) 
to form enzyme-substrate complex. While it is a part of this complex, the 
substrate Sk is converted to the product (Pk). The rate of the reaction is the rate 
of appearance of the product. This rate is known to depend upon the 
concentration of substrate.  

Let us consider an amperometric biosensor, which can be treated as 
enzyme electrode, having a layer of enzyme immobilised onto the surface of the 
probe. Assuming no interaction between analysed substrates (compounds) of 
the mixture, the symmetrical geometry of the electrode, homogeneous 
distribution of immobilised enzyme in the enzyme membrane, and considering 
one-dimensional diffusion, coupling of enzyme reaction with the diffusion 
described by Fick’s law leads to the following equations: 
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where K is the number of compounds, )(
max

kV  is the maximal enzymatic rate of 
biosensor attainable with that amount of enzyme, when the enzyme is fully 
saturated with substrate (compound) Sk, KM is the Michaelis constant, S(k) is the 
concentration of substrate Sk, P(k) is concentration of the reaction product Pk, d is 
thickness of the enzyme layer, t is time, T is full time of biosensor operation to 
be analysed, )(

S
kD  and )(

P
kD  are diffusion coefficients of the substrate Sk and 

product Pk, respectively. 

The biosensor operation starts when some substrate appears over the 
surface of the enzyme layer. This is used in the initial conditions (t = 0) 
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where )(
0

kS  is the concentration of substrate Sk over the biosensor. 

Because of electrode polarisation, the concentration of the reaction product 
at the electrode surface is being permanently reduced to zero. If the substrate is 
well-stirred and in powerful motion, then the diffusion layer (0 < x < d) will 
remain at a constant thickness. Consequently, the concentration of substrate as 
well as product over the enzyme surface (bulk solution/membrane interface) 
remains constant while the biosensor contact with the substrate. In the flow 
injection regime the biosensor contacts the substrate for short time only 
(seconds to tens of seconds) [13]. When the analyte disappears, a buffer solution 
swills the enzyme surface, reducing the substrate concentration at this surface to 
zero. Because of substrate (analyte) remaining in the enzyme membrane, the 
mass diffusion as well as the reaction still continues some time even after the 
disconnect of the biosensor and substrate. This is used in the boundary 
conditions (0 < t ≤ T) given by  
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where TF is the time of flow injection, i.e., the time when analyte is removed 
from the bulk solution/membrane interface.  

In the batch regime of the analysis the modelled biosensor remains as 
immersed in the substrate all the analysing time. Assuming TF = T the model 
expressed by equations (2)–(8) may be accepted for batch analysis as well. In 
the batch analysis the boundary condition (7) reduces to ,),( )(

0
)( kk StdS = t ≤ T.  
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In computer simulation, discussed below, the initial condition 
)()0,( )()( xxS kk

ϕ=  was employed instead of (4) to avoid a discontinuity at 

x = d. Here )(k
ϕ  is a continuous function: 0)()(

=xk
ϕ , at 0 ≤ x ≤  d - ε, 

)()( xk
ϕ monotonous increases at d – ε < x ≤  d, and )(

0
)( )( kk Sd =ϕ , k = 1,…,K. 

Several different expressions of )(k
ϕ  as well as values of small ε were 

employed. Using the similar technique, the discontinuous boundary condition 
(7) was also reduced to a continuous one. However, notable difference between 
solutions was not observed. That is why the equations (4) and (7) were used in 
the simulation. 

The current is measured as a response of a biosensor in a physical 
experiment. The biosensor current depends upon the flux of reaction product at 
the electrode surface, i.e., at border x = 0. Consequently, density )()( tI k  of the 
biosensor current, as a result of the reaction of the substrate Sk with the product  
Pk at time t , is proportional to the concentration gradient of the product at the 
surface of the electrode as described by Faraday’s law: 
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where ne is a number of electrons involved in a charge transfer at the electrode 
surface, and F is Faraday constant. In the case, where the biosensor signal 
equals to the sum of signals of individual analytes, having values of the 
biosensor current )()( tI k  for all compounds, k = 1,...,K, the common density 
I*(t) of the biosensor current at time t can be calculated additively 
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2 Solution of the Problem 

Let us notice that there is no direct relationship between pairs of the unknown 
variables )()( 11 , kk PS  and )()( 22 , kk PS , when k1 ≠ k2, k1, k2 = 1,...,K in equations 
(2)–(8). Because of this the initial and boundary value problem (2)–(8), which 
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consists of 7K equations can be splitted to K problems, containing only seven 
equations (2)–(8) at given k, k = 1,...,K. The problem (2)–(8), formulated for 
given k1 (compound 

1
Sk ), can be solved individually and independently from 

the problem, formulated for another compound 
2

Sk , k1,k2 = 1,...,K, k2 ≠ k1. 

Let us assume the problem (2)–(8) formulation for a single substrate S = Sk 
and reaction product P = Pk, i.e., in a case when K = 1. Let Vmax be the maximal 
enzymatic rate of the modelled biosensor, S is the concentration of substrate S, 
and P is concentration of the reaction product P. 

The problem (2)–(8), reformulated for substrate S and reaction product P, 
was solved numerically using the finite difference technique [14,15]. To find a 
numerical solution of the problem in the domain ],0[],0[ Td ×  we introduced an 
uniform discrete grid 
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Let us assume the following 

21 ,...,0;,...,0),,(),,( NjNitxPPtxSS ji
j

iji
j

i ==== . (12) 

A semi-implicit linear finite difference scheme has been built as a result of 
the difference approximation. The initial conditions (4) and (5) we 
approximated as follows 
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The boundary conditions (6)–(8) were approximated as follows: 

210 ,...,1, NjSS jj
== , 

F0 ,...,1, NjSS j
N == , (16) 
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Equations (13) allow to calculate a solution of the problem on the layer 
t = t0 = 0. When a solution on a layer tj has been calculated, a solution on the 
next layer t = tj+1 can be calculated in two steps: 

1) calculate values of 1
1 ,...,0, NiS j

i =
+ , solving the system of linear 

equations (14), (16); 
2) calculate values of 1

1 ,...,0, NiP j
i =
+ , solving the system of linear 

equations (15), (17) using values of 1+j
iS , which have been calculated 

in step 1. 

The systems of linear algebraic equations can be solved efficiently in both 
steps above because of the tridiagonality of the matrices of the systems. 

Having numerical solution of the problem, the density of biosensor current 
at time t = tj is calculated by 

( ) 201Pe ,...,0,)( NjhPPFDntI jj
j =−= . (18) 

In the common case of K compounds, having responses of the biosensor to 
each compound individually, equation (10) allows to calculate the common 
biosensor response to the mixture of K compounds. To obtain values I*(tj), 
j = 0,...,N2, of the common biosensor current, it is required: 

a) to run computer simulation K times to obtain values )()(
j

k tI  of the 

biosensor current using (18) for each compound of the mixture, 
k = 1,...,K;  j = 0,..., N2; 

b) to calculate the common biosensor current as defined in (10). 

In step (a) only values of the following parameters: )(
S

kD , )(
P

kD , )(
max

kV  and )(
0

kS  
vary when one computer simulation changes the next one. This procedure of 
computation is valid for both regimes of analysis: batch and flow injection. 
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3 Data Synthesis 

The developed computer simulation software was employed to generate data for 
a calibration of an amperometric biosensor. The biosensor was calibrated for 
mixtures of four (K = 4) compounds. Each compound of eight (M = 8) different 
concentrations was employed in the calibration to have the biosensor response 
to a wide range of substrate concentrations. Because of this it was required to 
solve the problem (2)–(8) for given compound Sk numerically K × M = 4 × 8 = 32 
times at 4 different values of the maximal enzymatic rate )(

max
kV  and 8 values of 

the substrate concentration )(
0

kS .  

The following values of the parameters were assumed constant in the all 
numerical experiments: 
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Each compound of the mixture was characterized by the individual 
maximal enzymatic rate )(
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kV : 
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The following values of the concentration )(
0

kS of each of K substrates 
S1,...,SK of the mixture were employed: 
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Two parameters: TF and T depend on the regime of analysis. In flow 
injection analysis due to the disappearance of the current, time T was 
considerably less than in batch analysis. We employed T = 300 s, TF = T in 
batch analysis, while T = 100 s, TF = 10 s in flow injection one. 

Only values of two parameters: )(
max

kV  and )(
0

kS  varied when one computer 
simulation changes the next one. In addition, every computer simulation was 
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repeated twice to simulate biosensor response in batch as well as flow injection 
regime at different values of TF and T. 
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Fig. 1. Every 64th biosensor response curve of full factorial of MK responses at K = 4 
values of the maximal enzymatic rate and M = 8 substrate concentrations in batch analysis 

Let )()(
j

k
m tI  be a value of density )()(

j
k tI  of the biosensor current at 

concentration )(
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k SS =  of substrate Sk, m = 1,...,M; j = 1,...,N2; k = 1,...,K. 

Having M numerical solutions (M sets of biosensor response values) )()(
j

k
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j = 1,...,N2, for each k = 1,...,K (in total K × M solutions), the full factorial 
)(,...,1 jmm tI

K
 of  MK = 84 = 4096 solutions can be produced additively: 
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The simulated biosensor response data was passed to a chemometric 
analysis. During computer simulation, values of the biosensor current were 
stored in a file every second of simulation. Only L values of )()(

l
k

m tI , tl =  l - 1 (s), 
l = 1,...,L; L = T + 1 for each k = 1,...,K and m = 1,...,M were produced as a 
result of computer simulation of the biosensor response (in total K × M × L values). 
Later, using an additional simple utility of summation, a matrix MK

×L = 4096×L 
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of the biosensor response data were produced following (22) and stored in a file 
which was an input file for chemometric analysis. This was repeated for batch 
as well as flow injection regimes.  
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Fig. 2. Every 64th biosensor response curve of full factorial of MK responses at K = 4 
values of the maximal enzymatic rate and M = 8 substrate concentrations in flow injection 

analysis 

Results of the calculation are depicted in figure 1 and 2. Figure 1 shows 
every 64th of full factorial of MK simulated biosensor responses for K = 4 values 
of the maximal enzymatic rate and M = 8 substrate concentrations in a case of 
batch analysis. Figure 2 presents generated biosensor responses in flow 
injection analysis. Evolution of biosensor current is depicted for the first 100 
seconds of biosensor action only because of petty change of the biosensor 
current at greater values of time t.  

The calculation showed, that the maximal biosensor current increases with 
increase of maximal enzymatic rate Vmax. The time of the maximal biosensor 
current decreases with increase of Vmax. This property is valid for both regimes 
of analysis: batch and flow injection. In batch analysis the maximal biosensor 
current is the steady-state current. Figure 2 shows, that the current  function I*(t) 
is not monotonous in flow injection analysis. The time of maximal current 
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occurs noticeably later after the time TF  = 10 s of analyte removing. The time 
when the current starts to decrease varies between 19 and 24 s.  

4 Conclusions 

The mathematical model (2)–(8) of amperometric biosensors can be used to 
investigate regularities of the biosensor response to mixtures in batch and flow 
injection analysis. 

If K is a number of mixture compounds and M is a number of different 
concentrations of each compound, then the result of K × M computer simulations 
can be successfully used to generate biosensor response data for full factorial of  
mixtures (MK samples) in the cases, where the biosensor signal equals to the 
sum of signals of individual analytes.  
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