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Abstract. Linear and nonlinear state feedback controllers are proposed to 
control the bifurcation of a new phenomenon in power system, this 
phenomenon of electro-mechanical interaction between the series resonant 
circuits and torsional mechanical frequencies of the turbine generator sections, 
which known as Subsynchronous Resonance (SSR). The first system of the 
IEEE second benchmark model is considered. The dynamics of the two axes 
damper windings, Automatic Voltage Regulator (AVR) and Power System 
Stabilizer (PSS) are included. The linear controller gives better initial 
disturbance response than that of the nonlinear, but in a small narrow region 
of compensation factors. The nonlinear controller not only can be easily 
implemented, but also it stabilizes the operating point for all values of the 
bifurcation parameter. 

Keywords: subsynchronous resonance, power system, control of chaos. 

1 Introduction 

The phenomenon of SSR has been studied very extensively since 1970 when a 
major transmission network in the USA experienced shaft failure to its T-G unit 
with series compensation in the 500KV lines. This has now gone into technical 
literature as a classical problem and known as Project Navajo. However, this 
phenomenon had been known to exist for a few years according to many experts 
who predicted such a phenomenon in series-compensated lines connected to 
T-G units [1]. In fact, series compensation has been considered as a powerful 
alternative based on economic and technical considerations for increasing 
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effectively the power transfer capability and improving the stability of extra 
high voltage systems. 

In the last few years, power system dynamics have been studied from 
nonlinear dynamics point of view using bifurcation theory. In fact, power 
system has rich bifurcation phenomena. Particularly, when the consumer 
demand for reactive power reaches its peaks, the dynamics of an electric power 
network may move to its stability margin, leading to oscillations and 
bifurcations. 

SSR is a phenomenon in power system in which bifurcation theory can be 
applied. The most commonly encountered bifurcation is the dynamic bifurcation 
“Hopf bifurcation” in which a complex conjugate pair of eigenvalues of the 
linearized model around the operating condition transversally crosses the 
imaginary axis of the complex plane. The birth of limit cycle from an 
equilibrium point gives rise to oscillations, which may undergo complicated 
bifurcations such as period multiplication, cyclic folds or crises. Zhu et al. [2] 
used the Hopf bifurcation theorem, in which the dynamics of the AVR and 
damper windings are neglected, to study a SMIB power system experienced 
SSR, a prediction of supercritical Hopf bifurcation is investigated. The 
bifurcation analysis is used by Nayfeh et al. [3] to investigate the complex 
dynamics of a heavily loaded SMIB power system modeling the characteristics 
of the BOARDMAN generator with respect to the rest of the North-Western 
American Power System. In their study, the dynamic effects of d- and q-axes 
damper windings are included while that of the AVR is neglected. The results 
show that, as the compensation factor increases the operating point loses 
stability via supercritical Hopf bifurcation. On further increase of the 
compensation factor the system route to chaos via torus breakdown. Also it is 
concluded that the effect of the damper windings on that system is to destabilize 
the system by reducing the compensation level at which SSR occurs. The effect 
of electrical machine saturation on SSR is also studied by Harb et al. [4]; they 
concluded that, the generator saturation slightly shrinks the positively damped 
region by shifting the Hopf bifurcation point to smaller compensation level. It 
also slightly shifts the secondary Hopf bifurcation and blue sky catastrophe to 
smaller compensation level. 

Bifurcation control deals with modification of bifurcation characteristics of 
a parameterized nonlinear system by a designed control input. Typical 
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bifurcation control objectives include delaying the onset of an inherent 
bifurcation [5] and [6], introducing a new bifurcation at a preferable parameter 
value [7] and [8], changing the parameter value of an existing bifurcation point 
[9] and [10], modifying the shape or type of a bifurcation chain [6], stabilizing a 
bifurcated solution or branch [11] and [12], monitoring the multiplicity [13], 
amplitude [14], and/or frequency of some limit cycles emerging from 
bifurcation [15] and optimizing the system performance near a bifurcation point 
[16]. 

Bifurcation control with various objectives have been implemented in 
experimental systems or tested by using numerical simulations in a great 
number of engineering, biological, and physicochemical systems; examples can 
be named in chemical engineering [17] and [18], mechanical engineering 
[19]–[21], electrical engineering [22]–[28], biology [29], physics and chemistry 
[30]–[32] and meteorology [33]. Bifurcation control is not only important in its 
own right, but also suggests a viable and effective strategy for chaos control, 
this because the bifurcation and chaos are usually twins. 

It is now known that bifurcation properties of a system can be modified via 
various feedback control methods. Representative approaches employ linear or 
nonlinear state-feedback controls [8], [11], [34] and [35], apply a washout filter-
aided dynamic feedback controller [35], and use harmonic balance 
approximations [10]. 

The aims of the paper are to use linear and nonlinear controllers to control 
bifurcation and chaos of SSR for the IEEE second benchmark model, and to 
compare between these two types of controllers. 

The paper is organized as follows: In section 2, a description of the 
considered system is given. Section 3 gives the mathematical model of the open 
loop system. Section 4 discussed the used linear and nonlinear state feedback 
controllers. Numerical simulation results for both open and closed loop systems 
are given in section 5, and finally some conclusions are withdrawn in section 6. 

2 System Description 

After Harb & Widyan [36], we considered the first system of the IEEE second 
benchmark models of subsynchronous resonance. As shown in fig. 1, it is a 
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SMIB power system with two transmission lines, one of them is compensated 
by a series capacitor. 

 

Fig. 1. Power system under study 
(System 1, IEEE Second Benchmark Model of SSR) 

Fig. 2 shows the automatic voltage regulator (AVR) that controls the excitation 
voltage of the synchronous generator with the terminal voltage of synchronous 
generator as an input signal, while the output signal is the d-axis field voltage, 
and power system stabilizer (PSS) that uses auxiliary (supplementary) 
stabilizing signals to control the excitation system so as to improve power 
system dynamic performance. 

 
Fig. 2. Block diagram of the used AVR and PSS 

3 Mathematical Model 

Using direct, quadrature (d- and q-axes) and Park’s transformation, the 
complete mathematical model that describes the dynamics of the system can be 
found in [36]: 
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b) Transmission Line: 
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d) Automatic Voltage Regulator (AVR) and Power System Stabilizer (PSS) 
Mathematical Model 

The mathematical model of AVR and PSS (fig. 2) is given by the following 
equations: 
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Hence, the system can be written in state space representation in the form: 

);( µxF
dt
dx

= , (20) 

whereµ  is the bifurcation parameter, representing the compensation factor 
( 1/ Lc XX ) of the power system. In all cases, the system has more than one 
equilibrium solution; the selected one is the equilibrium, which represent the 
operating point resulting in a heavily loaded generator with 9.0=Pe , 

43.0=eQ and 138.1=tV  pu. 

Equations (1)–(19) give a complete description to the dynamics of the 
SMIB power system with two transmission lines one of them is compensated by 
a series capacitor. The state variables are fdix =1 , dix =2 , kdix =3 , qix =4 , 

kqix =5 , cdvx =6 , cqvx =7 , 18 δ=x , 19 ω=x , gx δ=10 , gx ω=11 , 212 δ=x , 

213 ω=x , 314 δ=x , 315 ω=x , WXx =16 , sVx =17  and Ex =18 . All parameters 
are given in the Appendix. 

4 Linear and Nonlinear State Feedback Controller 

4.1 Linear State Feedback Controller. It is based on the linearized version 
around the operating point of the nonlinear dynamical system. The control is 
achieved by feeding back the state variables through a regulator with constant 
gains. Consider the following linearized version of a nonlinear system in the 
state-variable form [37]: 

BuAx
dt
dx

+= , (21) 

where A is an nn× constant matrix and B is an mn× constant matrix, here m is 
the number of the system inputs, given by 
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evaluated at the operating point. 

Now consider the block diagram of the system shown in fig. 4 with the 
following state feedback control 
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Kxtu −=)( , (23) 

where K is a nm× matrix of constant feedback gains. 

 
Fig. 4. Control system design via linear state feedback 

The control system input )(tr  is assumed to be zero. The purpose of this system 
is to return all state variables to values of zero when the states have been 
perturbed. Substituting equation (23) into equation (21), the compensated 
system state-variable representation becomes 

xAxBKAx f=−= )(
.

. (24) 

The closed loop characteristic equation is 

0=+− BKAsI  (25) 

and for a specified closed-loop pole locations nλλλ ,.....,, 21 , the design 
objective is to find the gain matrix K such that the characteristic equation of the 
closed loop system Equation (25) has the specified closed loop eigenvalues. 

The necessary and sufficient condition, which enables us to place the 
closed-loop eigenvalues anywhere, is that the linearized system around the 
operating point is controllable, that is the controllability matrix has a full rank 
i.e. 

B[ρ   AB   BA2 … nBAn
=

− ]1 . (26) 

4.2 Nonlinear State Feedback Controller. The considered nonlinear 
controller is of the form: 

)( 3
1

3
ωω −−= gKu . (27) 
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In this controller, just two state signals of the system must be measured, the 

rotor generator speed gω and the first turbine-generator section speed 1ω . Then 

3
1ω is subtracted from 3

gω . Because gωω =1 at steady state, the nonlinear 

controller will not affect the equilibrium solutions of the system, but it will 

affect the Jacobean matrix of the system, as a result the eigenvalues of the 

linearized model will be altered by this controller at different compensation 

factors. Then, the result is multiplied by a gain K, this gain must be carefully 

adjusted such that it will make a significant effect on the equilibrium stability of 

the system. fig. 5 shows the block diagram of the AVR and PSS together with 

the considered nonlinear feedback controller. 

 

Fig. 5. AVR, PSS together with the considered nonlinear state feedback controller 

5 Numerical Simulation Results 

5.1 The case of linear state feedback controller. In this case, we consider the 
SMIB power system without taking the AVR and PSS into account, and it 
assumed that the only input to the system is the internal generated voltage. The 
study is carried out with heavily loaded synchronous generator of 9.0=eP , 

43.0=eQ  and 138.1=tV  at a compensation factor 1.0=µ  by adjusting 
2.2=E and 91.0=mT . First, the bifurcation theory is applied to the open loop 

system when the compensation factor µ varies from 0 up 1. This case is studied 



A.M. Harb, M.S. Widyan 

24 

in details by Harb and Widyan [36], in which we have 15 differential equations 
(1)–(15). The 15×15 Jacobean matrix is obtained and the stability of the 
operating point is studied by monitoring the eigenvalues of the linearized 
version. 

Fig. 6 shows the variation of real and imaginary parts of the eigenvalues 
with the compensation factor µ . It can be observed that, for small µ  the 
frequencies of the electrical modes are approximately 377 rad/sec. As µ  
increases they start separate from each other. The first one starts increasing and 
called supersynchronous, while the second starts decreasing and called 
subsynchronous electrical mode. The latter one is of prime interest because 
when it interacts with the torsional modes, they may be self excited and this is 
dangerous since, if this occurs, they will cause loss of fatigue life and 
eventually, the destruction of the rotor, even if they have small amplitudes. 
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Fig. 6. Variation of real and imaginary parts of eigenvalues with the compensation 

factor µ  

It is clear that at 518429.0≈µ , the subsynchronous electrical mode 
interacts with the second torsional mode resulting in moving of the 
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corresponding real parts of eigenvalues towards the zero axis. Unfortunately, 
this interaction was strong enough to transversally move the real parts of the 
corresponding eigenvalues from left- to the right half of the complex plane. 
Hence, a Hopf bifurcation had been occurred. 

The bifurcation diagram is shown in fig. 7 in µδ −g  plane. It can be 
observed that, the power system has stable operating point in the region 

518429.00 ≈<< Hµ , unstable operating point in the region 
1518429.0 ≤<≈ µH  and a Hopf bifurcation point at 518429.0≈= Hµ . 

0.4 0.45 0.5 0.55 0.6 0.65
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1
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Solid Line: Stable operating point 
Dashed Line: Unstable operating point 
H: Hopf bifurcation point 

 
Fig. 7. Variation of rotor angle of generator with compensation factor (Bifurcation 

diagram, gδ vs. µ ) 

A Hopf bifurcation point is that point at which the stationary equilibrium 
solution is connected to that of the periodic solution, thus at 518429.0≈= Hµ , 
a limit cycle is born, this limit cycle is stable if the Hopf bifurcation is 
supercritical and unstable in case of sub critical Hopf bifurcation. The type of 
the Hopf bifurcation can be determined by either perturbation techniques based 
on the method of multiple scales or numerical method based on the response of 
the perturbed system. Harb & Widyan [36] show that the Hopf bifurcation is 
supercritical. 

Fig. 8 shows the time history of the system emanated near the Hopf 
bifurcation point, the two-dimensional projection and the corresponding FFT at 
different compensation factors after the Hopf bifurcation value. It can be 
observed that the system routes to chaos via torus breakdown intermittency. 
Also on further increase of the compensation factor, the chaotic attractor 
collides with its basin boundary resulting in destruction of both the attractor as 
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well as the boundary in a dangerous discontinuous bifurcation called blue-sky 
catastrophe, so there is no bounded motion as shown in fig. 9. 

(a) 

(b) 

(c) 

Fig. 8. Time histories of the rotor angle of generator (left), the corresponding two-dimensional 
projections of the phase portrait onto gg ωδ −  plane (middle), and the corresponding FFT 

(right). The solution at (a) limit cycle, ( =µ 0.518429), (b) torus-attractor ( =µ 0.519761) 
and (c) chaotic attractor, ( =µ 0.527999) 

 (a) (b) 

Fig. 9. Time history of (a) rotor angle of generator and (b) rotor speed of generator at 
=µ 0.528015 (blue-sky catastrophe) 
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Fig. 10 shows the open loop time history and the corresponding two-
dimensional projection of the system at a compensation factor 8.0=µ . It can 
be observed that the system has a chaotic behavior. So far all simulations were 
carried out without any control action. Next, a linear state feedback controller of 
the form: 
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Fig. 10. (a) Open loop time history (Rotor speed of generator), 
(b) the corresponding two-dimensional projection 

(d-axis capacitor voltage vs. q-axis capacitor voltage) at 8.0=µ  
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is designed. 
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Now, the objective is to find the constant gains ( 151 KK � ) such that 
the linearized model around the operating point has the desired 
eigenvalues of: 

=P i60012 ±− , i3215±− , i2044 ±− , i15512 ±− , i1606±− , 30− , 
       i115±− , 5− , 10− . 

The MATLAB built in function ),,( PBAplaceK = is used to find the 
designed gains ( 151 KK � ), and the following result is obtained 

=1K 679.256, =2K -696.885, =3K 671.937, =4K 396.004, 
=5K -324.289, =6K 342.566, =7K 281.193, =8K -23621.7, 
=9K -19569.1, =10K 35635.9, =11K 34901.2, =12K 16693.8, 
=13K -30131.6, =14K 4886.87, =15K 13439.7. 

Fig. 11 shows the response of the system based on the nonlinear model at a 
compensation factor 8.0=µ  after 2.5% initial disturbance on the rotor speed of 
the generator when the linear state feedback controller is applied, it can be 
observed that the system has been stabilized by using this controller. 

 
 
 
 
 
 
 
 
 
 
 

 (a) (b) 

Fig. 11. Closed loop response (a) Rotor angle, and (b) Rotor speed of generator after 2.5% 
initial disturbance on the rotor speed of generator (with linear state feedback controller, at 

8.0=µ ) 
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linear state feedback controller, one must vary the controller gains at all 
compensation factors, and before that one must check the controllability of the 
system at every compensation factor. 

5.2 The case of nonlinear state feedback controller. In this subsection, the 
case of including the dynamics of the two axes damper windings, AVR and 
PSS. Before we mention the effect of the nonlinear state feedback controller, the 
effect of the AVR gain RK  (fig. 5) should be investigated. fig. 12 shows the 
location of the Hopf bifurcation point as a function of the AVR gain RK , it can 
be observed that as the value of RK decreases the Hopf bifurcation point 
increases or equivalent to say that the stability region increases. 

0 50 100 150 200
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AVR gain, KR  

Fig. 12. Variation of Hopf bifurcation point H with AVR gain RK  

A nonlinear controller of the form of equation (27) has been designed. As 
we mentioned early, two state signals of the system must be measured, the rotor 
generator speed gω and the first turbine-generator section speed 1ω . 

As down in the AVR gain, fig. 14 shows the variation of the Hopf 
bifurcation point H  with the value of the nonlinear controller gain K  when the 
AVR gain RK  is adjusted at a very small value of 2. It can be observed that, as 
the nonlinear controller gain increases, the Hopf bifurcation point increases so, 
the equilibrium stable region increases. Also it can be observed that, if one 
adjust the nonlinear state feedback gain to a value greater than 4500, then the 
operating point of the system will never loss stability at any compensation 
factor, so the system will never experience any bifurcations. 
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Fig. 14. Variation of Hopf bifurcation point H with the nonlinear state feedback controller 
gain K when AVR gain 2=RK  

Fig. 15 shows the variation of the real and imaginary parts of eigenvalues 
of the linearized system around the operating point with the compensation 
factor µ  with nonlinear state feedback controller gain 5000=K and AVR gain 

2=RK . It can be inferred that, despite the sub synchronous resonance mode 
interactions with the torsional mechanical modes, the operating point never lose 
stability at any compensation factor, so with nonlinear state feedback controller 
together with small amplitude AVR gain, the system operating point never lose 
stability. 

 

 

 

 

 

 

Fig. 15. Variation of real and imaginary parts of eigenvalues with µ  (the case of 
nonlinear state feedback controller with gain K = 5000 and AVR gain KR = 2) 
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Fig. 16 shows the time history of the system at compensation factor 
=µ 0.8 in cases of no controllers and with the nominal value of AVR gain 

200=RK . It can be inferred that the operating point of the system is unstable. 
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Fig. 16. Rotor speed of generator at 8.0=µ  (without controller and with the nominal 

value of AVR gain 200=RK ) 

Fig. 17 and 18 show the time history of the system when the nonlinear 
controller is included with a gain 5000=K  together with a small value of AVR 
gain 2=RK  at 8.0=µ after 2.5% initial disturbance on the rotor speed of 
generator. It can be observed that the nonlinear controller together with small 
AVR gain stabilizes the system. 

 (a) (b) 

Fig. 17. Closed loop response (a) Rotor speed, (b) Rotor angle of generator at 8.0=µ  after 
2.5% initial disturbance on the rotor speed of generator (with a nonlinear state feedback 

controller gain 5000=K  and AVR gain 2=

R
K ) 
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Finally, fig. 18 shows the time history of the nonlinear control signal.  

0 5 10 15 20
-400

-300

-200

-100

0

100

200

300

400

Time (Sec)  
Fig. 18. Time history of the nonlinear controller at 8.0=µ  after 2.5% initial disturbance 

on the rotor speed of generator 

6 Conclusions 

Linear and nonlinear state feedback controllers are used to control the chaotic 
oscillations and bifurcations of the IEEE second benchmark model of SSR. 
Both controllers succeeded to change unstable attractor to a stable one. Linear 
state feedback controller gives better response for initial disturbance but in a 
very narrow region of compensation factor, while nonlinear controller together 
with small AVR gain stabilize the operating point of the system at all realistic 
compensation factors, and hence canceling all bifurcations of the system. 

7 Appendix 

Numerical Parameters: 

a) Synchronous Generator (in pu, on the base of its ratings): 

=ffdX 1.6286 =afdX 1.5100 =fkdX 1.5100 

=fdr 0.00096 =dX 1.6500 =akdX 1.5100 

=ar 0.0045 =qX 1.5900 =kdr 0.0160 

=akqX 1.4500 =kkdX 1.6420 =kkqX 1.5238 

=kqr 0.0116 
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b) Network (Transmission line, in pu on the base of generator ratings): 

=TX 0.1200 =1LX 0.4800 =bX  0.1800 
=bR  0.0084 =TR 0.0012 =1R  0.0444 
=2R 0.0402 =2LX 0.4434 

c) Mechanical system (in pu on the base of the generator ratings): 

=1M 0.0138 =1D 0.0014 =gK1 3.7363 

=gM 1.7581 =gD 0.1758 =2gK 83.3823 

=2M 3.1004 =2D 0.3100 =23K 42.6572 
=3M  0.4980 =3D 0.0498 

d) AVR and PSS: 

=RK 200 025.0=RT s =WT 10s 
=sK 12 =1T 0.048s =2T 0.032s 
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