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Abstract. Linear and nonlinear state feedback controllers are proposed to
control the bifurcation of a new phenomenon in power system, this
phenomenon of electro-mechanical interaction between the series resonant
circuits and torsional mechanical frequencies of the turbine generator sections,
which known as Subsynchronous Resonance (SSR). The first system of the
IEEE second benchmark model is considered. The dynamics of the two axes
damper windings, Automatic Voltage Regulator (AVR) and Power System
Stabilizer (PSS) are included. The linear controller gives better initial
disturbance response than that of the nonlinear, but in a small narrow region
of compensation factors. The nonlinear controller not only can be easily
implemented, but also it stabilizes the operating point for all values of the
bifurcation parameter.

Keywords: subsynchronous resonance, power system, control of chaos.

1 Introduction

The phenomenon of SSR has been studied very extensively since 1970 when a
major transmission network in the USA experienced shaft failure to its T-G unit
with series compensation in the 500KV lines. This has now gone into technical
literature as a classical problem and known as Project Navajo. However, this
phenomenon had been known to exist for a few years according to many experts
who predicted such a phenomenon in series-compensated lines connected to
T-G units [1]. In fact, series compensation has been considered as a powerful
alternative based on economic and technical considerations for increasing
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effectively the power transfer capability and improving the stability of extra
high voltage systems.

In the last few years, power system dynamics have been studied from
nonlinear dynamics point of view using bifurcation theory. In fact, power
system has rich bifurcation phenomena. Particularly, when the consumer
demand for reactive power reaches its peaks, the dynamics of an electric power
network may move to its stability margin, leading to oscillations and
bifurcations.

SSR is a phenomenon in power system in which bifurcation theory can be
applied. The most commonly encountered bifurcation is the dynamic bifurcation
“Hopf bifurcation” in which a complex conjugate pair of eigenvalues of the
linearized model around the operating condition transversally crosses the
imaginary axis of the complex plane. The birth of limit cycle from an
equilibrium point gives rise to oscillations, which may undergo complicated
bifurcations such as period multiplication, cyclic folds or crises. Zhu et al. [2]
used the Hopf bifurcation theorem, in which the dynamics of the AVR and
damper windings are neglected, to study a SMIB power system experienced
SSR, a prediction of supercritical Hopf bifurcation is investigated. The
bifurcation analysis is used by Nayfeh et al. [3] to investigate the complex
dynamics of a heavily loaded SMIB power system modeling the characteristics
of the BOARDMAN generator with respect to the rest of the North-Western
American Power System. In their study, the dynamic effects of d- and g-axes
damper windings are included while that of the AVR is neglected. The results
show that, as the compensation factor increases the operating point loses
stability via supercritical Hopf bifurcation. On further increase of the
compensation factor the system route to chaos via torus breakdown. Also it is
concluded that the effect of the damper windings on that system is to destabilize
the system by reducing the compensation level at which SSR occurs. The effect
of electrical machine saturation on SSR is also studied by Harb et al. [4]; they
concluded that, the generator saturation slightly shrinks the positively damped
region by shifting the Hopf bifurcation point to smaller compensation level. It
also slightly shifts the secondary Hopf bifurcation and blue sky catastrophe to
smaller compensation level.

Bifurcation control deals with modification of bifurcation characteristics of
a parameterized nonlinear system by a designed control input. Typical

16



Controlling Chaos and Bifurcation

bifurcation control objectives include delaying the onset of an inherent
bifurcation [5] and [6], introducing a new bifurcation at a preferable parameter
value [7] and [8], changing the parameter value of an existing bifurcation point
[9] and [10], modifying the shape or type of a bifurcation chain [6], stabilizing a
bifurcated solution or branch [11] and [12], monitoring the multiplicity [13],
amplitude [14], and/or frequency of some limit cycles emerging from
bifurcation [15] and optimizing the system performance near a bifurcation point
[16].

Bifurcation control with various objectives have been implemented in
experimental systems or tested by using numerical simulations in a great
number of engineering, biological, and physicochemical systems; examples can
be named in chemical engineering [17] and [18], mechanical engineering
[19]-[21], electrical engineering [22]-[28], biology [29], physics and chemistry
[30]-[32] and meteorology [33]. Bifurcation control is not only important in its
own right, but also suggests a viable and effective strategy for chaos control,
this because the bifurcation and chaos are usually twins.

It is now known that bifurcation properties of a system can be modified via
various feedback control methods. Representative approaches employ linear or
nonlinear state-feedback controls [8], [11], [34] and [35], apply a washout filter-
aided dynamic feedback controller [35], and wuse harmonic balance
approximations [10].

The aims of the paper are to use linear and nonlinear controllers to control
bifurcation and chaos of SSR for the IEEE second benchmark model, and to
compare between these two types of controllers.

The paper is organized as follows: In section 2, a description of the
considered system is given. Section 3 gives the mathematical model of the open
loop system. Section 4 discussed the used linear and nonlinear state feedback
controllers. Numerical simulation results for both open and closed loop systems
are given in section 5, and finally some conclusions are withdrawn in section 6.

2 System Description

After Harb & Widyan [36], we considered the first system of the IEEE second
benchmark models of subsynchronous resonance. As shown in fig. 1, it is a
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SMIB power system with two transmission lines, one of them is compensated
by a series capacitor.
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Fig. 1. Power system under study
(System 1, IEEE Second Benchmark Model of SSR)

Fig. 2 shows the automatic voltage regulator (AVR) that controls the excitation
voltage of the synchronous generator with the terminal voltage of synchronous
generator as an input signal, while the output signal is the d-axis field voltage,
and power system stabilizer (PSS) that uses auxiliary (supplementary)
stabilizing signals to control the excitation system so as to improve power
system dynamic performance.
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Fig. 2. Block diagram of the used AVR and PSS

3 Mathematical Model

Using direct, quadrature (d- and g-axes) and Park’s transformation, the
complete mathematical model that describes the dynamics of the system can be
found in [36]:
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a) Synchronous Generator:

di di di r .
X fig d_;:d_xafd d—f[’+kad dif[d =, Xf:fd E—a,ryly, (1)
Xade_(Xd—i_xT—i_kal—i_xb)d_:"_ akd dif[d

=0\V,sind, +w,(Ry + Ry +kR; +1,)i; (2

— 0, (Xt + Xy, +KX | ++0 X )iy + 0,04 X il + @V s
JRZ + X2,
\/(Rl"‘Rz)Z (X g+ X =X (y)°

dig, di
2 _x, =4
dt At

where k =

X td + Xk at = =0, lglyg 3)

di
— (X + Xq +kXLl+Xb)d—S+X

- 0,0 Xakd 0N (R +Rb+kR +r)| + oV
di diy,

akq d_s + kaq d_tq =—a, rkqi : (5)

cq

-X

b) Transmission Line:

With X, = X,
dvy
dt =01 kX L1 d a)och ! (6)
dv ]
d_::q:a)mu kX Ll —@oVeq - (7)

c) Mechanical System:

ds,

ey (8)
do
1= Dy = Doy - Kb, + Ky, )
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9 _
TR (10)
do
M- dtg =Ty + Dy = Xoglgitg + Xgigig
+ K1951 - Klgé‘g - ngé‘g =+ K9252 ,
ds
] (12)
M2 dd% = D2 - Dza)z + ngé‘g — K9252 — K2352 + K2353, (13)
ds
oY% (14)
M, dd% = D, — Dyory + Ky, — K (15)

d) Automatic Voltage Regulator (AVR) and Power System Stabilizer (PSS)
Mathematical Model

The mathematical model of AVR and PSS (fig. 2) is given by the following
equations:

dX do
Ty~ Ty —2 ==Xy, 16
W dt W dt W ( )
dv dX
Tzd—tS—TlKSd—tW: K Xy =V, a7
dE
TRE: KrVis + KrV, — KRV, —E. (18)

With V, =V +V{ , neglecting stator transients yields:

Consequently,

V, = (haig + X i) +(haiq = Xgig + X gig)? - (19)
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Hence, the system can be written in state space representation in the form:

& F(xiu), (20)

where £ is the bifurcation parameter, representing the compensation factor
(X, /X ;) of the power system. In all cases, the system has more than one
equilibrium solution; the selected one is the equilibrium, which represent the
operating point resulting in a heavily loaded generator with Pe=0.9,
Q. =0.43and V, =1.138 pu.

Equations (1)—(19) give a complete description to the dynamics of the
SMIB power system with two transmission lines one of them is compensated by
a series capacitor. The state variables are X, =iy, X, =iy, X3 =iy, X, =g,

Xs =lygs Xg =Vegs X7 =Veq, Xg =01, Xg =@y, Xy9 =04, X3 =@y, X =85,

Xi3 =@y, Xy =03, Xis = @5, X5 = Xy, X7 =V, and x4 = E. All parameters
are given in the Appendix.

4 Linear and Nonlinear State Feedback Controller

4.1 Linear State Feedback Controller. It is based on the linearized version
around the operating point of the nonlinear dynamical system. The control is
achieved by feeding back the state variables through a regulator with constant
gains. Consider the following linearized version of a nonlinear system in the
state-variable form [37]:

9 = Ax+ Bu, (21)
dt

where A is an nxnconstant matrix and B is an nxm constant matrix, here m is
the number of the system inputs, given by

Al OX g @
OX au
evaluated at the operating point.

Now consider the block diagram of the system shown in fig. 4 with the
following state feedback control
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u(t) = -Kx, (23)

where K is a mx n matrix of constant feedback gains.

(g) outpil
rit) N i ot |

Kl
%, |
L2

Fig. 4. Control system design via linear state feedback

% (8

x3(8)

The control system input r(t) is assumed to be zero. The purpose of this system

is to return all state variables to values of zero when the states have been
perturbed. Substituting equation (23) into equation (21), the compensated
system state-variable representation becomes

x =(A-BK)x = A X. (24)
The closed loop characteristic equation is
sl = A+BK|=0 (25)

and for a specified closed-loop pole locations A4, 4,,.....,4,, the design

objective is to find the gain matrix K such that the characteristic equation of the
closed loop system Equation (25) has the specified closed loop eigenvalues.

The necessary and sufficient condition, which enables us to place the
closed-loop eigenvalues anywhere, is that the linearized system around the
operating point is controllable, that is the controllability matrix has a full rank
i.e.

p[B AB A?B..A"™'B]=n. (26)

4.2 Nonlinear State Feedback Controller. The considered nonlinear
controller is of the form:

u:—K(a)g—wf). (27)
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In this controller, just two state signals of the system must be measured, the

rotor generator speed o, and the first turbine-generator section speed ;. Then

a)f is subtracted from a)g Because @, = o, at steady state, the nonlinear

controller will not affect the equilibrium solutions of the system, but it will
affect the Jacobean matrix of the system, as a result the eigenvalues of the
linearized model will be altered by this controller at different compensation
factors. Then, the result is multiplied by a gain K, this gain must be carefully
adjusted such that it will make a significant effect on the equilibrium stability of
the system. fig. 5 shows the block diagram of the AVR and PSS together with

the considered nonlinear feedback controller.

K0+ | £w | 5Ty
1+ 5T, 1+ 5Ty

PR Washout
circuit

Fig. 5. AVR, PSS together with the considered nonlinear state feedback controller

5 Numerical Simulation Results

5.1 The case of linear state feedback controller. In this case, we consider the
SMIB power system without taking the AVR and PSS into account, and it
assumed that the only input to the system is the internal generated voltage. The
study is carried out with heavily loaded synchronous generator of P,=0.9,

Q. =043 and V,=1.138 at a compensation factor x=0.1 by adjusting
E=2.2and T, =0.91. First, the bifurcation theory is applied to the open loop
system when the compensation factor g varies from 0 up 1. This case is studied

23



A.M. Harb, M.S. Widyan

in details by Harb and Widyan [36], in which we have 15 differential equations
(1)-(15). The 15x15 Jacobean matrix is obtained and the stability of the

operating point is studied by monitoring the eigenvalues of the linearized
version.

Fig. 6 shows the variation of real and imaginary parts of the eigenvalues
with the compensation factor . It can be observed that, for small x the

frequencies of the electrical modes are approximately 377 rad/sec. As u

increases they start separate from each other. The first one starts increasing and
called supersynchronous, while the second starts decreasing and called
subsynchronous electrical mode. The latter one is of prime interest because
when it interacts with the torsional modes, they may be self excited and this is
dangerous since, if this occurs, they will cause loss of fatigue life and
eventually, the destruction of the rotor, even if they have small amplitudes.
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Fig. 6. Variation of real and imaginary parts of eigenvalues with the compensation
factor

It is clear that at u~0.518429, the subsynchronous electrical mode
interacts with the second torsional mode resulting in moving of the
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corresponding real parts of eigenvalues towards the zero axis. Unfortunately,
this interaction was strong enough to transversally move the real parts of the
corresponding eigenvalues from left- to the right half of the complex plane.
Hence, a Hopf bifurcation had been occurred.

The bifurcation diagram is shown in fig. 7 in &, — « plane. It can be

observed that, the power system has stable operating point in the region
O<u<H~0518429, unstable operating point in the region

H ~ 0.518429 < 1 <1 and a Hopf bifurcation point at = H ~ 0.518429.

1.005
Solid Line: Stable operating point
Dashed Line: Unstable operating point |
0.995 H: Hopf bifurcation point

H

0975} \
0.97f \
0.965f N
0.96
0.4 0.45 05 055 06 0.65

Compensation factor p

Fig. 7. Variation of rotor angle of generator with compensation factor (Bifurcation
diagram, b‘g Vs. i)

A Hopf bifurcation point is that point at which the stationary equilibrium
solution is connected to that of the periodic solution, thus at # = H ~ 0.518429,

a limit cycle is born, this limit cycle is stable if the Hopf bifurcation is
supercritical and unstable in case of sub critical Hopf bifurcation. The type of
the Hopf bifurcation can be determined by either perturbation techniques based
on the method of multiple scales or numerical method based on the response of
the perturbed system. Harb & Widyan [36] show that the Hopf bifurcation is
supercritical.

Fig. 8 shows the time history of the system emanated near the Hopf
bifurcation point, the two-dimensional projection and the corresponding FFT at
different compensation factors after the Hopf bifurcation value. It can be
observed that the system routes to chaos via torus breakdown intermittency.
Also on further increase of the compensation factor, the chaotic attractor
collides with its basin boundary resulting in destruction of both the attractor as
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well as the boundary in a dangerous discontinuous bifurcation called blue-sky
catastrophe, so there is no bounded motion as shown in fig. 9.
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Fig. 8. Time histories of the rotor angle of generator (left), the corresponding two-dimensional
projections of the phase portrait onto b‘g - og plane (middle), and the corresponding FFT

(right). The solution at (a) limit cycle, (« = 0.518429), (b) torus-attractor ( x = 0.519761)
and (c) chaotic attractor, (4« = 0.527999)
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Fig. 9. Time history of (a) rotor angle of generator and (b) rotor speed of generator at
1 = 0.528015 (blue-sky catastrophe)

26



Controlling Chaos and Bifurcation

Fig. 10 shows the open loop time history and the corresponding two-
dimensional projection of the system at a compensation factor x=0.8. It can
be observed that the system has a chaotic behavior. So far all simulations were
carried out without any control action. Next, a linear state feedback controller of
the form:

14 15 16 17 18 19
Time (sec)

(@

d-axis capacitor voltage (pu)

(b)

Fig. 10. (a) Open loop time history (Rotor speed of generator),
(b) the corresponding two-dimensional projection
(d-axis capacitor voltage vs. g-axis capacitor voltage) at x« = 0.8

U=V, —(Kjigy + Koy +Ksig + K4|q + Kslkq

+KgVeg + KV +Kgdy + Kgoy + K6 (28)

+ Kna’g + K0, + K0, + K, 0; +Kism;)

is designed.
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Now, the objective is to find the constant gains (K,...K,;) such that

the linearized model around the operating point has the desired
eigenvalues of:

P=-12+600i,-5+321i,—-4+204i,-12+155i,-6+160i,- 30,
-5+11i,-5,-10.

The MATLAB built in function K = place(A,B,P)is used to find the
designed gains (K, ...K,;), and the following result is obtained

K, =679.256, K, =-696.885, K,=671.937, K, =396.004,
K, =-324.289, K, =342.566, K, =281.193, K, =-23621.7,
Ky =-19569.1, K,, =35635.9, K,, =34901.2, K,, =16693.8,
K,; =-30131.6, K,, =4886.87, K, =13439.7.

Fig. 11 shows the response of the system based on the nonlinear model at a
compensation factor g =0.8 after 2.5% initial disturbance on the rotor speed of
the generator when the linear state feedback controller is applied, it can be
observed that the system has been stabilized by using this controller.

r L r L 0.97 L - L +
% 1 2 3 4 5 o 1 2 3 4 5
Time (Sec) Time (Sec)

(@ (b)

Fig. 11. Closed loop response (a) Rotor angle, and (b) Rotor speed of generator after 2.5%
initial disturbance on the rotor speed of generator (with linear state feedback controller, at
u=08)

In order to keep an invariant eigenvalues of the linearized system at all
compensation factors, and so to cancel all bifurcations of the system using
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linear state feedback controller, one must vary the controller gains at all
compensation factors, and before that one must check the controllability of the
system at every compensation factor.

5.2 The case of nonlinear state feedback controller. In this subsection, the
case of including the dynamics of the two axes damper windings, AVR and
PSS. Before we mention the effect of the nonlinear state feedback controller, the
effect of the AVR gain Ky (fig. 5) should be investigated. fig. 12 shows the

location of the Hopf bifurcation point as a function of the AVR gain K, it can
be observed that as the value of Kgdecreases the Hopf bifurcation point
increases or equivalent to say that the stability region increases.
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0.514
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0.506 -

0.504
0

50 100 150 200
AVR gain, KR

Fig. 12. Variation of Hopf bifurcation point H with AVR gain Ky

A nonlinear controller of the form of equation (27) has been designed. As
we mentioned early, two state signals of the system must be measured, the rotor

generator speed @, and the first turbine-generator section speed o, .

As down in the AVR gain, fig. 14 shows the variation of the Hopf
bifurcation point H with the value of the nonlinear controller gain K when the
AVR gain K is adjusted at a very small value of 2. It can be observed that, as
the nonlinear controller gain increases, the Hopf bifurcation point increases so,
the equilibrium stable region increases. Also it can be observed that, if one
adjust the nonlinear state feedback gain to a value greater than 4500, then the
operating point of the system will never loss stability at any compensation
factor, so the system will never experience any bifurcations.
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Fig. 14. Variation of Hopf bifurcation point H with the nonlinear state feedback controller
gain K when AVR gain Kp =2

Fig. 15 shows the variation of the real and imaginary parts of eigenvalues
of the linearized system around the operating point with the compensation
factor x with nonlinear state feedback controller gain K =5000 and AVR gain

Kgr =2. It can be inferred that, despite the sub synchronous resonance mode
interactions with the torsional mechanical modes, the operating point never lose
stability at any compensation factor, so with nonlinear state feedback controller
together with small amplitude AVR gain, the system operating point never lose
stability.
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Fig. 15. Variation of real and imaginary parts of eigenvalues with x (the case of
nonlinear state feedback controller with gain K = 5000 and AVR gain Ki = 2)
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Fig. 16 shows the time history of the system at compensation factor
4 =0.8 in cases of no controllers and with the nominal value of AVR gain

Kg =200. It can be inferred that the operating point of the system is unstable.

14

09F - — - — -

08F —————l——- -l

0.7
0

Time (sec)

Fig. 16. Rotor speed of generator at x = 0.8 (without controller and with the nominal
value of AVR gain Ky =200)

Fig. 17 and 18 show the time history of the system when the nonlinear
controller is included with a gain K =5000 together with a small value of AVR
gain Ky =2 at u=0.8after 2.5% initial disturbance on the rotor speed of
generator. It can be observed that the nonlinear controller together with small
AVR gain stabilizes the system.

1.025 T T T 1.4

1.02

1.015

1.01

1.005

0.995

0.99

0.985

0.98

0 5 10 15 20 0'70 5 10 15 20
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Fig. 17. Closed loop response (a) Rotor speed, (b) Rotor angle of generator at =08 after
2.5% initial disturbance on the rotor speed of generator (with a nonlinear state feedback

controller gain K =5000 and AVR gain KR =2)
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Finally, fig. 18 shows the time history of the nonlinear control signal.
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Fig. 18. Time history of the nonlinear controller at x = 0.8 after 2.5% initial disturbance
on the rotor speed of generator

6 Conclusions

Linear and nonlinear state feedback controllers are used to control the chaotic
oscillations and bifurcations of the IEEE second benchmark model of SSR.
Both controllers succeeded to change unstable attractor to a stable one. Linear
state feedback controller gives better response for initial disturbance but in a
very narrow region of compensation factor, while nonlinear controller together
with small AVR gain stabilize the operating point of the system at all realistic
compensation factors, and hence canceling all bifurcations of the system.

7 Appendix

Numerical Parameters:

a) Synchronous Generator (in pu, on the base of its ratings):

X 4 =1.6286 X ¢ =1.5100 X 4 =1.5100
ry =0.00096 X, =1.6500 X g =1.5100
r, =0.0045 X 4 = 1.5900 s =0.0160

X aq = 1.4500 X g =1.6420 Xy = 15238
g =0.0116
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b) Network (Transmission line, in pu on the base of generator ratings):

X; =0.1200 X, =0.4800 X, = 0.1800
R, = 0.0084 R; =0.0012 R, = 0.0444
R, =0.0402 X, =0.4434

c¢) Mechanical system (in pu on the base of the generator ratings):
M, =0.0138 D, =0.0014 Ky =3.7363
M, =1.7581 D, =0.1758 Ky, =83.3823
M, =3.1004 D, =0.3100 K,; =42.6572
M, = 0.4980 D, =0.0498

d) AVR and PSS:
Ky =200 T, =0.025s Ty =10s
K, =12 T, =0.048s T, =0.032s
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