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Abstract. In this paper for a credit cards payment system as robust predictor 
of transactions number and transactions intensity is proposed by means of 
functional autoregressive model. Intraday economic time series are treated as 
random continuous functions projected onto low dimensional subspace. Both 
B-splines and Fourier bases are considered for data smoothing. 
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1 Introduction 

Most econometric models used in financial institutions are adapted to work with 
highly summarized data. For example, liquidity riskcontrol (cash flow), profit 
risk analysis ect. are based on a daily summarized data. In reports to central 
institutions a usual time lag is either one month or quarter or one year. Similar 
time lag is used in macroeconometrics. 

The objective of this paper is an empirical study of transactions intensity in 
ATM (auto tele machine) and POS (point of sale) networks using a high 
frequency data. Our study can be described as an exploratory data approach: 
Analysis⇒Model⇒Conclusions. Treating intraday time series as random 
functions in a space spanned by finite dimensional functional bases, we 
intensively explore methods of functional data analysis. Although the support of 
functions is taken to be a one day different time lags like a one week or a one 
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month can be treated as well. The choice of a one day time lag in our case is 
trade of between a complication of functional space (number of bases functions) 
and a complication of discreet model (number of parameters involved). In our 
empirical analysis we use data from Vilnius Bank data warehouse*. Since we 
are looking into almost 50% of the whole Lithuanian market of transactions 
mad in electronic way, the data we are analyzing can present some interest for 
macroeconomic analysis of consumption processes as well.  

The number of transactions at time t is interpreted as double stochastic 
Poisson process )(tN . Its conditional intensity )(tΛ : 

∫=Λ=

t

dssttEN
0

)()()( λF  

is a stochastic process. Assuming that in a small time interval the intensity Λ  is 
constant, its efficient estimator is empirical mean. Combining this with a 
smoothing technique we obtain observations )(tiΛ  and niti ,,1,)( l=λ  of the 
stochastic processes )(tΛ  and )(tλ . Considering observations )(tiλ  as random 
functions in a certain Hilbert function space, we fit the following functional 
autoregression model 

( ) ,)()()()( 817 tttt iiiii ελλρλλ +−=−
−−−

 

where ρ  is a Fredholm type operator defined by a kernel function 

( ) dssstktk )(,)(: λρλ ∫= . The kernel k  is estimated by the principal 

component approach. Ex poste prediction is used to check the model. 

Due to simplicity of the model we can consider different type of functional 
of stochastic processes )(tλ  and )(tΛ  such as the global maximum )(max tt λ ; 
the corresponding time of the global maximum )(maxarg tit λ ; the square 

integrated density dss)(2
∫ λ  ect. Results related to these functionals will be 

presented elsewhere. 

Recently there were several attempts to analyze economical data on 
transactions level. In recent paper Müller and Zumbach (2000) have presented a 
                                                        
* To avoid any particular financial details, all data used in this work have been linearly 
transformed 
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new time series operator technique to analyze inhomogeneous time series. 
Müller (2000) showed usefulness of this approach by calculating Value-at-Risk 
(VAR) when tick by tick data are concerned. Rydberg and Shephard (1999) 
proposed compound Poisson processes %to model trade-by-trade financial data. 
They %have used compound processes as the basis to model trading processes, 
with trading occurring at times determined by Cox process. Our work is related 
to Rydberg and Shephard (1999) since we model intra-day economic activity as 
double stochastic Poisson process. Rydberg and Shephard (1999) used 
Ornstein-Uhlenbeck process to model Poisson intensity parameter whereas we 
model Poisson intensity parameter as a random function, which is an element of 
a subspace, spanned by some finite functional bases. 

A comprehensive description of methods for exploring and estimating 
functional data can be found in the recent book by Ramsay and Silverman 
(1997). We found very useful the code of MATLAB (S-PLUS is also available) 
where examples and functions of functional data analysis are presented. We 
refer to Bosq (1991, 1999), Pumo (1998), Besse, Cardot and Stephenson (2000), 
Cardot, Ferraty and Sarda (1999), Besse, Cardot, and Ferraty (1997) for 
different models of functional data. 

Our paper is organized in the following way. A data description and some 
preliminary analysis are presented in section 2. In section 3 we describe 
exploration and identification technique of functional time series under 
consideration. In section 4 we estimate and check the model. Some technical 
details are given in the appendix. 

2 Data Description and Preliminary Analysis 

We tackle the problem of mathematical prediction of dynamics of the intensity 
of transactions made in Vilnius Bank ATM and POS networks which is the 
largest bank of Lithuania. Transactions made in ATM and POS networks 
between 03/11/2000 and 10/02/2001 were extracted from the data warehouse.  

To explain our work let us first describe a similar standard vector task, 
which can be solved with the existing tools. To this aim first consider a problem 
of predicting daily number of transactions for one day ahead. Using daily 
summarized data (fig. 1) and standard SAS tools, the best model fitting such 
data is ARIMA (0,1,1) (0,1,1)s. 
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Fig. 1. Number of transactions over 100 days in ATM network 

Now let us split each day into two equal parts, doubling the number of 
observations. So observations with 24 hours time lag now are replaced by 
observations separated by 12 hours time interval. Fig. 2 displays the data. 

 
Fig. 2. Bivariate time series 

The upper curve corresponds to the number of transactions measured daily 
between 12 and 24 hours whereas the lower curve represents the number of 
transactions between 0 and 12 hours. Number of days remains 100. Considering 
the data as bivariate time series we fitted VAR(7) model. Removing Christmas 
effect the model simplified to VAR(1). Next let us repeat the previous step and 
again double the number of observations. Now we are observing a state of ATM 
network after every 6 hours. So we localize some intra-day economic activity. 
However, after several such steps we failed to find an appropriate model for the 
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obtained in this way data using standard time series tools. The STATESPACE 
procedure, which is designed for automatical selection of the best state space 
model, was used but in our case the maximum likelihood estimates failed to 
converge.  

As a next example consider the economic activity in ATM and POS 
networks at a particular time of a day. Namely, consider the number of 
transactions )(tΛ  made in a unit of time (in our case it equals to 4.1≈  min.). 
Fig. 3 displays the data. 

 
Fig. 3. Number of transactions at a particular time 

Lower curve represents ( )tΛ  at 19:20 hour whereas upper curve at 12:15 hour. 
The ARIMA (0,1,1) (0,1,1)s model was chosen automatically by SAS tools when 
analysing each series separately. Modelling both time series as a vector we 
obtained VAR(1) after censoring and VAR(7) without censoring. However such 
empirical analysis becomes more complicated when considering the number of 
transactions at more than two time instances. 

These examples motivate the functional data approach and give an idea for 
a functional data model. 

Now let us describe the data under investigation more precisely. One day is 
normalized to be the interval [0,1]. As was mentioned above, the number of 
transactions we interpret as double stochastic Poisson process [ ]( )1,0,)( ∈ttN q , 
where q = 1 corresponds to ATM network whereas q = 2 corresponds to POS 
network. The corresponding conditional intensities [ ]1,0,)( ∈Λ ttq  given by 
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F)()()(
0

tENdsst q
t

qq
ΚΚΖ � ζ  

are stochastic processes for which we have observations 

{ } { }.2,1,1024,,1,0,,,1,)( ∈==Λ qjnit j
q
i ll  

Here n denotes the number of days which we are analysing, and it equals to 
either 100 or 86 after censoring (removing two weeks of Christmas effect). In 
what follows tj = j /1024, j = 0, 1,…,1024. As one can see, one day (more 
precisely twenty-four hours) is divided into 1024 equal time intervals. 
Motivation for choosing this number is that first, we want to construct an 
empirical process by counting the number of transactions during a time interval 
approximately equal to one minute, and second, the number of intervals is 
reasonable to be equal to a power of two. 

Using the observations of the intensity functions )(tq
Λ , we build the 

observations for its derivative )(tq
λ . Namely, we consider 

{ }1024,,1,,,1,)( ll == jnit j
q
iλ , 

where 

1024,,1,)()()( 1 l=Λ−Λ=
−

jttt jjj
q

λ . 

Fig. 4 displays the data of one randomly chosen day. In the left side we see 
the number of transactions in ATM and POS networks whereas in the right we 
see the corresponding differentiated processes. 

 
Fig. 4. The numbers of transactions and the intensities of transactions 



Functional Data Analysis of Payment Systems 

59 

3 Exploration and Identification 

In what follows ( ))( ji tx  will denote either of the four sets of observa-

tions: 2,1,)(,2,1,)( ==Λ qtqt j
q
ij

q
i λ . 

3.1 Choice of a functional subspace. Our next step is to convert a raw funct-
tional data ( ))( ji tx  into a true functional form [ ]( )1,0,)( ∈ttyi . To this aim we 

use smoothing by function bases. Hence 

∑
=

=

m

j
jiji tBcty

1

)()( , 

where ( ))(tB j  are either cubic B-splines or Fourier bases. By choosing the bases 

we are making hypothesis that our functions of interest can be approximated 
either by polynomials (in the case of B-splines) or by a fixed number of 
frequencies (in the case of Fourier bases). One of the key issues at this step is 
the number of coefficients m one has to choose. Our motivation for m = 32 
coefficients we have used is that firstly 1/32 of a day represents 45 minutes and 
secondly 102432 = . One can check that in many cases square root of the 
number of observations for the dimension gives optimal in a sense approxi-
mation. 

Coefficients )( ijcC =  were found by the least square method: 

( ) XBBBC ′′=
−1 , 

where ( )1024,,1,32,,1,)( ll === ljtBB lj  is the bases matrix and 

( )1024,,1,32,,1,)( ll === litxX li  is our data matrix. Fig. 5 displays 

 

Fig. 5. Smoothed data 
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functional observations of ATM network: a) intensity observations smoothed 
with B-splines, b) intensity observations smoothed with Fourier bases. As we 
can see, there is no difference on the first glance between our data presented in 
B-splines or Fourier bases. Similar situation occurs for POS network. So in the 
rest of the paper we will consider functional data [ ]( )nittyi ,,1,1,0,)( l=∈  
obtained smoothing by B-splines only. 

3.2 Principal component analysis. Covariance and cross-covariance analysis 
of the functional time series [ ]( )nittyi ,,1,1,0,)( l=∈  suggest for 
differentiation of the functional time series at lag 7. Differentiating pointwise 
we obtain 

[ ] nittytytz iii ,,1,1,0,)()()( 7 l=∈−=
−

, (1) 

Now we consider functional time series ( ))(tzi  defined by (1), as observations 
of a stationary sequence in the space ( )1,02L . The estimate of the covariance 
function 

[ ]1,0,,)()(1),(
1

∈= ∑
=

tstzsz
n

tsh
n

k
kkz

K

 

defines the operator ( ) ( )1,01,0: 22 LLhz →

K

 by 

[ ]1,0,)(),()(
1

0

∈= ∫ tdssutshtuh zz

KK

. 

This operator is self-adjoint, nonnegative and admits the spectral decomposition 

j
j

jjzh φφλ ⊗=∑
K

, (2) 

where )( jφ  is the orthogonal basis in the space ( )1,02L  consisting of eigen-

functions of the operator zh
K

 and )( jλ  denotes the corresponding eigenvalues 
assuming that l>> 21 λλ . The first four eigenfunctions are shown in fig. 6.  
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Fig. 6. First four eigenfunctions 

When eigenfunctions and corresponding eigenvalues are found one can 
rerepresent observations in the new bases, and thus obtaining 

njttz
M

j
jjkk ,,1,)()(

1

l

K

==∑
=

φλ , 

where 

Mjnkdtttz jkjk ,,1,,,1,)()(
1

0

ll === ∫ φλ . 

The crucial point here is the choise of the dimension M. We used several 
arguments. In the left side of the fig. 7 one see the functional time series ( ))(tzi  
projected onto the first three eigenfunctions of the covariance operator whereas 
in the right side of the fig. 7, projected onto the next three eigen-functions. By 
rotating three dimensional representation of functional time series we find that 
the first eigenfunction clearly separates Sundays, the second separates Saturdays 
and the third can be used to separate Fridays. By visual rotation of the next three 
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eigenfunctions it is difficult to find more information. So this technique allows 
us to judge about a dimension supporting the main information.  

 
Fig. 7. Functional observations scored by first three (corresp. next three) eigenfunctions 

Another technique that can be used to estimate a dimension is based on the 
white noise test of functional data representation in each eigenfunction 
successively. One starts with M = 1 and tests the following null hypothesis: the 
time series { }n11211 ,,, λλλ l  follows a white noise. Next one tests the null 
hypothesis for the time series { }n22221 ,,, λλλ l  ect. The procedure stop when 
coefficients starts to behave like a white noise. We have used SAS SPECTRA 
procedure. Both the Fisher's Kappa statistic and the Kolmogorov-Smirnov 
statistic rejected the null hypothesis for the first four eigenfunctions. 

Finally, we used the ex poste prediction to find the best in a sense 
dimension for the functional data ( ))(tzk

K  (see the next section below). In all 
approaches the dimension M = 4 was found to be satisfactory, and has been 
used for the final model. 

4 Estimating and Using FAR(1) Model 

For the functional time series [ ]( )nittzi ,,1,1,0),( l=∈  we consider the 
following functional auto-regressive model of the first order (FAR(1)): for 
i=1, …, n 

[ ]1,0eachfor )()(),()( 1

1

0

∈+=
−∫ ttdssztstz iii εβ , 
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where we assume that 

∞<∫∫ dtdsts
1

0

2
1

0

),(β . 

The error terms [ ]( )1,0,)( ∈ttiε  are assumed to be independent random-

functions such that [ ]1,0eachfor 0)( ∈= ttE iε ; ∞<=∫
2

1

0

2 )( σε dttE i  and 

0)()(
1

0

=∫ dttztE jiε  for j < i. 

To estimate the function [ ]1,0,,),( ∈tstsβ  we proceed as follows. Since 
)( jφ  the eigenfunctions of the covariance operator constitute the orthonormal 

bases in the spase L2(0, 1) we can represent 

[ ]1,0,,)()(),(
1,

∈= ∑
∞

=

tstsdts
kj

kjjk φφβ . 

Thus, our estimator of the function β  is given by 

[ ]1,0,,)()(),(
1,

∈= ∑
=

tstsdts
M

vu
vuuv φφβ

KK

, 

where 

∑

∑

=

−

−

=

−

−

−

= n

i
uivi

n

i
uivi

uv

zzn

zzn
d

1
,

1

1

1
,1

1

,

,)1(

φφ

φφ
K

 (3) 

is a consistent estimator of the coefficient uvd  (argumentation is given in the 

appendix). Fig. 8 shows the function β
K

. The choise of M is very important. It is 
clear however that M should be equal to the number of principal components 
used for functional data representation. As already discussed above, we take 
M = 4. 
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Fig. 8. Estimated kernel β  

Finally let us discuss the prediction capability of the model. Consider the 
prediction of the function [ ]1,0,)(1 ∈

+
ttyn . According to the model, for each 

[ ]1,0∈t  

[ ]dssysytstyty nnnn ∫ −−+
−+=

1

0
761 )()(),()()( β

K

K . 

Fig. 9 displays the actual and the forecasted process for nine days. The 
processes are evaluated every 15 minutes (96 point in x axis). 

Different types of forecasting errors can be considered. The most widely 
accepted measures of performance of the estimator 1+nyK  is its mean integrated 
square error given by  

( ) dttytyEMISE nn∫ ++
−=

1

0

2
11 )()( K , 

and the mean uniform error )()(sup 11 tytyE nn
t

++∞
−=∆
K . 

Both these quantities we evaluated by choosing ten days that where not 
used in the parameter estimation (table 1). It is clear that the predicted values 
strongly depends on the number of principal components used in the model. The 
table 1 shows this dependence via MISE and 

∞
∆  errors. 



Functional Data Analysis of Payment Systems 

65 

 
Fig. 9. Predicted values 

Error\M 1 2 3 4 5 6 7 8 

∞
∆  5.50 5.02 4.99 4.95 5.05 4.97 5.04 5.07 
MISE 5.59 4.74 4.73 4.54 4.72 4.76 4.76 4.81 

Table 1. Prediction errors 

Appendix 

Let H denote the Hilbert space L2(0, 1) with the norm ∫=
1

0

22 )( dttxx  and with 

the inner product dttytxyx )()(,
1

0
∫= . A sequence [ ]{ }1,1,0,)( ≥∈= ittii ξξ  

of random functions with values in H is said to follow a Functional Auto-
Regressive process of the first order (FAR(1)) if for each Ni∈  

∞<=
2,0 ii EE ξξ  and 

iii εξρξ +=
−1 . (4) 
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Error terms ι κ6 71,0,)( ⇐ttiσ  are assumed to be independent random elements 

with values in H such that ∞<==
22,0 σεε ii EE  and 0, =jiE ξε  for 

j < i. The operator HH →:ρ  is linear compact and satisfies 1<ρ . 
Covariance operator 0Γ  of { }iξ  is symmetric positive operator defined by 

iiE ξξ ⊗=Γ0  so that zxEzx ii ,,,0 ξξ=Γ  for Hzx ∈, . A lag one cross 
covariance operator is defined by iiE ξξ ⊗=Γ

−11  so that 
zxyEzx ii ,,, 11 ξ

−

=Γ  for Hzx ∈, . Let [ ] R→
21,0:β : satisfies 

∞<∫∫ dtdsts
1

0

2
1

0

),(β . 

Consider the operator HH →:ρ  defined by the kernel β : 

[ ]1,0for,)(),()(
1

0

∈= ∫ sdttxtssx βρ . 

Consider any orthogonal basis )( iφ  on the space H. Then one can represent 

[ ]1,0,,)()(),(
1,

∈= ∑
∞

=

tstsdts kj
kj

jk φφβ . 

Hence 

[ ]1,0,),(,)()()()(
1,

1

0 1,

∈== ∑∫ ∑
∞

=

∞

=

tssxddttxtsdsx jk
kj

jkkj
kj

jk φφφφρ . 

For the model 4 we have 

Nid ijki
kj

jki ,,1,,1
1,

l=+=
−

∞

=

∑ εφφξξ . 

“Multiplying” the last equation by vφ  one obtains  

viki
k

vkvivjki
kj

jkvi dd φεφξφεφφφξφξ ,,,,,, 1
1

1
1,

+=+=
−

∞

=

−

∞

=

∑∑ . 

Multiplying by ui φξ ,1−  and taking expectation we get 
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uiviuiki
k

vkuivi EEdE φξφεφξφξφξφξ ,,,,,, 111
1

1 −−−

∞

=

−
+=∑ . 

Since 

0,, 1 =
− uiviE φξφξ , 

kukukkukuikiE δλφφλφφφξφξ ==Γ=
−−

,,,, 011 , 

uvuiviE φφφξφξ ,,, 11 Γ=
−

 

we have 

vuuuv dλφφ =Γ ,1 . 

Hence 

u

uv
vud

λ

φφ ,1Γ
= , (5) 

provided 0≠uλ . 

A consistent estimator of the coefficient uvd  is obtained by 

∑

∑

=

−

−

=

−

−

−

= n

i
uivi

n

i
uivi

uv

yyn

yyn
d

1
,

1

1

1
,1

1

,

,)1(

φφ

φφ
K

. (6). 
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