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Abstract. We investigate two different initial boundary-value problems for de-
rivative nonlinear Schr̈odinger equation. The boundary conditions are Dirichlet
or generalized periodic ones. We propose a two-step algorithm for numerical
solving of this problem. The method consists of Bäcklund type transformations
and difference scheme. We prove the convergence and stability inC andH1

norms of Crank–Nicolson finite difference scheme for the transformed problem.
There are no restrictions between space and time grid steps. For the derivative
nonlinear Schr̈odinger equation, the proposed numerical algorithm converges
and is stable inC1 norm.
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1 Introduction

We consider two different initial boundary-value problems for derivative nonlinear

Schr̈odinger equation. Note that similar derivative dependent nonlinear terms
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appear in the Korteweg and de Vries (KdV) equation, the Burgers equations, the

Navier-Stokes models, and other problems where one must take into account some

higher order perturbations.

In this paper, we propose (and justify) the algorithm for solving of the con-

sidered problem on the computer. Note that our method is a non-standard one as

it consists of two independent steps. The first step, presented in details in Section

4, handles derivative dependent nonlinearities. Also note that the second part of

this paper (the second step), which deals with difference scheme for the system

of two nonlinear Schr̈odinger equations, can be considered as independent result.

As far as we know, for such initial boundary-value problem (with the boundary

conditions being either mixed Dirichlet–Neumann or generalized periodic ones),

no numerical method was justified to this time.

The derivative nonlinear Schrödinger equation

∂u

∂t
= ia

∂2u

∂x2
+ id|u|2u+ ik|u|4u+ α|u|2∂u

∂x
+ βu

∂|u|2
∂x

(1)

(wherex andt denote the space and the time coordinates, respectively, whilea,

d, k, α, β are real constants), is used for modeling of wave processes in different

physical systems such as nonlinear optics [1, 20, 22], circular polarized Alfvén

waves in plasma [18, 19], Stokes waves in fluids of finite depth, etc. The quantities

α|u|2∂xu andβu∂x|u|2 in equation (1) are called the derivative nonlinear terms.

In nonlinear optics [1, 20, 22], equation (1) can be derived in a systematic

way by means of the reductive perturbation scheme as a model for single mode

propagation. In the context of waveguides as optical fibres,t usually corresponds

to the propagation distance of the electric field envelopeu of an optical beam

along the fibre,x plays the role of the time, the termsd|u|2u andk|u|4umodel the

nonlinear Kerr effect, whileα|u|2∂xu andβu∂x|u|2 are the nonlinear dispersion

contributions.

Note, that equation (1) is a generalization of the standard nonlinear Schrödin-

ger equation

∂u

∂t
= ia

∂2u

∂x2
+ id|u|2u, (2)

for nonlinearly modulated wave trains modeling in the so calledmarginal stable

regime [2].
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There are many partial cases of (1), for which, due to the Lax pair formalism,

interesting solutions, e. g., solitons can be constructed analytically [3, 13, 15]. Re-

cently, there were computed new classes of symmetry reductions and associated

exact solutions of two-dimensional (with the space variablesx andy) derivative

nonlinear Schr̈odinger equation [7]. It also appears that these partial cases are

gauge equivalent,i. e.,can be transformed into each other by some Bäcklund type

transformation [16]. One could mention the Kaup–Newell equation, the Chen–

Lee–Liu equation and the Gerdjikov–Ivanov equation.

Note that, in [2, 3, 6, 7, 13, 15, 16], the Cauchy problem is dealt with. We

examine the boundary problems, that require a different or adopted techniques.

It can appear, for example, that a boundary-value problem, for some well-known

nonlinear parabolic equations, has no solution at all [12]. Therefore, we have

discussed in [17] the well-posedness of the models considered in the present work.

Dealing with (1), the main difficulties are caused by the derivative nonlinear

terms. In [6], Hayashi overcomes the so-called derivative loss by reducing the

Cauchy problem for the Kaup–Newell equation

∂u

∂t
= i
∂2u

∂x2
± ∂

∂x

(
|u|2u

)
to the system of two nonlinear Schrödinger equations. In this paper, we generalize

and adopt the transformations applied in [6] (see also [16]) in order to perform

the numerical analysis of Dirichlet and periodic initial boundary-value problems.

Note also that, in [9], we have used another approach to handle the derivative loss,

namely, some parabolic viscosity was introduced.

There is a lot of results on numerical aspects of nonlinear Schrödinger equa-

tion (without derivative nonlinearities) [4, 5, 8, 9, 10, 11, 14, 21, 23, 24, 25]. For

example, implicit finite difference schemes were justified for many-dimensional

Schr̈odinger models with zero boundary conditions [8, 11]. Similar results are

obtained in the case of Neumann boundary conditions [21]. The convergence

and stability of an implicit scheme for slightly generalized equation (2) with zero

boundary conditions were also proved [10]. A comparison of many difference

schemes for the model considered in [10] was presented in [4].

This paper is organized as follows. In Section 2, we state the problem of our

interest. Section 3 is for introducing notation and fundamental theorems which
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our analysis relies on. As the first step of the algorithm, in Section 4 we employ

two explicitly invertible transformations (which can be computed numerically,

too) to obtain an evolutionary type equation system containing no gradient depen-

dent nonlinearities. The second step of the proposed method are finite difference

approximations to the reduced problem which are introduced in Section 5. In

Sections 6 and 7, we prove somea priori estimates and the convergence of the

iterative method applied to nonlinear finite difference schemes. Finally, in Section

8, we prove the convergence and stability of applied difference schemes.

2 Statement of the problem

In this paper, we deal with the derivative nonlinear Schrödinger equation

∂u

∂t
= ia

∂2u

∂x2
+ b
∂u

∂x
+ icu+ id|u|2u+ ik|u|4u+

α|u|2∂u
∂x
+ βu

∂|u|2
∂x

,

(3)

whereu = u(x, t) is an unknown complex function,a, b, c, d, k, α, β are given

real coefficients,i =
√−1. This differential equation is studied fort ∈ (0, T ]

and forx in a bounded intervalΩ ⊂ R. For simplicity we takeΩ = (0, 1). Note

that, in equation (3), by rescaling the time variablet one coefficient can be set to

1. Therefore we further assume thata = 1.

We consider (3) together with initial and boundary conditions. Having de-

fined the initial function

u(x, 0) = u(0)(x), x ∈ Ω, (4)

we are going to justify a numerical analysis for the solutionu(x, t) satisfying one

of the two different type conditions on the boundary. One of the popular ways in

numerical modelling of the corresponding Cauchy problem is to truncate a solu-

tion outside of some given regionΩ, i. e., the zero Dirichlet boundary conditions

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T. (5)

There also exists another approach caused by specific features of some modeled

phenomena, namely, the periodic boundary-value problem

u(0, t) = θu(1, t),
∂u

∂x

∣∣∣∣
x=0

= θ
∂u

∂x

∣∣∣∣
x=1

, 0 ≤ t ≤ T (6)
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with the complex parameter (phase shift)θ such that|θ| = 1.
We assume that, att = 0, the initial function (4) satisfies boundary conditions

(5) or (6), respectively.

3 Notation and mathematical preliminaries

Let Q = Ω × (0, T ]. For complex valued functions, let(·, ·) and ‖ · ‖ de-

note the inner product and norm inL2 = L2(Ω), and letH1 = H1(Ω) =
{u ∈ L2 : ∂xu ∈ L2} be the standard Sobolev space with the norm

‖u‖H1 =
√
‖u‖2 + ‖∂xu‖2.

The spaceCj,k = Cj,k(Q) consists of the functions with continuous inQ jth

derivatives with respect tox and continuouskth derivatives with respect tot.

Throughout this paper, we denote byg∗ the complex conjugate ofg.

Denoting difference analogues of domains, derivatives, inner products, and

norms we follow the notation accepted in numerical analysis. We introduce the

uniform grids with stepsτ andh

Ωh = {xj : xj = jh, j = 1, 2, . . . , N − 1} , Ω̄h = Ωh ∪ {0, 1},

Ω+
h = Ωh ∪ {1},

ωτ = {tk : tk = kτ, k = 0, 1, . . . ,M − 1} , ω̄τ = ωτ ∪ {T},

Qh = Ωh × ωτ , Q̄h = Ω̄h × ωτ , Q+
h = Ω

+
h × ωτ ,

whereNh = 1,Mτ = T .

We denote the difference derivatives

px =
p(x+ h, t)− p(x, t)

h
, px̄ =

p(x, t)− p(x− h, t)
h

,

p◦
x
=
px + px̄

2
, p̂ = p(x, t+ τ),

◦
p=

p̂+ p
2
, pt =

p̂− p
τ
,

and the inner products

(p, q)h = h
∑

x∈Ωh

p(x, t)q∗(x, t), (p, q]h = h
∑

x∈Ω+
h

p(x, t)q∗(x, t),
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[p, q]h = h
∑

x∈Ωh

p(x, t)q∗(x, t) +
h

2

(
p(0, t)q∗(0, t) + p(1, t)q∗(1, t)

)
.

The following difference Green formulae are true:

(px̄x, q)h = − (px̄, qx̄]h + px̄(1, t)q∗(1, t)− px(0, t)q∗(0, t), (7)

(px̄x, q]h = − (px̄, qx̄]h + px(1, t)q∗(1, t)− px(0, t)q∗(0, t), (8)

[px̄x, q]h = − (px̄, qx̄]h + p◦
x
(1, t)q∗(1, t)− p◦

x
(0, t)q∗(0, t). (9)

Note that (8) and (9) require the functionp to be defined outside the grid̄Ωh.

Next, we introduce the norms of the grid functions. We employ the discrete

L2 norms

‖p‖h =
√
(p, p)h, ‖p]|h =

√
(p, p]h, |[p]|h =

√
[p, p]h.

It remains to introduce the norm of the discrete spaceCh (the grid projection

of the continuous function spaceC)

‖p‖C,h = max
x∈Ω̄h

|p(x)|

and the one related toH1
h (discretization ofH1)

‖p‖H1,h =
√
|[p]|2h + ‖px̄]|2h.

For grid functionsp ∈ H1
h, we should recall the discrete Gagliardo–Niren-

berg type estimate

‖p‖C,h ≤ cG‖p‖1/2
h ‖p‖1/2

H1,h (10)

and the imbedding theoremH1
h → Ch:

‖p‖C,h ≤
√
2 ‖p‖H1,h. (11)

The following inequality is true:

1 + cx
1− cx ≤ 1 + 4cx, 0 ≤ x ≤ 1/(2c), c > 0. (12)
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4 Reduction of nonlinearity

In this section, we simplify (3), (4), (5) and (3), (4), (6) problems by reduc-

ing derivative dependent nonlinearities. The transformations introduced in this

section represent the first step of a numerical algorithm for derivative nonlinear

Schr̈odinger equation.

For simplicity, we first rearrange derivative nonlinear terms in equation (3).

Define the real function

q(t) =
∫ t

0
b|u(0, τ)|2 +

(
α

2
+ β

)
|u(0, τ)|4 −

2 Im
(
∂u(0, τ)
∂x

u∗(0, τ)
)
dτ.

(13)

Note thatq(t) ≡ 0 in the case of boundary conditions (5).

We define the transformed functionv = v(x, t) by

v = u(x, t)e
−iA

(∫ x

0
|u(s, t)|2 ds+ q(t)

)
− i b
2
x− i

(
c+

b2

4

)
t
; (14)

hereA is a real parameter.

Remark 4.1 Note that, due to(14), |u| = |v|. Note also, that B̈acklund type

transformation(14) is explicitly invertible, since

u(x, t) = v(x, t)e
iA

(∫ x

0
|v(s, t)|2 ds+ q(t)

)
+ i
b

2
x+ i

(
c+

b2

4

)
t
(15)

and

q(t) =
∫ t

0

(
α

2
+ β − 2A

)
|v(0, τ)|4 − 2 Im

(
∂v(0, τ)
∂x

v∗(0, τ)
)
dτ, (16)

and therefore it can be computed numerically.

Proposition 4.2 Assume thatu(x, t) ∈ C2,1 is a solution of(3), (4), (5)or (3),

(4), (6), respectively. Then the functionv defined by(13), (14)satisfies

∂v

∂t
= i
∂2v

∂x2
+ i

(
d+

αb

2

)
|v|2v + i ktr |v|4v +

(α+ β − 2A) |v|2 ∂v
∂x
+ (β − 2A) v2∂v

∗

∂x

(17)
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for t > 0, x ∈ Ω, and the boundary conditions

v(0, t) = v(1, t) = 0, 0 ≤ t ≤ T,

or

v(0, t) = θ1v(1, t),
∂v

∂x

∣∣∣∣
x=0

= θ1
∂v

∂x

∣∣∣∣
x=1

, 0 ≤ t ≤ T,

respectively. Herektr = k + A
(
A+

α

2
− β

)
and θ1 is a constant such that

|θ1| = 1.

Proof: Define

E(x, t) = e
iA

(∫ x

0
|u(s, t)|2 ds+ q(t)

)
+ i
b

2
x+ i

(
c+

b2

4

)
t
,

I(x, t) =
∂

∂t

∫ x

0
|u(s, t)|2 ds.

Due to (15) we have

∂u

∂x
=
(
∂v

∂x
+ iA|v|2v + i b

2
v

)
E(x, t), (18)

∂2u

∂x2
=

(
∂2v

∂x2
+ ib

∂v

∂x
− b2

4
v − bA|v|2v −A2|v|4v +

i2A|v|2 ∂v
∂x
+ iAv

∂|v|2
∂x

)
E(x, t),

(19)

∂u

∂t
=

(
∂v

∂t
+ iAv I(x, t) + iAvq′(t) + i

(
c+

b2

4

)
v

)
E(x, t).

Multiplying (3) by 2u∗, integrating, and taking the real part we obtain

I(x, t) = i
(
∂u

∂x
u∗ − u∂u

∗

∂x

)
+ b|u|2 +

(
α

2
+ β

)
|u|4 − q′(t). (20)

By (14) and (18) one gets

I(x, t) = i
(
v∗
∂v

∂x
− v∂v

∗

∂x

)
+
(
α

2
+ β − 2A

)
|v|4 − q′(t).
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Therefore,

∂u

∂t
=

(
∂v

∂t
+ i

(
c+

b2

4

)
v + i

(
A

(
α

2
+ β

)
− 2A2

)
|v|4v−

2A|v|2 ∂v
∂x
+Av

∂|v|2
∂x

)
E(x, t).

Substituting this expression together with (18) and (19) into (3) we get (17).

The invariance of boundary conditions (5) is trivial. For (6), due to (14) and

(18), we obtain

θ1 = θ e
i

(
A‖u(0)‖2 +

b

2

)
,

since‖u‖ = ‖u(0)‖ (one proves it by takingx = 1 in (20)). �
Due to Proposition 4.2, we can neglect some terms in equation (3). Choosing

A = (α + β)/2 and redenoting the coefficients and solution we will further deal

with the equation

∂u

∂t
= i
∂2u

∂x2
+ id|u|2u+ ik|u|4u+ αu2∂u

∗

∂x
. (21)

Proposition 4.3 Assume thatu(x, t) ∈ C3,1 is a solution of(21), (4), (5)or (21),

(4), (6), respectively. We define the functionv by

v =
∂u

∂x
− iα
2
|u|2u. (22)

Then problem(21), (4), (5)or (21), (4), (6), respectively, is equivalent to the

equation system

∂u

∂t
= i
∂2u

∂x2
+ id|u|2u+ ik̃|u|4u+ αu2v∗,

∂v

∂t
= i
∂2v

∂x2
+ id

(
2|u|2v + u2v∗

)
+ ik̃

(
3|u|4v + 2|u|2u2v∗

)
−

αu∗v2

(23)

for t > 0, x ∈ Ω, k̃ = k − α2/2, with the boundary conditions

u(0, t) = u(1, t) = 0,
∂v

∂x

∣∣∣∣
x=0

=
∂v

∂x

∣∣∣∣
x=1

= 0, 0 ≤ t ≤ T, (24)
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or

u(0, t) = θu(1, t),
∂u

∂x

∣∣∣∣
x=0

= θ
∂u

∂x

∣∣∣∣
x=1

,

v(0, t) = θv(1, t),
∂v

∂x

∣∣∣∣
x=0

= θ
∂v

∂x

∣∣∣∣
x=1

, 0 ≤ t ≤ T,
(25)

respectively.

Proof: The first equation in (23) follows directly by definition (22). We will obtain

the second equation. Due to the smoothness ofu, (21) implies

∂2u

∂x∂t
= i
∂3u

∂x3
+ id

∂

∂x

(
|u|2u

)
+ ik

∂

∂x

(
|u|4u

)
+ α

∂

∂x

(
u2∂u

∗

∂x

)
. (26)

By (21) and (22) we also establish the expressions

∂

∂t

(
|u|2u

)
= 2|u|2∂u

∂t
+ u2∂u

∗

∂t
=

i2|u|2∂
2u

∂x2
− iu2∂

2u∗

∂x2
+ id|u|4u+ ik|u|6u+ 2α|u|2u2∂u

∗

∂x
+

α|u|4∂u
∂x
= i2|u|2∂

2u

∂x2
− iu2∂

2u∗

∂x2
+ id|u|4u+ i

(
k − α2

2

)
|u|6u+

2α|u|2u2v∗ + α|u|4v,
∂

∂x

(
|u|2u

)
= 2|u|2∂u

∂x
+ u2∂u

∗

∂x
= 2|u|2v + u2v∗ + i

α

2
|u|4u,

∂

∂x

(
|u|4u

)
= 3|u|4∂u

∂x
+ 2|u|2u2∂u

∗

∂x
= 3|u|4v + 2|u|2u2v∗ +

i
α

2
|u|6u,

∂2

∂x2

(
|u|2u

)
=
∂2u2

∂x2
u∗ + 2

∂u2

∂x

∂u∗

∂x
+ u2∂

2u∗

∂x2
=

2u∗
(
∂u

∂x

)2

+ 2|u|2∂
2u

∂x2
+ 4u

∂u

∂x

∂u∗

∂x
+ u2∂

2u∗

∂x2
=

2u∗v2 + i2α|u|4v − α2

2
|u|6u+ 2|u|2∂

2u

∂x2
+ 4u

∂u

∂x

∂u∗

∂x
+ u2∂

2u∗

∂x2
.
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Therefore by (22) and (26)

∂v

∂t
− i ∂

2v

∂x2
=
∂2u

∂x∂t
− i∂

3u

∂x3
− iα
2
∂

∂t

(
|u|2u

)
− α

2
∂2

∂x2

(
|u|2u

)
=

id
∂

∂x

(
|u|2u

)
+ ik

∂

∂x

(
|u|4u

)
+ α

∂

∂x

(
u2∂u

∗

∂x

)
− iα
2
∂

∂t

(
|u|2u

)
−

α

2
∂2

∂x2

(
|u|2u

)
= id

(
2|u|2v + u2v∗

)
− αd

2
|u|4u+

ik
(
3|u|4v + 2|u|2u2v∗

)
− αk

2
|u|6u+ α|u|2∂

2u

∂x2
− α

2
u2∂

2u∗

∂x2
+

αd

2
|u|4u+

(
αk

2
− α3

4

)
|u|6u− iα

2

2

(
2|u|2u2v∗ + |u|4v

)
+

2αu
∂u

∂x

∂u∗

∂x
+ αu2∂

2u∗

∂x2
− αu∗v2 − iα2|u|4v + α

3

4
|u|6u−

α|u|2∂
2u

∂x2
− 2αu∂u

∂x

∂u∗

∂x
− α

2
u2∂

2u∗

∂x2
=

id
(
2|u|2v + u2v∗

)
+ i

(
k − α2

2

)(
3|u|4v + 2|u|2u2v∗

)
− αu∗v2.

It remains to prove (24) or (25), respectively. Settingx = 0 andx = 1 in

equation (21) we conclude

∂2u

∂x2

∣∣∣∣∣
x=0

=
∂2u

∂x2

∣∣∣∣∣
x=1

= 0, 0 ≤ t ≤ T,

or

∂2u

∂x2

∣∣∣∣∣
x=0

= θ
∂2u

∂x2

∣∣∣∣∣
x=1

, 0 ≤ t ≤ T,

respectively. Since

∂v

∂x
=
∂2u

∂x2
− iα|u|2∂u

∂x
− iα
2
u2∂u

∗

∂x
,

we obtain (24) or (25). �
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5 Finite difference scheme

Due to Proposition 4.2 and Proposition 4.3, we can reduce the derivative non-

linearities. Therefore, the following partial differential equation system will be

further considered for(x, t) ∈ Q
∂u

∂t
= i
∂2u

∂x2
+ f1(u, u∗, v, v∗),

∂v

∂t
= i
∂2v

∂x2
+ f2(u, u∗, v, v∗)

(27)

with the boundary conditions

u(0, t) = u(1, t) = 0,
∂v

∂x

∣∣∣∣
x=0

=
∂v

∂x

∣∣∣∣
x=1

= 0, 0 ≤ t ≤ T, (28)

or

u(0, t) = θu(1, t),
∂u

∂x

∣∣∣∣
x=0

= θ
∂u

∂x

∣∣∣∣
x=1

,

v(0, t) = θv(1, t),
∂v

∂x

∣∣∣∣
x=0

= θ
∂v

∂x

∣∣∣∣
x=1

, 0 ≤ t ≤ T,
(29)

respectively, here|θ| = 1. The initial data are given by

u(x, 0) = u(0)(x), v(x, 0) = v(0)(x), x ∈ Ω. (30)

We suppose that the functionsfj , j = 1, 2, and all their partial derivatives up to

the second order are continuous. This is satisfied for system (23), sincefj are

polynomials. The continuity requirement implies the existence of a continuous

nondecreasing functionϕ such that

|fj(u, u∗, v, v∗)| ≤ ϕ(y), |Dmfj(u, u∗, v, v∗)| ≤ ϕ(y),
|m| = 1, 2, j = 1, 2;

(31)

herey = max{|u|, |v|},Dm = ∂|m|/∂um1∂u∗m2∂vm3∂v∗m4 , |m| = m1+m2+
m3+m4. Another important requirement defines the values of nonlinear functions

on the boundary. Suppose that for problem (27), (28), (30)

f1(0, 0, v, v∗) ≡ 0, f2(0, 0, v, v∗) ≡ 0, (32)
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while, in the case of problem (27), (29), (30), we assume that

f1(θu, θ∗u∗, θv, θ∗v∗) = θf1(u, u∗, v, v∗),

f2(θu, θ∗u∗, θv, θ∗v∗) = θf2(u, u∗, v, v∗);
(33)

here|θ| = 1. Note that the functionsf1 andf2, defined by the right-hand side

of (23), satisfy (32) and (33). The conditions (31), (32), and (33) are satisfied for

many physical models.

For problem (27), (30), with corresponding boundary conditions, we are

going to apply the finite difference approximations. The solution of (27), (28),

(30) can be extended outside the intervalΩ = (0, 1) by defining

u(x, t) = u(−x, t), v(x, t) = v(−x, t), −1 ≤ x ≤ 0,
u(x, t) = u(2− x, t), v(x, t) = v(2− x, t), 1 ≤ x ≤ 2.

(34)

It can be easily checked that the first equation of problem (27), (28), (30) is

satisfied forx ∈ (−1, 2), except the pointsx = 0 andx = 1, while the solution

v is a smooth function for allx ∈ (−1, 2). Therefore we are allowed to use the

approximations of the valuesv(−h, t) andv(1 + h, t).

In the case of problem (27), (28), we apply the following Crank–Nicolson

finite difference scheme:

pt = i
◦
px̄x +f1(

◦
p,

◦
p∗, ◦q, ◦q∗), (x, t) ∈ Qh,

qt = i
◦
qx̄x +f2(

◦
p,

◦
p∗, ◦q, ◦q∗), (x, t) ∈ Q̄h,

(35)

p(0, t) = p(1, t) = 0,

q(−h, t) = q(h, t), q(1− h, t) = q(1 + h, t), t ∈ ω̄τ .
(36)

Substituting the boundary conditions forq into the (35) and employing (32) we

can eliminateq(−h), q(1 + h). Thus, (35), (36) is equivalent to the scheme

pt = i
◦
px̄x +f1(

◦
p,

◦
p∗, ◦q, ◦q∗),

qt = i
◦
qx̄x +f2(

◦
p,

◦
p∗, ◦q, ◦q∗), (x, t) ∈ Qh,

(37)

p(0, t) = p(1, t) = 0, t ∈ ω̄τ ,

qt(0, t) = i
2
h

◦
qx (0, t), qt(1, t) = −i2

h

◦
qx̄ (1, t), t ∈ ωτ .

(38)
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According to condition (33), the solution of periodic boundary value problem

(27), (29), (30) can be extended outside the domainΩ by

u(1 + x, t) = θ∗u(x, t), v(1 + x, t) = θ∗v(x, t), 0 ≤ x ≤ 1. (39)

Therefore, for differential problem (27), (29), we can apply the scheme

pt = i
◦
px̄x +f1(

◦
p,

◦
p∗, ◦q, ◦q∗),

qt = i
◦
qx̄x +f2(

◦
p,

◦
p∗, ◦q, ◦q∗), (x, t) ∈ Q+

h ,
(40)

p(0, t) = θp(1, t), p(h, t) = θp(1 + h, t),

q(0, t) = θq(1, t), q(h, t) = θq(1 + h, t), t ∈ ω̄τ .
(41)

In both cases, the initial functions (30) are approximated by

p(x, 0) = u(0)(x), q(x, 0) = v(0)(x), x ∈ Ω̄h. (42)

Scheme (37), (38), (42) is implicit and nonlinear. To compute the difference

solutionsp̂, q̂ on the upper layert+ τ we apply the iterations

p[s+1] − p
τ

= ip̄[s+1]
x̄x + f1

(
p̄[s], p̄∗[s], q̄[s], q̄∗[s]

)
,

q[s+1] − q
τ

= iq̄[s+1]
x̄x + f2

(
p̄[s], p̄∗[s], q̄[s], q̄∗[s]

)
,

p[s+1](0) = p[s+1](1) = 0,

q[s+1](0)− q(x = 0)
τ

=
i

h

(
q[s+1]
x (0) + qx(x = 0)

)
,

q[s+1](1)− q(x = 1)
τ

= − i
h

(
q
[s+1]
x̄ (1) + qx̄(x = 1)

)
,

s = 0, 1, . . . , x ∈ Ωh, p[0] = p, q[0] = q.

(43)

We have denoted here

p̄[s] =
p[s] + p
2

, q̄[s] =
q[s] + q
2

.
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For scheme (40), (41), (42), we construct the similar process

p[s+1] − p
τ

= ip̄[s+1]
x̄x + f1

(
p̄[s], p̄∗[s], q̄[s], q̄∗[s]

)
,

q[s+1] − q
τ

= iq̄[s+1]
x̄x + f2

(
p̄[s], p̄∗[s], q̄[s], q̄∗[s]

)
,

p[s+1](0) = θp[s+1](1), p[s+1](h) = θp[s+1](1 + h),

q[s+1](0) = θq[s+1](1), q[s+1](h) = θq[s+1](1 + h),

s = 0, 1, . . . , x ∈ Ω+
h , p[0] = p, q[0] = q.

(44)

To find the next iteration defined by (43), we suggest an efficient sweep method.

For (44), the modified cycle sweep can be applied.

6 A priori estimates

We consider the auxiliary linear difference scheme

wt = i
◦
wx̄x +r(x, t) (45)

with r(x, t) ∈ H1
h.

In the common frame, we are going to examine three different boundary

problems for scheme (45). The boundary values are set by

w(0, t) = w(1, t) = 0, r(0, t) = r(1, t) = 0, t ∈ ω̄τ (46)

or

wt(0, t) = i
2
h

◦
wx (0, t), wt(1, t) = −i2

h

◦
wx̄ (1, t), t ∈ ωτ ,

r(0, t) = r(1, t) = 0, t ∈ ω̄τ ,

(47)

or

w(0, t) = θw(1, t), w(h, t) = θw(1 + h, t),

r(0, t) = θr(1, t), t ∈ ω̄τ .
(48)

Problems (45), (46) and (45), (47) are stated for(x, t) ∈ Qh, and (45), (48) for

(x, t) ∈ Q+
h .
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We also consider another difference scheme

z

τ
= i
zx̄x

2
+ ρ(x) (49)

together with the boundary conditions

z(0) = z(1) = 0, ρ(0) = ρ(1) = 0 (50)

or

z(0)
τ
=
i

h
zx(0),

z(1)
τ
= − i

h
zx̄(1), ρ(0) = ρ(1) = 0, (51)

or

z(0) = θz(1), z(h) = θz(1 + h), ρ(0) = θρ(1). (52)

The space for problems (49), (50) and (49), (51) isx ∈ Ωh, while x ∈ Ω+
h for

(49), (52). Hereρ ∈ H1
h.

We prove the estimates for the solution on the upper layer.

Lemma 6.1 For the solution of problem(45), (46)or (45), (47), or (45), (48)the

following estimates hold:

|[ŵ]|h ≤ |[w]|h + τ |[r]|h, (53)

‖ŵx̄]|h ≤ ‖wx̄]|h + τ‖rx̄]|h. (54)

Proof: We first prove (53) for the case of boundary conditions (46) or (47). Taking

the inner product(·, ·)h on both sides of (45) with2τ
◦
w we obtain for the real part

Re (ŵ − w, ŵ + w)h = 2τ Re i
( ◦
wx̄x,

◦
w
)

h
+ 2τ Re

(
r,

◦
w
)

h
.

We have

Re (ŵ − w, ŵ + w)h = Re
[
(ŵ, ŵ)h − (w,w)h + i2 Im (ŵ, w)h

]
=

‖ŵ‖2
h − ‖w‖2

h.

Due to (7), we have

i
( ◦
wx̄x,

◦
w
)

h
= −i‖ ◦

wx̄]|2h + i ◦
wx̄ (1, t)

◦
w ∗(1, t)− i ◦

wx (0, t)
◦
w ∗(0, t)
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and, hence,

2τ Re i
( ◦
wx̄x,

◦
w
)

h
= 0

in the case of boundary conditions (46) while, for (47), we get

2τ Re i
( ◦
wx̄x,

◦
w
)

h
= 2τ Re

[
−h
2
wt(1, t)

◦
w ∗(1, t)−

h

2
wt(0, t)

◦
w ∗(0, t)

]
= −h

2

(
|ŵ|2 − |w|2

)∣∣∣
x=1

− h

2

(
|ŵ|2 − |w|2

)∣∣∣
x=0

.

Therefore, by zero boundary conditions forr, for both schemes (45), (46) and

(45), (47) we obtain

|[ŵ]|2h = |[w]|2h + 2τ Re
[
r,

◦
w
]
h
. (55)

In the case of problem (45), (48), we take the inner product(·, ·]h on both

sides of (45) with2τ
◦
w and the real part afterwards. Applying (8) and then (48),

we get

Re i
( ◦
wx̄x,

◦
w
]
h
= Re i

[
−‖ ◦
wx̄]|2h+ ◦

wx (1, t)
◦
w ∗(1, t)−

◦
wx (0, t)

◦
w ∗(0, t)

]
= 0.

Due to (48), we obtain (55) in this case, too.

To prove (53) we estimate using the Cauchy–Schwartz inequality

[
|r|, | ◦w |

]
h
≤ 1
2

[
|r|, |ŵ|

]
h
+
1
2

[
|r|, |w|

]
h
≤ 1
2
|[r]|h

(
|[ŵ]|h + |[w]|h

)
.

Substituting this estimate into (55) we have(
|[ŵ]|h − |[w]|h

)(
|[ŵ]|h + |[w]|h

)
≤ τ |[r]|h

(
|[ŵ]|h + |[w]|h

)
,

and (53) follows.

It remains to prove (54). In the case of problems (45), (46) and (45), (47), we

take the inner product(·, ·)h on both sides of (45) with−2τ ◦
wx̄x to obtain

−2τ Re
(
wt,

◦
wx̄x

)
h
= −2τ Re

(
r,

◦
wx̄x

)
h
.
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By (7) we have

−Re
(
wt,

◦
wx̄x

)
h
= Re

[(
wtx̄,

◦
wx̄

]
h
− ◦
wx̄

∗(1, t)wt(1, t) +

◦
wx

∗(0, t)wt(0, t)
]

and, for problem (45), (46), we get

−Re
(
wt,

◦
wx̄x

)
h
= Re

(
wtx̄,

◦
wx̄

]
h
,

sincewt(0, t) = wt(1, t) = 0, while, for problem (45), (47),

−Re
(
wt,

◦
wx̄x

)
h
= Re

[(
wtx̄,

◦
wx̄

]
h
+ i
2
h
| ◦wx̄ (1, t)|2 +

i
2
h
| ◦wx (0, t)|2

]
= Re

(
wtx̄,

◦
wx̄

]
h
.

For problems (45), (46) and (45), (47), by conditionr(0, t) = r(1, t) = 0 we also

have

−
(
r,

◦
wx̄x

)
h
=
(
rx̄,

◦
wx̄

]
h
.

In the case of problem (45), (48), we take the inner product(·, ·]h on both sides of

(45) with−2τ ◦
wx̄x and apply (8) in a similar way. Thus, for all considered finite

difference boundary problems, we obtain

2τ Re
(
wtx̄,

◦
wx̄

]
h
= 2τ Re

(
rx̄,

◦
wx̄

]
h
.

After a simple rearrangement we have

‖ŵx̄]|2h = ‖wx̄]|2h + 2τ Re
(
rx̄,

◦
wx̄

]
h
.

We complete the proof of (54) in a similar way as above estimating (55) by

the Cauchy–Schwartz inequality. �

Corollary 6.2 Suppose that the conditions of Lemma 6.1 are satisfied. Then

‖ŵ‖H1,h ≤ ‖w‖H1,h + τ‖r‖H1,h. (56)

Proof: The estimate (56) follows by (53), (54), and the Minkowski inequality.�
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Corollary 6.3 Letw to be a solution of the difference problem

wt = i
◦
wx̄x +r(x, t), (x, t) ∈ Q̄h, r(0, t) = r(1, t) = 0,

w(−h, t) = w(h, t), w(1− h, t) = w(1 + h, t), t ∈ ω̄τ .
(57)

Then Lemma 6.1 holds, i. e.,(53), (54), and (56)are satisfied.

Proof: The problem (57) is equivalent to (45), (47). We prove it by eliminating

w(−h, t) andw(1 − h, t) in the difference equations. Moreover, the same result

can be proved in the way similar to the proof of Lemma 6.1, but using (9).�
Lemma 6.4 For the solution of problem(49), (50)or (49), (51), or (49), (52), the

following estimates hold:

|[z]|h ≤ τ |[ρ]|h, (58)

‖zx̄]|h ≤ τ‖ρx̄]|h. (59)

Proof: The proof is almost similar to that of Lemma 6.1. We state the main points

only. To prove (58) we take the inner product on both sides of (49) withτz. In

the case of boundary conditions (51), a nonzero term appears:
τ

2
Re i (zx̄x, z)h =

τ

2
Re
[
izx̄(1)z∗(1)− izx(0)z∗(0)

]
=

−h
2

(
|z(0)|2 + |z(1)|2

)
.

Therefore, in all cases, we obtain

|[z]|2h = τ Re[ρ, z]h ≤ τ |[ρ]|h|[z]|h,
and (58) is proved.

To prove (59) we take the inner product on both sides of (49) with−τzx̄x.

For problem (49), (51), for example, we get

−Re (z, zx̄x)h = ‖zx̄]|2h +Re
(
−z(1)z∗x̄(1) + z(0)z∗x̄(0)

)
=

‖zx̄]|2h +Re i
τ

h

(
|zx̄(1)|2 + |zx̄(0)|2

)
= ‖zx̄]|2h.

Now we easily obtain the inequality

‖zx̄]|2h = τ Re(ρx̄, zx̄]h ≤ τ‖ρx̄]|h‖zx̄]|h,
which is valid for all considered problems. �
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Corollary 6.5 Suppose that the conditions of Lemma 6.4 are satisfied. Then

‖z‖H1,h ≤ τ‖ρ‖H1,h. (60)

Proof: We obtain (60) as a direct conclusion of (58) and (59). �
We next establish some auxiliary estimates necessary to handle the nonlinear

terms on the right hand side of the difference equations.

Lemma 6.6 Suppose that(31) is satisfied. Then

‖fj(ξ, ξ∗, η, η∗)‖H1,h ≤ 2ϕ(cM )
(
1 + ‖ξ‖H1,h + ‖η‖H1,h

)
, (61)

|[fj(ξ, ξ∗, η, η∗)− fj(ξ̃, ξ̃∗, η̃, η̃∗)]|h ≤ 2ϕ(c̃M )(
|[ξ − ξ̃]|h + |[η − η̃]|h

)
,

(62)

‖fj(ξ, ξ∗, η, η∗)− fj(ξ̃, ξ̃∗, η̃, η̃∗)‖H1,h ≤ 14ϕ(c̃M ) (1 + 4c̃H)(
‖ξ − ξ̃‖H1,h + ‖η − η̃‖H1,h

)
,

(63)

herej = 1, 2, and

cM = max {‖ξ‖C,h, ‖η‖C,h} ,

c̃M = max
{
‖ξ‖C,h, ‖ξ̃‖C,h, ‖η‖C,h, ‖η̃‖C,h

}
,

c̃H = max
{
‖ξ‖H1,h, ‖ξ̃‖H1,h, ‖η‖H1,h, ‖η̃‖H1,h

}
,

ξ, ξ̃, η, η̃ are grid Ω̄h functions.

Proof: For simplicity, we omit the indexj in the proof of the lemma. We start by

proving (61). By (31) we have

|[f(ξ, ξ∗, η, η∗)]|h ≤ ‖f(ξ, ξ∗, η, η∗)‖C,h ≤ ϕ(cM ).

The Lagrange mean-value theorem and (31) with|m| = 1 implies that

|f(ξ, ξ∗, η, η∗)− f(ξ̃, ξ̃∗, η̃, η̃∗)| ≤
2ϕ
(
max{|ξ|, |ξ̃|, |η|, |η̃|}

) (
|ξ − ξ̃|+ |η − η̃|

)
.

(64)
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Applying (64) with ξ̃ = ξ(x − h), η̃ = η(x − h) and the Minkowski inequality

we get

‖fx̄(ξ, ξ∗, η, η∗)]|h ≤ 2ϕ(cM )
√√√√h ∑

x∈Ω+
h

(
|ξx̄|+ |ηx̄|

)2 ≤

2ϕ(cM ) (‖ξx̄]|h + ‖ηx̄]|h) ≤ 2ϕ(cM )
(
‖ξ‖H1,h + ‖η‖H1,h

)
.

Hence, by the estimates above we have

‖f(ξ, ξ∗, η, η∗)‖H1,h ≤ 2ϕ(cM )
√
1 +

(
‖ξ‖H1,h + ‖η‖H1,h

)2
,

and (61) follows.

To prove (62) we employ (64) and the Minkowski inequality again:

|[f(ξ, ξ∗, η, η∗)− f(ξ̃, ξ̃∗, η̃, η̃∗)]|h ≤ 2ϕ(c̃M )
(
|[ξ − ξ̃]|h + |[η − η̃]|h

)
.

Estimate (62) is proved.

It remains to prove (63). DenoteΞ = (ξ̄, ξ̄∗, η̄, η̄∗), ȳ = κy + (1− κ)ỹ, here

κ ∈ (0, 1) is some constant, defined by the Lagrange mean value theorem. We

have ∣∣∣(f(ξ, ξ∗, η, η∗)− f(ξ̃, ξ̃∗, η̃, η̃∗))
x̄

∣∣∣ =
∣∣∣∣
(
∂f(Ξ)
∂ξ

(ξ − ξ̃)+

∂f(Ξ)
∂ξ∗

(ξ∗ − ξ̃∗) + ∂f(Ξ)
∂η

(η − η̃) + ∂f(Ξ)
∂η∗

(η∗ − η̃∗)
)

x̄

∣∣∣∣ .
Applying the simple finite differentiation rule(

F (x)G(x)
)

x̄
= Fx̄(x)G(x) + F (x− h)Gx̄(x)

and (31), we get∣∣∣(f(ξ, ξ∗, η, η∗)− f(ξ̃, ξ̃∗, η̃, η̃∗))
x̄

∣∣∣ ≤
2max

{∣∣∣∣∂f(Ξ)∂ξ x̄

∣∣∣∣ ,
∣∣∣∣∂f(Ξ)∂ξ∗ x̄

∣∣∣∣ ,
∣∣∣∣∂f(Ξ)∂η x̄

∣∣∣∣ ,
∣∣∣∣∂f(Ξ)∂η∗ x̄

∣∣∣∣
}

(
|ξ − ξ̃|+ |η − η̃|

)
+ 2ϕ(c̃M )

(
|(ξ − ξ̃)x̄|+ |(η − η̃)x̄|

)
.
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We use the Lagrange mean-value theorem and (31) (with|m| = 2) again to

estimate

max
{∣∣∣∣∂f(Ξ)∂ξ x̄

∣∣∣∣ ,
∣∣∣∣∂f(Ξ)∂ξ∗ x̄

∣∣∣∣ ,
∣∣∣∣∂f(Ξ)∂η x̄

∣∣∣∣ ,
∣∣∣∣∂f(Ξ)∂η∗ x̄

∣∣∣∣
}
≤

2ϕ(c̃M )
(|ξ̄x̄|+ |η̄x̄|

)
.

Hence, we have∣∣∣(f(ξ, ξ∗, η, η∗)− f(ξ̃, ξ̃∗, η̃, η̃∗))
x̄

∣∣∣ ≤
2ϕ(c̃M )

[
2
(|ξ̄x̄|+ |η̄x̄|

) (|ξ − ξ̃|+ |η − η̃|
)
+ |(ξ − ξ̃)x̄|+ |(η − η̃)x̄|

]
.

SinceL2 norm is the object of our consideration, we proceed with estimating the

quantity above squared:∣∣∣(f(ξ, ξ∗, η, η∗)− f(ξ̃, ξ̃∗, η̃, η̃∗))
x̄

∣∣∣2 ≤ 4ϕ2(c̃M )

[
16
(
|ξ̄x̄|2 + |η̄x̄|2

) (
|ξ − ξ̃|2 + |η − η̃|2

)
+ 2|(ξ − ξ̃)x̄|2+

2|(η − η̃)x̄|2 + 4
(|ξ̄x̄|+ |η̄x̄|

) (|ξ − ξ̃|+ |η − η̃|
)

(
|(ξ − ξ̃)x̄|+ |(η − η̃)x̄|

)]
.

We use the fact that
(|ξ̄x̄|+ |η̄x̄|

) (|ξ − ξ̃|+ |η − η̃|
) (

|(ξ − ξ̃)x̄|+ |(η − η̃)x̄|
)
≤

2
(
|ξ̄x̄|2 + |η̄x̄|2

) (
|ξ − ξ̃|2 + |η − η̃|2

)
+ |(ξ − ξ̃)x̄|2 + |(η − η̃)x̄|2

to get∣∣∣(f(ξ, ξ∗, η, η∗)− f(ξ̃, ξ̃∗, η̃, η̃∗))
x̄

∣∣∣2 ≤ 24ϕ2(c̃M )

[
4
(
|ξ̄x̄|2 + |η̄x̄|2

) (
|ξ − ξ̃|2 + |η − η̃|2

)
+ |(ξ − ξ̃)x̄|2 + |(η − η̃)x̄|2

]
.

The summation and (11) gives

‖(f(ξ, ξ∗, η, η∗)− f(ξ̃, ξ̃∗, η̃, η̃∗))x̄]|2h ≤ 24ϕ2(c̃M )
[
‖(ξ − ξ̃)x̄]|2h +
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‖(η − η̃)x̄]|2h + 8
(
‖ξ − ξ̃‖2

H1,h + ‖η − η̃‖2
H1,h

) (
‖ξ̄‖2

H1,h + ‖η̄‖2
H1,h

)]
.

We now recall (62) to obtain

‖f(ξ, ξ∗, η, η∗)− f(ξ̃, ξ̃∗, η̃, η̃∗)‖2
H1,h ≤ 24ϕ2(c̃M )

(
‖ξ − ξ̃‖2

H1,h + ‖η − η̃‖2
H1,h

) (
1 + 8

(
‖ξ̄‖2

H1,h + ‖η̄‖2
H1,h

))
.

This implies

‖f(ξ, ξ∗, η, η∗)− f(ξ̃, ξ̃∗, η̃, η̃∗)‖H1,h ≤
√
192ϕ(c̃M )

(
‖ξ − ξ̃‖H1,h + ‖η − η̃‖H1,h

) (
1 + ‖ξ̄‖H1,h + ‖η̄‖H1,h

)
.

Finally, by the condition0 < κ < 1, (63) follows. �

Remark 6.7 Assume that the functionsfj , j = 1, 2, are of lower smoothness

than required by(31), i. e.,(31) is satisfied with|m| = 1 only. Then(61)and (62)

hold anyway, since the case|m| = 2 of (31)was not employed to prove the latter

estimates.

We are going to apply Lemma 6.6 further examining the convergence and

stability of the proposed difference methods. The main difficulty faced there is

that the estimated constants includeH1
h norm of a numerical solution. Therefore,

we need to establish the followinga priori estimates.

Lemma 6.8 Suppose that(31) is satisfied with|m| = 1. Also suppose that the

solution of difference problem(37), (38), (42), (32)or (40), (41), (42), (33)is

bounded inCh norm:

‖p‖C,h ≤ γ <∞, ‖q‖C,h ≤ γ <∞, t ∈ ω̄τ . (65)

Then there exists a constantτ0 = τ0(ϕ(γ)) > 0 such that, ifτ ≤ τ0, then the

following estimates are valid:

‖p‖H1,h ≤ cW , ‖q‖H1,h ≤ cW , t ∈ ω̄τ . (66)

HerecW = cW (T, ϕ(γ), ‖u(0)‖H1,h, ‖v(0)‖H1,h) is a constant.
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Proof: Note that, respectively, boundary conditions (32) or (33), are satisfied for

the functionsfj . Therefore, we can apply Corollary 6.2 to scheme (37), (38) or

(40), (41), respectively. We get

‖p̂‖H1,h ≤ ‖p‖H1,h + τ‖f1(◦p, ◦p∗, ◦q, ◦q∗)‖H1,h,

‖q̂‖H1,h ≤ ‖q‖H1,h + τ‖f2(◦p, ◦p∗, ◦q, ◦q∗)‖H1,h.

Due to (31) and (65), we can employ estimate (61) of Lemma 6.6 to obtain

‖fj(◦p, ◦p∗, ◦q, ◦q∗)‖H1,h ≤ 2ϕ(γ)
(
1 +

‖p̂‖H1,h + ‖p‖H1,h + ‖q̂‖H1,h + ‖q‖H1,h

2

)
,

j = 1, 2. DenoteZ(t) = ‖p(t)‖H1,h + ‖q(t)‖H1,h. We have

Z(t+ τ) ≤ Z(t) + τ 4ϕ(γ)
(
1 +

Z(t+ τ) + Z(t)
2

)
, t ∈ ωτ ,

or

Z(t+ τ) ≤ 1 + 2ϕ(γ) τ
1− 2ϕ(γ) τ Z(t) + 8ϕ(γ) τ, t ∈ ωτ , τ ≤ τ0.

with τ0 = 1/(4ϕ(γ)). Estimating by (12) we write

Z(t+ τ) ≤ (1 + 8ϕ(γ) τ)Z(t) + 8ϕ(γ) τ, t ∈ ωτ , τ ≤ τ0.

This implies the boundedness ofZ(t), t ∈ ω̄τ . �

7 Justification of the iterated approximations

In this section, we prove the convergence of the iterations (43) or (44), respec-

tively, as well as the boundedness of the difference solution on the upper layer.

Lemma 7.1 Suppose that(31) is satisfied and there exists a solution of difference

problem(37), (38), (32)or (40), (41), (33)on the layert = tk, such that

‖p(t)‖H1,h ≤ σ, ‖q(t)‖H1,h ≤ σ. (67)
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Then there exists a constantτ0 = τ0(σ, ϕ(σ)) > 0 such that, ifτ < τ0, then

the iterations(43) or (44), respectively, produce the unique sequences{p[s]} and

{q[s]}, convergent inH1
h. The limit functions appear to be a unique solution of

(37), (38)or (40), (41), respectively, on the layert+τ , and the following estimate

holds:

‖p̂‖H1,h ≤ 2σ, ‖q̂‖H1,h ≤ 2σ. (68)

Proof: Both (43) and (44) are linear algebraic equation systems. To prove the

uniqueness ofp[s+1] andq[s+1] we consider the correspondent homogeneous prob-

lem, i. e.,we setp ≡ q ≡ f1 ≡ f2 ≡ 0. Due to Lemma 6.4,

‖p[s+1]‖H1,h ≤ 0, ‖q[s+1]‖H1,h ≤ 0,

i. e., a trivial solution appears to be unique for the homogeneous problem. This

proves the correctness of the definition of the iterations.

Now we are going to prove the boundedness of iterated approximations,i. e.,

that

‖p[s]‖H1,h ≤ 2σ, ‖q[s]‖H1,h ≤ 2σ, s = 0, 1, . . . . (69)

We apply the mathematical induction. Fors = 0, (69) is true by (67), since

p[0] = p, q[0] = q. Suppose that (69) holds fors = l. Denoteξ = (p[l] + p)/2 and

η = (q[l] + q)/2. Then, by the induction assumption and imbedding inequality

(11), we get

‖ξ‖H1,h ≤ 3σ/2, ‖η‖H1,h ≤ 3σ/2, ‖ξ‖C,h ≤ 3σ, ‖η‖C,h ≤ 3σ.

Applying estimate (61) of Lemma 6.6 we see that

‖fj(ξ, ξ∗, η, η∗)‖H1,h ≤ 2ϕ(3σ)(1 + 3σ) = cσ, j = 1, 2.

Therefore, the solution of (43) or (44), respectively, is bounded by Lemma 6.1:

|[p[l+1]]|h ≤ σ + τcσ, ‖p[l+1]
x̄ ]|h ≤ σ + τcσ,

or

‖p[l+1]‖H1,h ≤
√
2(σ + τcσ).

93
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In the same way, we obtain

‖q[l+1]‖H1,h ≤
√
2(σ + τcσ).

Hence, (69) is satisfied in the cases = l+1 provided thatτ ≤ τ ′0 = (
√
2−1)σ/cσ.

The induction step and, therefore, (69) is proved.

Define the operatorΛ such that(
p[s+1]

q[s+1]

)
= Λ

(
p[s]

q[s]

)
,

according to the linear algebraic equation system (43) or (44), respectively. Now

we can show that, ifτ is small enough, then the operatorΛ is a contraction in the

Hilbert spaceH1
h. This will immediately imply the convergence of the sequences

{p[s]} and{q[s]} in H1
h and the uniqueness of the corresponding limits as well

as their belonging toH1
h. Taking s − 1, instead ofs, in (43), one can subtract

the obtained equations from (43) in order to get a problem for the differences

p[s+1] − p[s] andq[s+1] − q[s]. We deal the same with (44). As a result, for the

differences above, we have the problems of type (49). Due to estimate (63) of

Lemma 6.6, we have

‖fj(ξ, ξ∗, η, η∗)− fj(ξ̃, ξ̃∗, η̃, η̃∗)‖H1,h ≤

14ϕ(3σ)(1 + 6σ)
(
‖ξ − ξ̃‖H1,h + ‖η − η̃‖H1,h

)
≤

7ϕ(3σ)(1 + 6σ)
(
‖p[s] − p[s−1]‖H1,h + ‖q[s] − q[s−1]‖H1,h

)
;

hereξ = (p[s]+p)/2, η = (q[s]+q)/2, ξ̃ = (p[s−1]+p)/2, andη̃ = (q[s−1]+q)/2,
j = 1, 2. Therefore, by Corollary 6.5 we get

‖p[s+1] − p[s]‖H1,h + ‖q[s+1] − q[s]‖H1,h ≤

τ 14ϕ(3σ)(1 + 6σ)
(
‖p[s] − p[s−1]‖H1,h + ‖q[s] − q[s−1]‖H1,h

)
,

Hence, ifτ < τ0, τ0 = min{τ ′0, 1/(14ϕ(3σ)(1+6σ))}, we prove the contractibil-

ity of Λ. By taking limit s→ ∞ in (69) we get (68). �
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Remark 7.2 Suppose that the functionsfj , j = 1, 2, are of lower smoothness

than required by(31), i. e., (31) is satisfied with|m| = 1 only. Then Lemma 7.1

holds with the convergence of the iterated approximations inCh. We conclude this

by taking into account Remark 6.7. The use of(63)can be avoided in the proof by

estimating

|[p[s+1] − p[s]]|h + |[q[s+1] − q[s]]|h ≤

τ c
(
|[p[s] − p[s−1]]|h + |[q[s] − q[s−1]]|h

)

and further applying the Gagliardo–Nirenberg multiplicative estimate(10). The

boundedness of the solution on the upper layer inH1
h follows by Lemma 6.8.

Remark 7.3 Due to the imbedding theoremH1
h → Ch (11) and Lemma 7.1, the

convergence of(43)or (44), respectively, inCh follows.

8 Convergence and stability

Now we are able to prove the convergence and stability of the difference schemes.

Taking the grid projections of the differential solutionsu andv we estimate the

approximation error of applied schemes.

Proposition 8.1 Assume that there exist the unique solutionsu, v ∈ C4,3 of

system(27), (28), (30)or (27), (29), (30), respectively. Suppose that nonlinear

functionsfj , j = 1, 2, satisfy(31) with |m| = 1 and (32) or (33), respectively.

Let (35), (36), (42)to be the finite difference scheme related to problem(27), (28),

(30), while (40), (41), (42)deals with(27), (29), (30). Then the approximation

error Ψ can be estimated by

‖Ψ‖C,h = O(τ2 + h2), τ, h→ 0, t ∈ ω̄τ , (70)

for both schemes.

Proof: We begin with estimating the approximation error of difference equations

(35) and (40). Substituting the differential solution into them, using its Taylor

expansion in the neighbourhood of the point(x, t + τ/2), and employing the
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Taylor expansion of functionsfj , j = 1, 2 together with (31) in the case|m| = 1,
we get (70).

The boundary conditions are approximated exactly in all cases. This fact is

trivial for Dirichlet boundary conditions. Due to the extension (34), we prove an

exact approximation of von Neumann boundary conditions for the functionv. In

the case of periodic problem, we see that, due to (33), the differential solutionsu

andv satisfy (41),i. e., the approximation on the boundary is exact.

The approximation (42) is just the exact projection of initial functions (30) to

the grid. �
Proposition 8.2 Assume that for problem(27), (29), (30)problem the conditions

of Proposition 8.1 are satisfied with differential solutions
∂u

∂x
,
∂v

∂x
∈ C4,3 and that

(31) holds. Then the approximation errorΨ of scheme(40), (41), (42)can be

estimated by

‖Ψ‖H1,h = O(τ
2 + h2), τ, h→ 0, t ∈ ω̄τ . (71)

Proof: We operate in the way similar to the proof of Proposition 8.1. One needs

to write the difference equations at the pointsx = 0 andx = 1 and to substitute

the differential solution into them as well. The values of the differential solutions

outside the domainΩ are defined by extension (39). Note also, that, in the case

of periodic problem (27), (29), (30), the extended solutions
∂u

∂x
,
∂v

∂x
∈ C4,3, −1 ≤

x ≤ 2.
Taking the first order difference derivative with respect tox of the expression

for approximation error we estimate|Ψx̄|, x ∈ Ω+
h . We expandu andv in the

neighbourhood of the point(x− h/2, t+ τ/2). �
Let u andv be the discretizated solutions of the corresponding differential

problem. Denote the errorsε = u− p, δ = v − q. Herep andq are the difference

solutions. In the case of differential problem (27), (28) and of the approximating

it finite difference scheme (35), (36), we have

εt = i
◦
εx̄x +f1(

◦
u,

◦
u∗, ◦v, ◦v∗)− f1(◦p, ◦p∗, ◦q, ◦q∗) + Ψ1, (x, t) ∈ Qh,

δt = i
◦
δx̄x +f2(

◦
u,

◦
u∗, ◦v, ◦v∗)− f2(◦p, ◦p∗, ◦q, ◦q∗) + Ψ2, (x, t) ∈ Q̄h,

(72)

ε(0, t) = ε(1, t) = 0,

δ(−h, t) = δ(h, t), δ(1− h, t) = δ(1 + h, t), t ∈ ω̄τ .
(73)
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Moreover, for problem (27), (29) and its approximation (40), (41) scheme, we get

εt = i
◦
εx̄x +f1(

◦
u,

◦
u∗, ◦v, ◦v∗)− f1(◦p, ◦p∗, ◦q, ◦q∗) + Ψ1,

δt = i
◦
δx̄x +f2(

◦
u,

◦
u∗, ◦v, ◦v∗)− f2(◦p, ◦p∗, ◦q, ◦q∗) + Ψ2, (x, t) ∈ Q+

h ,
(74)

ε(0, t) = θε(1, t), ε(h, t) = θε(1 + h, t),

δ(0, t) = θδ(1, t), δ(h, t) = θδ(1 + h, t), t ∈ ω̄τ .
(75)

In both cases,Ψ1 andΨ2 are the approximation errors. Due to Proposition 8.1,

Ψ1,Ψ2 → 0, τ, h→ 0.

On the first layert = 0, the initial functionsu(0)(x) andv(0)(x) are approxi-

mated exactly by (42) for both differential problems. Therefore,

ε(x, 0) = 0, δ(x, 0) = 0, x ∈ Ω̄h. (76)

Theorem 8.3 Assume that the conditions of Proposition 8.1 are satisfied. Then

there exist constantsτ0, h0 > 0 such that, ifτ ≤ τ0, h ≤ h0, then there exists

the unique solutionp, q of finite difference scheme which converges to the solution

u, v of the corresponding differential problem. In both cases(72), (73), (76)and

(74), (75), (76), the error is estimated by

‖ε‖C,h + ‖δ‖C,h = O(τ + h), τ, h→ 0, t ∈ ω̄τ . (77)

Proof: Suppose that

‖p‖C,h + ‖q‖C,h ≤ 2 (‖u‖C,h + ‖v‖C,h) = cD, t ∈ ω̄τ . (78)

We will prove estimate (78) later.

Applying (53) and Corollary 6.2 we get

|[ε̂]|h ≤ |[ε]|h + τ |[f1(◦u, ◦u∗, ◦v, ◦v∗)− f1(◦p, ◦p∗, ◦q, ◦q∗)]|h + τ |[Ψ1]|h,

|[δ̂]|h ≤ |[δ]|h + τ |[f2(◦u, ◦u∗, ◦v, ◦v∗)− f2(◦p, ◦p∗, ◦q, ◦q∗)]|h + τ |[Ψ2]|h.

To deal with nonlinearities we use (62) in Lemma 6.6:

|[fj(◦u, ◦u∗, ◦v, ◦v∗)− fj(◦p, ◦p∗, ◦q, ◦q∗)]|h ≤
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ϕ(cD)
(
|[ε̂]|h + |[ε]|h + |[δ̂]|h + |[δ]|h

)
,

j = 1, 2. DenoteZ(t) = |[ε]|h + |[δ]|h andΦ = max
t∈ω̄τ

max{‖Ψ1‖C,h, ‖Ψ2‖C,h}.

Then

Z(t+ τ) ≤ Z(t) + τ 2ϕ(cD)[Z(t+ τ) + Z(t)] + τ 2Φ, t ∈ ωτ ,

or

Z(t+ τ) ≤ 1 + 2ϕ(cD) τ
1− 2ϕ(cD) τ Z(t) + τ 4Φ, t ∈ ωτ , τ ≤ τ ′0.

with τ ′0 = 1/(4ϕ(cD)). By (12) we have

Z(t+ τ) ≤ (1 + 8ϕ(cD) τ)Z(t) + τ 4Φ, t ∈ ωτ , τ ≤ τ ′0. (79)

SinceZ(0) = 0, this implies

Z(t) ≤ cZ Φ, t ∈ ω̄τ , τ ≤ τ ′0; (80)

herecZ = cZ(T, ϕ(cD)) is a constant.

While (78) holds, it follows by Lemma 6.8 that, ifτ ≤ τ ′′0 = τ ′′0 (ϕ(cD)), then

the difference solution is bounded inH1
h norm by some constant

c̃W = c̃W (T, ϕ(cD), ‖u(0)‖H1,h, ‖v(0)‖H1,h).

Since the differential solution is smooth, we can assume that it is bounded inH1
h

by the same constant.

Now, due to Gagliardo–Nirenberg multiplicative estimate (10) and Proposi-

tion 8.1, we obtain forτ ≤ τ ′0, τ ′′0
‖ε‖C,h + ‖δ‖C,h ≤ 4cGcZ1/2c̃W

1/2cΦ
1/2(τ2 + h2)1/2, t ∈ ω̄τ ,

herecΦ is the constant defined in Proposition 8.1.

To complete the proof it remains to show estimate (78). We use the mathe-

matical induction method. Estimate (78) is satisfied fort = 0, sincep(0, t) =
u(0)(x), q(0, t) = v(0)(x). Suppose that it holds for layersts = sτ , s =
0, 1, . . . , j. Then by Lemma 6.8 it follows that

‖p(tj)‖H1,h ≤ cW , ‖q(tj)‖H1,h ≤ cW , τ ≤ τ ′′0 = τ ′′0 (ϕ(cD)).
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Here cW = cW (T, ϕ(cD), ‖u(0)‖H1,h, ‖v(0)‖H1,h). Applying Lemma 7.1 and

Remark 7.2 we see that there exists a unique difference solution on the upper layer

tj+1 and that

‖p(tj+1)‖H1,h ≤ 2cW , ‖q(tj+1)‖H1,h ≤ 2cW , τ ≤ τ ′′′0 ,

hereτ ′′′0 = τ ′′′0 (cW , ϕ(cW ), τ
′′
0 ). By the imbeddingH1

h → Ch inequality (11) we

get

‖p(tj+1)‖C,h ≤ 2
√
2 cW , ‖q(tj+1)‖C,h ≤ 2

√
2 cW , τ ≤ τ ′′′0 .

Therefore, in a similar way as above one can obtain

Z(tj+1) ≤ Z(tj) + τ 2ϕ(c̃)[Z(tj+1) + Z(tj)] + τ 2Φ, τ ≤ τ ′′′0 ;

herec̃ = c̃(cD, cW ) is a constant. The same arguments as above imply

Z(tj+1) ≤ (1 + 8ϕ(c̃) τ)Z(tj) + τ 4Φ, τ ≤ τ ′′′′0 = 1/(4ϕ(c̃)), τ ′′′0 .

EstimatingZ(tj) by (80) we have

Z(tj+1) ≤ ˜̃cΦ, τ ≤ τ ′′′0 , τ
′′′′
0 , ˜̃c = ˜̃c(cZ , ϕ(c̃)).

By multiplicative estimate (10) it follows that

‖ε(tj+1)‖C,h + ‖δ(tj+1)‖C,h ≤ ˜̃̃c(τ2 + h2)1/2, τ ≤ τ ′′′0 , τ
′′′′
0 ,

˜̃̃c = ˜̃̃c(cG, cW , cΦ, ˜̃c). Since

‖p(tj+1)‖C,h + ‖q(tj+1)‖C,h ≤ ‖u(tj+1)‖C,h + ‖v(tj+1)‖C,h +

‖ε(tj+1)‖C,h + ‖δ(tj+1)‖C,h,

it is sufficient to chooseτ0 > 0 andh0 > 0 such thatτ0 ≤ min{τ ′0, τ ′′0 , τ ′′′0 , τ
′′′′
0 }

and˜̃̃c(τ2
0 + h

2
0)

1/2 ≤ cD/2 to prove

‖p(tj+1)‖C,h + ‖q(tj+1)‖C,h ≤ cD, τ ≤ τ0, h ≤ h0,

and, hence, we get (78). �
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Theorem 8.4 Assume that the conditions of Theorem 8.3 are satisfied. Then, for

both initial boundary-value problems, we have fort ∈ ω̄τ

‖ε‖H1,h + ‖δ‖H1,h = O
(
max
t∈ω̄τ

max
j=1,2

‖Ψj‖H1,h

)
, τ, h→ 0. (81)

Proof: The proof is similar to that of Theorem 8.3. We first note, that by The-

orem 8.3, ifτ ≤ τ ′0, h ≤ h0, then (78) is satisfied. Hereτ ′0, h0 > 0 are some

constants. Then it follows by Lemma 6.8 that, ifτ ≤ τ ′′0 = τ ′′0 (ϕ(cD)), then the

difference solution is bounded inH1
h norm by some constant

cW = cW (T, ϕ(cD), ‖u(0)‖H1,h, ‖v(0)‖H1,h).

Since the differential solution is smooth, we can assume that it is bounded inH1
h

by the same constant.

Due to Corollary 6.3, we can apply (56) to get

‖ε̂‖H1,h ≤ ‖ε‖H1,h + τ‖f1(◦u, ◦u∗, ◦v, ◦v∗)− f1(◦p, ◦p∗, ◦q, ◦q∗)‖H1,h +

τ‖Ψ1‖H1,h,

‖δ̂‖H1,h ≤ ‖δ‖H1,h + τ‖f2(◦u, ◦u∗, ◦v, ◦v∗)− f2(◦p, ◦p∗, ◦q, ◦q∗)‖H1,h +

τ‖Ψ2‖H1,h.

One can employ inequality (63) in Lemma 6.6 to estimate the nonlinear error

‖fj(◦u, ◦u∗, ◦v, ◦v∗)− fj(◦p, ◦p∗, ◦q, ◦q∗)‖H1,h ≤ 7ϕ(cD) (1 + 4cW )(
‖ε̂‖H1,h + ‖ε‖H1,h + ‖δ̂‖H1,h + ‖δ‖H1,h

)
, j = 1, 2.

DenoteZ(t) = ‖ε‖H1,h + ‖δ‖H1,h andΦ = max
t∈ω̄τ

max{‖Ψ1‖H1,h, ‖Ψ2‖H1,h}.

Then fort ∈ ωτ

Z(t+ τ) ≤ Z(t) + τ 14ϕ(cD) (1 + 4cW ) [Z(t+ τ) + Z(t)] + τ 2Φ.
SinceZ(0) = 0, by the same arguments we used proving (80) one obtains

Z(t) ≤ cZ Φ, t ∈ ω̄τ , τ ≤ τ ′′′0 = τ ′′′0 (ϕ(cD), cW );

herecZ = cZ(T, ϕ(cD), cW ) is a constant. We defineτ0 = min{τ ′0, τ ′′0 , τ ′′′0 }. �
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Remark 8.5 Assume that the conditions of Proposition 8.2 are satisfied. Then

(for periodic boundary-value problem) Theorem 8.4 implies that

‖ε‖H1,h + ‖δ‖H1,h = O(τ
2 + h2), τ, h→ 0, t ∈ ω̄τ ,

and, due to the imbeddingH1
h → Ch inequality (11), we improve the ratio of

convergence:

‖ε‖C,h + ‖δ‖C,h = O(τ2 + h2), τ, h→ 0, t ∈ ω̄τ .

We have proved the convergence of difference schemes. It remains to con-

sider the stability.

Let p1, q1 be the solution of finite difference scheme (35), (36), (42) or (40),

(41), (42), respectively, with the initial functionsu(0)
1 (x) andv(0)

1 (x). Let alsop2,

q2 be the solution of the same difference problem with another initial functions

u
(0)
2 (x) andv(0)

2 (x).

Theorem 8.6 Assume that nonlinear functionsfj , j = 1, 2, satisfy(31) with

|m| = 1 and (32) or (33), respectively. Then, for both difference problems(35),

(36), (42)and (40), (41), (42), there exist constantsτ0, h0 > 0 such that

‖p1 − p2‖C,h + ‖q1 − q2‖C,h ≤

cS
(
|[u(0)

1 − u(0)
2 ]|h + |[v(0)

1 − v(0)
2 ]|h

)1/2
,

(82)

if τ ≤ τ0, h ≤ h0, t ∈ ω̄τ . The constantcS does not depend on the grid stepsτ

andh.

Proof: We denoteZ(t) = |[p1 − p2]|h + |[q1 − q2]|h. Similarly as in the proof of

Theorem 8.3, we come to the inequality analogous to (79):

Z(t+ τ) ≤ (1 + 8ϕ(cD) τ)Z(t), t ∈ ωτ , τ ≤ τ0.
This implies

|[p1 − p2]|h + |[q1 − q2]|h ≤ cZ
(
|[u(0)

1 − u(0)
2 ]|h + |[v(0)

1 − v(0)
2 ]|h

)
,

herecZ is a constant andt ∈ ω̄τ .

To complete the proof we employ Gagliardo–Nirenberg multiplicative esti-

mate (10). �
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Theorem 8.7 Suppose that nonlinear functionsfj , j = 1, 2, satisfy(31)and(32)

or (33), respectively. Then, for both difference problems(35), (36), (42)and(40),

(41), (42), there exist constantsτ0, h0 > 0 such that

‖p1 − p2‖H1,h + ‖q1 − q2‖H1,h ≤
cS
(
‖u(0)

1 − u(0)
2 ‖H1,h + ‖v(0)

1 − v(0)
2 ‖H1,h

)
,

(83)

if τ ≤ τ0, h ≤ h0, t ∈ ω̄τ . The constantcS does not depend on the grid stepsτ

andh.

Proof: We denoteZ(t) = ‖p1 − p2‖H1,h + ‖q1 − q2‖H1,h. Similarly as in the

proof of Theorems 8.4 and 8.6, we get

Z(t) ≤ cSZ(0), τ ≤ τ0, t ∈ ω̄τ .

�

Remark 8.8 Assume that the conditions of Theorem 8.7 are satisfied. Then due

to the imbeddingH1
h → Ch inequality(11), the correspondent scheme is stable in

Ch.

Remark 8.9 Due to Proposition 4.2 and Proposition 4.3, we have proposed and

justified the algorithm for the numerical solution of derivative nonlinear Schrö-

dinger equation(3). Note that, while the convergence and stability of difference

schemes is proved inC norm, by the relation

v =
∂u

∂x
− iα
2
|u|2u, 0 ≤ x ≤ 1,

(see(22) in Proposition 4.3) it follows that the whole method converges and is

stable inC1 norm, for both initial boundary-value problems of(3).
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