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Abstract. We investigate two different initial boundary-value problems for de-
rivative nonlinear Sclirdinger equation. The boundary conditions are Dirichlet

or generalized periodic ones. We propose a two-step algorithm for numerical
solving of this problem. The method consists @dRlund type transformations

and difference scheme. We prove the convergence and stabilityand H'*

norms of Crank—Nicolson finite difference scheme for the transformed problem.
There are no restrictions between space and time grid steps. For the derivative
nonlinear Schidinger equation, the proposed numerical algorithm converges
and is stable irC'! norm.
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1 Introduction

We consider two different initial boundary-value problems for derivative nonlinear
Schidinger equation. Note that similar derivative dependent nonlinear terms
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appear in the Korteweg and de Vries (KdV) equation, the Burgers equations, the
Navier-Stokes models, and other problems where one must take into account some
higher order perturbations.

In this paper, we propose (and justify) the algorithm for solving of the con-
sidered problem on the computer. Note that our method is a non-standard one as
it consists of two independent steps. The first step, presented in details in Section
4, handles derivative dependent nonlinearities. Also note that the second part of
this paper (the second step), which deals with difference scheme for the system
of two nonlinear Sclirdinger equations, can be considered as independent result.
As far as we know, for such initial boundary-value problem (with the boundary
conditions being either mixed Dirichlet—Neumann or generalized periodic ones),
no numerical method was justified to this time.

The derivative nonlinear Sobdinger equation

ou 9%u

i zaw D
(wherex andt denote the space and the time coordinates, respectively, while
d, k, a, 0 are real constants), is used for modeling of wave processes in different
physical systems such as nonlinear optics [1, 20, 22], circular polarize@milfv
waves in plasma [18, 19], Stokes waves in fluids of finite depth, etc. The quantities
alul?0,u and Bud, |u|? in equation (1) are called the derivative nonlinear terms.

2
+ id|u*u + ik|u)tu + oz|u]2@ + ﬂuam’
Ox 0

In nonlinear optics [1, 20, 22], equation (1) can be derived in a systematic
way by means of the reductive perturbation scheme as a model for single mode
propagation. In the context of waveguides as optical fidraspally corresponds
to the propagation distance of the electric field envelap® an optical beam
along the fibreg plays the role of the time, the termig.|>« andk|u|*u model the
nonlinear Kerr effect, whilev|u|?0,u and fud, |u|? are the nonlinear dispersion
contributions.

Note, that equation (1) is a generalization of the standard nonlinead@ohr
ger equation

ou . 0%u

Er
for nonlinearly modulated wave trains modeling in the so caftedginal stable
regime [2].

+ id|u|u, 2
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There are many partial cases of (1), for which, due to the Lax pair formalism,
interesting solutions, e. g., solitons can be constructed analytically [3, 13, 15]. Re-
cently, there were computed new classes of symmetry reductions and associated
exact solutions of two-dimensional (with the space variablesndy) derivative
nonlinear Schidinger equation [7]. It also appears that these partial cases are
gauge equivalent, e.,can be transformed into each other by soraelBund type
transformation [16]. One could mention the Kaup—Newell equation, the Chen—
Lee—Liu equation and the Gerdjikov—Ivanov equation.

Note that, in [2, 3, 6, 7, 13, 15, 16], the Cauchy problem is dealt with. We
examine the boundary problems, that require a different or adopted techniques.
It can appear, for example, that a boundary-value problem, for some well-known
nonlinear parabolic equations, has no solution at all [12]. Therefore, we have
discussed in [17] the well-posedness of the models considered in the present work.

Dealing with (1), the main difficulties are caused by the derivative nonlinear
terms. In [6], Hayashi overcomes the so-called derivative loss by reducing the
Cauchy problem for the Kaup—Newell equation

ot 92 T Bz
to the system of two nonlinear Sduinger equations. In this paper, we generalize
and adopt the transformations applied in [6] (see also [16]) in order to perform
the numerical analysis of Dirichlet and periodic initial boundary-value problems.
Note also that, in [9], we have used another approach to handle the derivative loss,
namely, some parabolic viscosity was introduced.

Ou ‘@i 0 (\u\2u)

There is a lot of results on numerical aspects of nonlineardihger equa-

tion (without derivative nonlinearities) [4, 5, 8, 9, 10, 11, 14, 21, 23, 24, 25]. For
example, implicit finite difference schemes were justified for many-dimensional
Schibdinger models with zero boundary conditions [8, 11]. Similar results are
obtained in the case of Neumann boundary conditions [21]. The convergence
and stability of an implicit scheme for slightly generalized equation (2) with zero
boundary conditions were also proved [10]. A comparison of many difference
schemes for the model considered in [10] was presented in [4].

This paper is organized as follows. In Section 2, we state the problem of our
interest. Section 3 is for introducing notation and fundamental theorems which
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our analysis relies on. As the first step of the algorithm, in Section 4 we employ
two explicitly invertible transformations (which can be computed numerically,
too) to obtain an evolutionary type equation system containing no gradient depen-
dent nonlinearities. The second step of the proposed method are finite difference
approximations to the reduced problem which are introduced in Section 5. In
Sections 6 and 7, we prove soragriori estimates and the convergence of the
iterative method applied to nonlinear finite difference schemes. Finally, in Section
8, we prove the convergence and stability of applied difference schemes.

2 Statement of the problem

In this paper, we deal with the derivative nonlinear $ciimger equation
ou 0%u

0
Tl MW + ba—z +icu 4 id|u)®u + ik|u|tu +

Oful?

3
28U
alul a—z—i-ﬁu 5

whereu = u(zx,t) is an unknown complex functiom, b, ¢, d, k, ., 3 are given
real coefficients; = \/—1. This differential equation is studied forc (0,7
and forz in a bounded intervell C R. For simplicity we take2 = (0,1). Note
that, in equation (3), by rescaling the time variabtine coefficient can be set to
1. Therefore we further assume that 1.

We consider (3) together with initial and boundary conditions. Having de-
fined the initial function

u(xz,0) = u®(2), x €, (4)

we are going to justify a numerical analysis for the solutign, ¢) satisfying one
of the two different type conditions on the boundary. One of the popular ways in
numerical modelling of the corresponding Cauchy problem is to truncate a solu-
tion outside of some given regidp, i. e.,the zero Dirichlet boundary conditions

u(0,t) = u(1,t) =0, 0<t<T. (5)

There also exists another approach caused by specific features of some modeled
phenomena, namely, the periodic boundary-value problem
ou B eau

U(O,t) = eu(lvt)v % 0 - %

0<t<T (6)

)
r=1
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with the complex parameter (phase shifguch thatd| = 1.
We assume that, at= 0, the initial function (4) satisfies boundary conditions
(5) or (6), respectively.

3 Notation and mathematical preliminaries

Let @ = Q x (0,7]. For complex valued functions, Iét,-) and || - || de-
note the inner product and norm i, = Lo(Q), and letH! = HY(Q) =
{u € Ly : 0yu € Ly} be the standard Sobolev space with the norm

[ull =/ llull? + 1| Ozul].

The spaceC’* = C7%(Q) consists of the functions with continuous G jth
derivatives with respect ta and continuousith derivatives with respect ta
Throughout this paper, we denote &iythe complex conjugate af.

Denoting difference analogues of domains, derivatives, inner products, and
norms we follow the notation accepted in numerical analysis. We introduce the
uniform grids with steps andh

Qn ={zj: zj=jh, j=1,2,...,N -1}, Q,=Q,0{0,1},
QF = QU {1},

wr ={tg: t, =k7, k=0,1,...,M — 1}, wr =w; U{T},
Qn = Qp X wr, Qn =0 X wr, QF =9 xw,,

whereNh =1, M7 ="1T.
We denote the difference derivatives

Pz = h ) bz = h )

Ps+pz
pe="— P=p@t+7), p="5=, pi= :

and the inner products

(P n=h Y pla,t)g" (z,t),  (p,dn=h Y plz,t)q (1),

zEQ weQ;‘;
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poaln =P Y pla )" (1) + 5 (p0,0°(0,8) + p(1, )" (1,1)).
TEQy,

The following difference Green formulae are true:

(P2 @), = — (P2, qz)), + pz(1,0)g" (1, ) — p2(0,t)g™ (0, 1), (7)
(p:?:asv Q]h - - (p:?:a qg’c]h +p93(1’ t)q*(l’t) - px(o’t)q*(ovt)’ (8)
[Pzl = — (pz: a4z, + po (L, 1)q" (1, £) — po(0,)g"(0,1). (9)

Note that (8) and (9) require the functiprio be defined outside the grid},.

Next, we introduce the norms of the grid functions. We employ the discrete
Ly norms

||p||h =\ (pvp)ha ||p”h =\ (pap]ha ‘[p”h Y, [pvp]h

It remains to introduce the norm of the discrete spagéthe grid projection
of the continuous function spacg

Iplle,, = max p(z)|
z€Q,
and the one related t} (discretization ofH!)

Dl = /1 [PI7, + lIpa]l7-
For grid functionsp € H}, we should recall the discrete Gagliardo—Niren-
berg type estimate

1/2 1/2
Ipllen < callplly Il (10)

and the imbedding theore#d;, — Cj,:
Ipllen < V2Iplip- (11)

The following inequality is true:

1+ cx

1 <1+4cz, 0<z<1/(2), c>0. (12)
—cx
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4 Reduction of nonlinearity

In this section, we simplify (3), (4), (5) and (3), (4), (6) problems by reduc-
ing derivative dependent nonlinearities. The transformations introduced in this
section represent the first step of a numerical algorithm for derivative nonlinear
Schiddinger equation.
For simplicity, we first rearrange derivative nonlinear terms in equation (3).
Define the real function

o) = [ u0.0P + (5 +5) 0,0l -

Du(0,7) (13)
u T
21 : * .
m( Era (0,7)) dr
Note thatg(¢) = 0 in the case of boundary conditions (5).
We define the transformed functien= v(z, t) by
. v 2 b . b?
—1A / lu(s,t)]” ds + q(t) — T = C+Z t
v=u(z,t)e 0 ;o (14)

hereA is a real parameter.

Remark 4.1 Note that, due tq14), |u| = |v|. Note also, that Bcklund type
transformation(14) is explicitly invertible, since

z b v?
iA lu(s,t)|*ds +q(t) ) +i-a+i (C—l— —) t
u(z,t) = v(x,t)e </0 > 2 4 (15)

and

o) = '/Ot (3‘ 48— 2A> (0, 7)|* — 2Tm <6“g;’ ™) (0. T)> dr, (16)

and therefore it can be computed numerically.

Proposition 4.2 Assume thati(z,t) € C*! is a solution of(3), (4), (5)or (3),
(4), (6), respectively. Then the functiandefined by13), (14)satisfies

2
v _ zﬂ +i (d—l— a_b) [v|?v + i ktr [v]*o +
ot Ox? 2 (17)
0 ov*
(ot 8= 24) o5+ (8- 24) *

ox
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fort > 0, z € Q, and the boundary conditions
v(0,t) =v(1,t) =0, 0<t<T,

or

@
Ox

_, Ov

=0 5= 0<t<T,
=0 8.’1)

v(0,t) = 61v(1,t),

b
r=1

respectively. Heréyty = k + A (A + % — ﬁ) and 6, is a constant such that
61| = 1.

Proof: Define

z b b?
iA (/ u(s,t)\zds—l—q(t)) +i§:c+i <c—|— Z)t
E(x,t) =€ 0 ,

8 T
I(z,t) = &/0 lu(s, t)|* ds.

Due to (15) we have

ou ov b
2 ZZ L iAll? v | E 1
5 (8$+Z v U—i—lzl}) (x,1), (18)
0%u 0%v  _Ov b2 9 2 14
ek <W+zb%—zv—bz4|v| v— A%v|*v +
op (29)
ov olv
. 2 VY .
i2A|v| pe +iAv pe >E(m,t),
ou  [ov e . b?
i <6t +i1Av I(x,t) +iAvg (t) + 1 <C+ 4> U) E(z,1).
Multiplying (3) by 2u*, integrating, and taking the real part we obtain
. [(Ou ou* 9 o} 4
I(z,t) =i (a—mu —u 89:) + bluf* + (5 +ﬂ> ul® —q'(¢). (20)
By (14) and (18) one gets

e ov* o 4
I(x,t)-z(v g—var)—l-(g—i-ﬁ—ZA) [v|* = q'(¢).
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Therefore,
ou ov b? @
- = +ilc+—|v+ilA|l=+ —2A2>v4v—
ot <6t ( 4 ) ( (2 v ) 1

) Blv[?
2AJv[? ”+A g;' )E(w,t).

Substituting this expression together with (18) and (19) into (3) we get (17).
The invariance of boundary conditions (5) is trivial. For (6), due to (14) and
(18), we obtain

z‘(A||u<0>||2 + 9)
0, =0e 2/,

sincel|u| = ||u(?|| (one proves it by taking = 1 in (20)). A

Due to Proposition 4.2, we can neglect some terms in equation (3). Choosing
A = (a + 3)/2 and redenoting the coefficients and solution we will further deal
with the equation

0 82 5 Ou*
8_? 92 + dd|ul?u + ik|u|*u + au? (;;

Proposition 4.3 Assume that(z,t) € C>! is a solution of(21), (4), (5)or (21),
(4), (6), respectively. We define the functioby

(21)

= %P 22
v=go il (22)

Then problem(21), (4), (5)or (21), (4), (6) respectively, is equivalent to the
equation system

8U 82 2 4
Fri 82+zd!u\u+zk\u!u+auv
8”_ &*v 2 2 x .z 4 2,2 x (23)
5= zﬁ+zd<2\u|v+uv)+zk(3|u]v+2|u]uv)—
au*v?
fort >0,z € Q, k = k — o2 /2, with the boundary conditions
v v
0,t) =u(l,t) =0, — = — =0, 0<t<LT 24
uo) =u(tn =0, G =T —0 0<i<T (29
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or
u(@.0) = 0u(10), O O—eg_;; .
= = 25
ov ov (25)
U(O,t) = Hv(l,t), % 0 = 8_;E ) y 0 S t S T,

respectively.

Proof: The first equation in (23) follows directly by definition (22). We will obtain
the second equation. Due to the smoothness (21) implies

0%u ,33 9 0 4 0 [ 50u
peri 8$3 + zd— <|u\ ) —l—zk:% (|u] u) + a% <u 8$> . (26)
By (21) and (22) we also establish the expressions

0 2\ _ o 20U | o0ut
ot (M )_2|u| TV e T

, Pu . Pt , ou*
12|u|2@ — iu? 52 u|tu + ik|ulSu + 2a]ul?u?

Ox

2
u+i<k—%> |u|%u +

0 0 ou*
B (!ulgu) = 2|u\28—z +u28—1; = 2ul*v + u*v* +is |u|4

+

ou 0%u 0?u*
4 . 2 -2
alul g = 2l g — 1 g

2alul*uv* + alul*v,

= 3|ul*v + 2Jul*uv* +

9 () = 3lue 2 2,20U"
o (lul*u) = 3]ul o+ 2l

e
75\“\6%

0? (‘ 2 )_ 0u? 23u ou* 5 0%u*

Oz Oz Ox Ox o ox2
ou 50 Ou Ou* 5 0%u*
u* | — 2 —— +4u =
b (8:3) + 2Ju | + oz 0x " 22
a? 0%u ou ou* 9%
%2 - 4 6 2 2
2u™v? + i2a|ul v — ]u\ u+ 2|u| —+4 97 O U R
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Therefore by (22) and (26)
ov 0% 0%u 0 a d

. 0?
5ot = e~ loms g () = 5 5z (luPu) =

id-2- (uf?u) +ik% (jul*) + 0o (uQau*) ~i2 0 (juf) -

dx Ox Ox
(6% 82 2 . 2 DS ad 4
5922 (]u| u) —zd<2|u| v+ u‘v ) - 7|u! u+

k 62 82 *
ik (3l + 2lulPuv”) = ZFful®u + aful? 55 - SuP S

ad, 4 ak o 6 a® 2,2 % 4
?]u\ u+ (7_Z> |ul U= (2\u| uv* + |ul v)—l—

Ou Ou* 5 0%u* o
oz 0x Y gz MY

2

3
—ia?|ul*v + %\u|6u -

2
id (2|u|2v + u2v*) +1 (k - %) (3|u|4v + 2|u|2u2v*> — au*v?.

It remains to prove (24) or (25), respectively. Setting= 0 andz = 1 in
equation (21) we conclude

0%u 0%u
- = - = <t<T
D2 2 0 Osts?
=0 x=1
or
0%u 0%u
it -0 = <t<
Ox? b Ox? ’ 0st<T,
=0 =1
respectively. Since
v _ 0% w22t 2 2 0u”
I T Rl P
we obtain (24) or (25).
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5 Finite difference scheme

Due to Proposition4.2 and Proposition 4.3, we can reduce the derivative non-
linearities. Therefore, the following partial differential equation system will be
further considered fofz, t) € Q

Ou 0N it v,07)
8157283:2 1(u,u,v,v7),
(27)
Ov %0 1 o, 00"
8t_28x2 o(u,u”,v,v
with the boundary conditions
ov ov
or
u(0,t) = Ou(1,1), Ou =0 Ou ,
oz z=0 Oz r=1
5 9 (29)
v v
— bt -0 — <t<
v(0,t) = 0v(1,t), 2], 0 9rl. . 0<t<T,
respectively, her@| = 1. The initial data are given by
u(z,0) = u®(z), v(z,0) = v (2), x €. (30)

We suppose that the functiorfs, j = 1,2, and all their partial derivatives up to
the second order are continuous. This is satisfied for system (23), Sirare
polynomials. The continuity requirement implies the existence of a continuous
nondecreasing functiop such that

’fj(u, u*,v,v*)] < SO(Z/), |Dmfj(u7U*7v7U*)| < So(y)v

(31)
m|=1,2,  j=12;

herey = max{|ul, [v|}, D™ = "™ /Ou™ du*™2 v™3 Ov*™, |m| = my +ma +
ms+my4. Another important requirement defines the values of nonlinear functions
on the boundary. Suppose that for problem (27), (28), (30)

fl(07 077),1)*) = Oa f2(07 071),’0*) = 07 (32)
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while, in the case of problem (27), (29), (30), we assume that
f1(0u, 0% u™, 0v, 0*v*) = 6 f1(u, u*, v,v"),
fo(Ou, 0" u*, 0v, 0" v™) = 6 fo(u, u*, v,v");

(33)

here|f| = 1. Note that the functiong; and f», defined by the right-hand side
of (23), satisfy (32) and (33). The conditions (31), (32), and (33) are satisfied for
many physical models.

For problem (27), (30), with corresponding boundary conditions, we are
going to apply the finite difference approximations. The solution of (27), (28),
(30) can be extended outside the intefak (0, 1) by defining

u(z,t) =u(—=z,t), v(z,t)=v(-zt), —-1<z<0,
u(z,t) =u(2 —x,t), v(z,t)=v2—-z,t), 1<z<2

(34)

It can be easily checked that the first equation of problem (27), (28), (30) is
satisfied forz € (—1,2), except the pointg = 0 andz = 1, while the solution
v is a smooth function for alt € (—1,2). Therefore we are allowed to use the

approximations of the valueg—h, t) andv(1 + h, t).
In the case of problem (27), (28), we apply the following Crank—Nicolson
finite difference scheme:

p :Z]%jx +f1 1077209*7878*) .I,t EQh)

PP AP, (D € (35)
@ =1qz +20,0% 4,47, (x,t) € Qn,

p(0,t) = p(1,t) =0,

(0,t) = p(1,t) (36)

q(=h,t) = q(h,t),  q(1 —=h,t)=q(1+h,t), tecwr.

Substituting the boundary conditions fgiinto the (35) and employing (32) we
can eliminatey(—h), ¢(1 + h). Thus, (35), (36) is equivalent to the scheme

.o 0o 0, 0 O
Pt = 1 Pzy +f1(p7p*7q7q*)7

.o o 0, 0 O
gt = 1 4z +f2(pap*7Q7q*)7 (iL',t) € Qh7

(37)

p(0,t) = p(1,t) =0, t e w,,
2 o 2 o (38)
q:(0,t) = Zﬁ q, (0,1), q(1,t) = _Zﬁ gz (1,1), t e wsr.
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According to condition (33), the solution of periodic boundary value problem
(27), (29), (30) can be extended outside the doraby

u(l+2,t) = 0%u(z,t), v(l+zt)=0%(1), 0<zr<l. (39

Therefore, for differential problem (27), (29), we can apply the scheme

. O o O o O
Pt =1 Pze +1(0 07 ¢, 0,
(40)
O o O
P q,q

qt ’Lsz +f2(]o7 )a (I‘,t) GQ;’

p(O,t) = ep(l’t)v p(hat) = ep(l +h, t)a (41)
q(h,t) = 0q(1 + h,t), t € wr.

In both cases, the initial functions (30) are approximated by

p(x,0) = uO(2), q(x,0) = v (x), € Q. (42)

Scheme (37), (38), (42) is implicit and nonlinear. To compute the difference
solutionsp, ¢ on the upper layer + 7 we apply the iterations

[s+1] _ .
i P lp[xajl] + fl (15[3]713*[8}’@[8}7 q*[S]) )

u
s+1
¢ —q _ i 4 f, ( sl pels] q[s]’q*[s}) 7
T
p(0) = po+1l(n) =, s
[s+1] _ _ .
q (0) —g(z=0) i [s+1] _
- =7 (a1(0) + gl = 0)),
[s+1] o _
) —ge=1) i e B
- =7 (Qx (1) + gz(z = 1)) ;
SZO,].,..., .’L‘EQ}“ p[o]:p’ q[O]:q

We have denoted here

g P 4p
p - )
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For scheme (40), (41), (42), we construct the similar process

[s+1] _ ;
Lo il 4 p (08,071, )
-
[s+1] s
a 9 _ gty g, (ﬁ[s],ﬁ*[slqm,é"‘[s}),
-

[s+1] [s+1] [s+1] [s+1] (44)
pTH(0) = 0pTH(L),  pPTH(h) = 0pTH (1 4 R,

1
q+1(0) 1), g t(n) = 0g (1 + ),

s=0,1,..., € Qf, Pl = p, g = q.

[s+1] (

To find the next iteration defined by (43), we suggest an efficient sweep method.

For (44), the modified cycle sweep can be applied.

6 A priori estimates
We consider the auxiliary linear difference scheme
Wi = i Wy +7(2,1) (45)

with r(z,t) € H}.

In the common frame, we are going to examine three different boundary

problems for scheme (45). The boundary values are set by

w(0,t) = w(l,t) =0, r(0,t) =r(1,t) =0, t e w, (46)
or

(0,6) = i2 9p(0,8),  wi(l,t) = —iz oa(1,6), tew

w ) =17 Wy sy )y ) = — T T sy )y T

t A t A (a7)

r(0,t) =r(1,t) =0, t e,
or

w(0,t) = 6w(1,t), w(h,t) = 0w(l + h,t),

(0,1) (1,7) (h,t) ( ) 48)

r(0,t) = Or(1,t), t € w;.

Problems (45), (46) and (45), (47) are stated(fart) € @y, and (45), (48) for
(z,t) € Q.
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We also consider another difference scheme

f = Z%x + p(x) (49)
together with the boundary conditions

A0)=21) =0, p(0) = p(1) =0 (50)
or

O_to0 Mo low wo=sm=0 6
or

20)=02(1),  z2(h)=02(1+h),  p(0) = 0p(1). (52)

The space for problems (49), (50) and (49), (51 is Q, while z € Q; for
(49), (52). Herep € HJ.
We prove the estimates for the solution on the upper layer.

Lemma 6.1 For the solution of problenéd5), (46)or (45), (47) or (45), (48)the
following estimates hold:

|[@]]n < |fw]ln + 7[r]ln, (53)
[z]ln < llwelln + 7ll7zl|n- (54)

Proof: We first prove (53) for the case of boundary conditions (46) or (47). Taking
the inner product:, -);, on both sides of (45) witB7 «w we obtain for the real part

Re (@ — w,w + w);, = 27 Rei ({Z)M’{Z})h + 27 Re (r, &)h
We have
Re (b — w, b 4 w), = Re[(w,w)h — (w,w), +i2Im (w,w)h} =
@7 = w3
Due to (7), we have
i (&’;m,{i})h = —i||Wz]|2 + i wz (1,8) w*(1,£) — i 15 (0,£) w*(0,t)
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and, hence,
27 Rei (wiﬂx,w)h =0
in the case of boundary conditions (46) while, for (47), we get

(¢} (¢} h (¢}
27 Re? (wm,w)h = 27Re [—Ewt(l,t) w*(1,t)—

L (T

Therefore, by zero boundary conditions fgrfor both schemes (45), (46) and
(45), (47) we obtain

Sun(0.) °(0.0)] = =3 (0l ~ fuP)

z=0"

[]l7 = |[w]l; + 27 Re |r,w] . (55)

In the case of problem (45), (48), we take the inner produc}l, on both
sides of (45) wit2 « and the real part afterwards. Applying (8) and then (48),
we get

Rei (i, 0], = Red [~ doal B+ i (1,0) °(1,0)-
w, (0,8) ©7(0,8)] = 0.

Due to (48), we obtain (55) in this case, too.
To prove (53) we estimate using the Cauchy—Schwartz inequality

[l 1), < 5 Il i)+ 5 [l o], < 10T (TG + 1G]l ).
Substituting this estimate into (55) we have
(1]l = 1olln ) (1l@]ln + [wlln) < 710)n(1l01ln + [w]ln),

and (53) follows.

It remains to prove (54). In the case of problems (45), (46) and (45), (47), we
take the inner produdgt, -);, on both sides of (45) with-27 w3, to obtain

—27 Re (wt,ﬁjm)h = —27Re (r, ﬁ)m)h
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By (7) we have
—Re (wt,ﬁ)m)h = Re[(wta’:ﬂi}f}h — w1, t)w(1,) +
@3 (0, )w(0,1)]

and, for problem (45), (46), we get
—Re (wt, &M)h = Re (wti, ﬁ)f}h ,

sincew;(0,t) = wy(1,t) = 0, while, for problem (45), (47),
—Re (wt’ﬁ}m)h = Re[(wta‘c,ﬁ)a‘c}h + ’L%WJJ: (17t)‘2 +

2

iﬁ\fux (o,t)ﬂ = Re (wm,&j]h.

For problems (45), (46) and (45), (47), by conditig0, t) = r(1,¢) = 0 we also

have
O (o]
N (r, w“)h - (Tj’wj]h'

In the case of problem (45), (48), we take the inner produygt, on both sides of
(45) with —27 w3, and apply (8) in a similar way. Thus, for all considered finite
difference boundary problems, we obtain

27 Re (wm, ’l(l))j:| A = 27 Re (Tj, 1?}@:| b
After a simple rearrangement we have
libs]l5 = llws] [} + 27 Re (g e -

We complete the proof of (54) in a similar way as above estimating (55) by
the Cauchy—Schwartz inequality. A

Corollary 6.2 Suppose that the conditions of Lemma 6.1 are satisfied. Then
@] zn < llwllgyp + 7l 5p- (56)

Proof: The estimate (56) follows by (53), (54), and the Minkowski inequality.
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Corollary 6.3 Letw to be a solution of the difference problem
w =i Wgy +r(z,t),  (2,t) €Qp,  r(0,t) =7(1,t) =0,
w(—h,t) =w(h,t), w(l —h,t) =w(l+ h,t), t e wr.
Then Lemma 6.1 holds, i. €53), (54), and (56are satisfied.

(57)

Proof: The problem (57) is equivalent to (45), (47). We prove it by eliminating
w(—h,t) andw(1 — h,t) in the difference equations. Moreover, the same result
can be proved in the way similar to the proof of Lemma 6.1, but using (9)A

Lemma 6.4 For the solution of problend9), (50)or (49), (51) or (49), (52) the
following estimates hold:

[k < 7o, (58)
[2z]ln < Tllpz]ln- (59)

Proof: The proof is almost similar to that of Lemma 6.1. We state the main points
only. To prove (58) we take the inner product on both sides of (49) within
the case of boundary conditions (51), a nonzero term appears:

%Rei (232, 2)), = gRe [izj(l)z*(l) — izw(O)z*(O)} =

21z 0P +1=)P).

Therefore, in all cases, we obtain
2] = 7 Relp, z]n < 7[p][nl[2] |0,

and (58) is proved.
To prove (59) we take the inner product on both sides of (49) withz,..
For problem (49), (51), for example, we get

—Re (2, 2z)y, = 125} + Re(=2(1)25(1) + 2(0)25(0)) =
LT
Izl + Reir (12a(D)I + [22(0)?) = [1z5][3.
Now we easily obtain the inequality

Izl = 7 Re(ps, zaln < 7llpallnllz]ln,

which is valid for all considered problems. A
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Corollary 6.5 Suppose that the conditions of Lemma 6.4 are satisfied. Then
2l zn < Tllolmy s (60)

Proof: We obtain (60) as a direct conclusion of (58) and (59). A
We next establish some auxiliary estimates necessary to handle the nonlinear
terms on the right hand side of the difference equations.

Lemma 6.6 Suppose thaf31)is satisfied. Then

1556 &% mnernn < 20ear) (1+ €l + Il n ) (61)
56, € mm*) = 56657, 7)]In < 20(En)

- ~ (62)
(1t =&l + 1or = lln)
15566 mm) = £5(E €5, larn < 14(Enr) (1 + 43m) -

(I1E = Elzrnn + I = #llzrna)
herej = 1,2, and
ey = max {|[llen, Inllon)

enr = max{[€llcn. [Ellcn. Inllen lllen}

e = max L€l o 1l zrs Il 17l 12 }
¢, €, n, 7 are grid €, functions.

Proof: For simplicity, we omit the indey in the proof of the lemma. We start by
proving (61). By (31) we have

&SmOl < 1€ mn ) llen < elen).

The Lagrange mean-value theorem and (31) with= 1 implies that
F(&.€5mm") = £(6,€57,7°)] <
2 (max{|¢], €], Inl, 71}) (1€ = & + In—7l) .
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Applying (64) withé = &(z — h), 7j = n(x — h) and the Minkowski inequality
we get

o6 € e < w(cM)J hY (6l + nel)” <

xEQZ

2¢(enr) (Il n + Imaln) < 2¢(enr) (€l zrnn + il -

Hence, by the estimates above we have

2
1F(E €m0 ), < 2<P(CM)\/1 + (”fHHl,h + ||77||H1,h) ;

and (61) follows.
To prove (62) we employ (64) and the Minkowski inequality again:

A& € mm) = FEE 7 7)In < 20(Ear) (11 = Elln + 1l — ln)
Estimate (62) is proved.
It remains to prove (63). Deno = (¢, £%,1,7*), ¥ = rky + (1 — k)7, here

k € (0,1) is some constant, defined by the Lagrange mean value theorem. We
have

(rteemm) - r&éaim),| = | (e -6+
P -e+ 2200+ BE o i) |.

Applying the simple finite differentiation rule

(F@)G(x)) = Fs(2)G(z) + F(x — h)Gx(x)

T

and (31), we get

(F&&mm) = FEE ) | <
f(2) | |24 | |0FE) | |9FE)
2max{‘ o6 ' 0& " on 'l on* :p}

(1€ = &1+ In— ) + 20 (1€~ E)al + It — el -
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We use the Lagrange mean-value theorem and (31) (with= 2) again to
estimate

2 2 0 2
2¢(enr) (1€z] + 17ia) -

Hence, we have
(e mn) = FEE ) | <

£,
2p(n) [2 (1€ + 173al) (1€ = €1+ In =) + 16 = )l + 1(n — 2]

SinceLs norm is the object of our consideration, we proceed with estimating the
guantity above squared:

(Fe.emn) — FEE i) | < 40w

(16 (1l + 172[) (16 = &2+ In — 72) + 21(6 - Hal+

2/(n — i)z + 4 (1&] + |7z]) (1€ = € + In — 7l

(166 = el + 10— al) | -
We use the fact that

(1€ + 17s1) (1€ = €1+ In = al) (16 = al + |(n = )al) <

2 (1& + 17:1?) (1€ = €7+ In = 72) + 1€ = )z + |(n — M)l
to get

2 9/~
< 24 (CM)

FO%P+WﬂﬂOﬁ—@”ﬂn—mﬂ+%@—§ﬁﬁ+Kn—mﬂﬂ-
The summation and (11) gives
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17 = al? +8 (11 = &+ I — il ) (I€135 + 17l34) ]
We now recall (62) to obtain

1£(& € mm") — F(E€E 0,73, < 24¢°(Enr)

(11 = ENra + lIm = AlZ) (148 (€130 + 1702 ) -
This implies
||f(£7£*777a 77*) - f(é7 g*aﬁa *)HHIJL <v 19290(6]\/[)

n
(1€ = €l + 1 = llzrnn ) (14 1l arn + 1l zrn) -
Finally, by the conditiord < x < 1, (63) follows. A

Remark 6.7 Assume that the functiong, j = 1,2, are of lower smoothness
than required by31), i. e.,(31) is satisfied withm| = 1 only. Then(61)and (62)
hold anyway, since the cage| = 2 of (31) was not employed to prove the latter
estimates.

We are going to apply Lemma6.6 further examining the convergence and
stability of the proposed difference methods. The main difficulty faced there is
that the estimated constants inclubig¢ norm of a numerical solution. Therefore,
we need to establish the followirsgpriori estimates.

Lemma 6.8 Suppose that31) is satisfied withm| = 1. Also suppose that the
solution of difference probler87), (38), (42), (32)r (40), (41), (42), (33)s
bounded inC}, norm:

Ipllon < v < oo, lallen < v < oo, t € wr. (65)

Then there exists a constant = 79(¢(v)) > 0 such that, ifr < 7, then the
following estimates are valid:

ol gop < ew, lallgop < cw, t € wr. (66)
Herecw = cw (T, o(), [u©@ || g4, [0 1,) is @ constant.
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Proof: Note that, respectively, boundary conditions (32) or (33), are satisfied for
the functionsf;. Therefore, we can apply Corollary 6.2 to scheme (37), (38) or
(40), (41), respectively. We get

1Pl mn < Pl n + 7l 1,27 @ O s
ldllgyn < llallzon + 7l f2(p, P7 @ @) -
Due to (31) and (65), we can employ estimate (61) of Lemma 6.6 to obtain

(0.0 4, @) o < 20(7)

(1 n 15 zrop + 12l s + |l gy + HQHHl,h)
2 )

Jj =1,2. DenoteZ(t) = |[p(t)||grp + lla(®)|| g1 We have

Z(t+7) < Z(t) + 7 40(7) (1 G 72) ha Z(t>> . tew,
or
20t +7) < %Z(zﬁ) +8p(y) T, tEw., 1<

with 7o = 1/(4p(7)). Estimating by (12) we write
Z(t+7) < (1+8p()T)Z(t) +8p(Y) T, tEw,, T<T0

This implies the boundedness Bft), t € @.. A

7 Justification of the iterated approximations

In this section, we prove the convergence of the iterations (43) or (44), respec-
tively, as well as the boundedness of the difference solution on the upper layer.

Lemma 7.1 Suppose that31)is satisfied and there exists a solution of difference
problem(37), (38), (32)or (40), (41), (33)on the layer = t, such that

el <o la@llp < o (67)
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Then there exists a constanf = 7y(o, ¢(c)) > 0 such that, ifr < 7, then
the iterations(43) or (44), respectively, produce the unique sequer{ge$} and
{q"*1}, convergent inH}. The limit functions appear to be a unique solution of
(37), (38)or (40), (41) respectively, on the layer- 7, and the following estimate
holds:

15/ o < 20, Nl gy < 20 (68)

Proof: Both (43) and (44) are linear algebraic equation systems. To prove the
uniqueness gfl* 1 andgl**l we consider the correspondent homogeneous prob-
lem,i.e.,we setp = q = f; = fo = 0. Due to Lemma 6.4,

I <0, Nd* g <0,

i. e., a trivial solution appears to be unique for the homogeneous problem. This
proves the correctness of the definition of the iterations.

Now we are going to prove the boundedness of iterated approximaitiens,
that

||p[s]||H1,h < 20, ||q[s]||H1,h < 20, s=0,1,.... (69)

We apply the mathematical induction. Fer= 0, (69) is true by (67), since
pl% = p, ¢!% = ¢. Suppose that (69) holds fer= /. Denotet = (p!!! + p)/2 and

n = (¢ + ¢q)/2. Then, by the induction assumption and imbedding inequality
(11), we get

Il an <30/2, |l <30/2,  [[Ellen <30, nllon < 30,
Applying estimate (61) of Lemma 6.6 we see that
156 €5 mn ) lan < 20(30)(1+30) =¢,  j=1,2.
Therefore, the solution of (43) or (44), respectively, is bounded by Lemma6.1:
L e | N e
or

||p[l+1]HH1,h < V2(0 +7¢c,).
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In the same way, we obtain
g™ M g, < V2(0 + 7o)

Hence, (69) is satisfied in the case- [+1 provided that < 7 = (\/5—1)0—/@,,.
The induction step and, therefore, (69) is proved.
Define the operatak such that

[s+1] (s]
p (P
(oeen) = (3)

according to the linear algebraic equation system (43) or (44), respectively. Now
we can show that, if is small enough, then the operatbiis a contraction in the
Hilbert spaceff}. This will immediately imply the convergence of the sequences
{pl*1} and {¢"*]} in H} and the uniqueness of the corresponding limits as well
as their belonging td{}. Takings — 1, instead ofs, in (43), one can subtract

the obtained equations from (43) in order to get a problem for the differences
plst — plsl and¢ls+1) — ¢lsl. We deal the same with (44). As a result, for the
differences above, we have the problems of type (49). Due to estimate (63) of
Lemma 6.6, we have

Hfj(f,é:*a??aﬁ*) - fj(ga g*vﬁ?ﬁ*)HHl,h <
14¢(30)(1 4 60) (1€ = Eln + In = llaa) <
7p(30)(1 + 60) (”P[s] - p[sfl]HHl,h + ||gl — gl HHl,h) ;

here¢ = (p!!4+p)/2,n = (¢¥1+¢)/2, & = (P~ +p) /2, andij = (¢l +¢) /2,
j = 1,2. Therefore, by Corollary 6.5 we get

P8+ = Pl g1+ 1lgB T = gl gy <

7 140(30) (1 + 60) ([P — 5z + 0 — ¢l )

Hence, ifr < 79, 70 = min{7, 1/(14¢(30)(1460))}, we prove the contractibil-
ity of A. By taking limits — oc in (69) we get (68). A
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Remark 7.2 Suppose that the functionfs, j = 1,2, are of lower smoothness
than required by(31), i.e., (31) is satisfied withm| = 1 only. Then Lemma 7.1
holds with the convergence of the iterated approximatiordg,inWe conclude this
by taking into account Remark 6.7. The us€@8) can be avoided in the proof by
estimating

[ = PPl + (g = gl <

re (1™ = =l + (g — g*~1n)

and further applying the Gagliardo—Nirenberg multiplicative estim@i@). The
boundedness of the solution on the upper layeffjnfollows by Lemma 6.8.

Remark 7.3 Due to the imbedding theorefd} — C}, (11)and Lemma?7.1, the
convergence of43) or (44), respectively, irC}, follows.

8 Convergence and stability

Now we are able to prove the convergence and stability of the difference schemes.
Taking the grid projections of the differential solutionsandv we estimate the
approximation error of applied schemes.

Proposition 8.1 Assume that there exist the unique solutiens < C*3 of
system(27), (28), (30)or (27), (29), (30) respectively. Suppose that nonlinear
functionsf;, j = 1,2, satisfy(31) with |m| = 1 and (32) or (33), respectively.
Let(35), (36), (42)o be the finite difference scheme related to prob(2w), (28),
(30), while (40), (41), (42)deals with(27), (29), (30) Then the approximation
error ¥ can be estimated by

1W|on =0 +h%), 71,h—0, tebw, (70)
for both schemes.
Proof: We begin with estimating the approximation error of difference equations

(35) and (40). Substituting the differential solution into them, using its Taylor
expansion in the neighbourhood of the pojmt¢ + 7/2), and employing the
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Taylor expansion of functiong;, j = 1, 2 together with (31) in the cage:| = 1,
we get (70).

The boundary conditions are approximated exactly in all cases. This fact is
trivial for Dirichlet boundary conditions. Due to the extension (34), we prove an
exact approximation of von Neumann boundary conditions for the function
the case of periodic problem, we see that, due to (33), the differential solutions
andv satisfy (41),. e., the approximation on the boundary is exact.

The approximation (42) is just the exact projection of initial functions (30) to
the grid. A

Proposition 8.2 Assume that for probleif27), (29), (30)roblem the conditions
of Proposition 8.1 are satisfied with differential soluti 87;’ a—z € ¢*3 and that
(31) holds. Then the approximation errdr of schemg40), (41), (42)can be
estimated by

[U|| g1y =O(* +h?), 1,h—0, t€w,. (71)

Proof: We operate in the way similar to the proof of Proposition 8.1. One needs
to write the difference equations at the points= 0 andz = 1 and to substitute
the differential solution into them as well. The values of the differential solutions
outside the domaif are defined by extension (39). Note also, that, in the case
of periodic problem (27), (29), (30), the extended soluti%ﬁs% eC*3, —-1<
< 2.

Taking the first order difference derivative with respect tof the expression
for approximation error we estimai@ |, z € Qz We expandy andv in the
neighbourhood of the poirit: — h/2,t + 7/2). A

Let v andv be the discretizated solutions of the corresponding differential
problem. Denote the erroes= u — p, 6 = v — ¢q. Herep andq are the difference
solutions. In the case of differential problem (27), (28) and of the approximating
it finite difference scheme (35), (36), we have

€t = { g:ix +f1(’av’8‘*ag>%*) - fl(]gvzg*aa’a*) + \Illa (JZ’,t) € Qha
5t =1 63%:2 +f2(??6,’lj*,8,13*) - f2(§75*7575*) + \1127 ($,t) € Qha
e(0,t) =¢(1,t) =0,

S(=h,t) = 6(h,t),  6(1—h,t)=6(1+ht), €

(72)

(73)
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Moreover, for problem (27), (29) and its approximation (40), (41) scheme, we get

&t = 1 gix +f1(laaa*vllo)7%*) - fl(;a;)*aglva*) + \Illv

o (74)
5t =1 63%:6 +f2(uau>k,v7v*) - f2(p7p*7q’q*) + \IJQ, (.fL‘,t) € Q}J:a
£(0,t) = 0=(1, 1), g(h,t) = 0(1 + h,t),

(75)
5(0,6) = 05(1,t),  O(h,t) =05(1+h,t), t€ @

In both cases¥; and ¥, are the approximation errors. Due to Proposition 8.1,
\Ill,\Ifg —>O,7',h—> 0.

On the first layet = 0, the initial functionsu(®) () andv(%) () are approxi-
mated exactly by (42) for both differential problems. Therefore,

e(r,0) =0, §(x,0) =0, z € Q. (76)

Theorem 8.3 Assume that the conditions of Proposition 8.1 are satisfied. Then
there exist constantsy, hg > 0 such that, ifr < 7y, h < hg, then there exists
the unique solutiom, ¢ of finite difference scheme which converges to the solution
u, v of the corresponding differential problem. In both caée®), (73), (76)and
(74), (75), (76) the error is estimated by

||5||C,h + ||6||C,h = O(T + h‘)7 T, h — 07 t € wr. (77)
Proof: Suppose that

Ipllen + llallen < 2(ullen + lvllen) = cp, ¢ € o (78)

We will prove estimate (78) later.
Applying (53) and Corollary 6.2 we get

€Nl < [felln + 7ILf1 (', 0,0%) = f1(D, 0% 4 @I + 7I[¥1] s
116710 < (181l + 2, w0, 0%) = fa(p, % @ O+ 7][P2] -
To deal with nonlinearities we use (62) in Lemma 6.6:

OO*OO

05 (@, % 0,0%) = f3(p 0% ¢, @)l <
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@(ep) (1[Elln + 1)ln + 1B]1n + 119)ln) ,

j =1,2. DenoteZ(t) = |[]|n + |[0]|n and P = grelgxmax{H\IﬁHC’h, 1 Wallcn}
Then

Z(t+71) < Z(t)+120(cp)[Z(t +7)+ Z(t)] + 722, t € w,,
or

1+2
1—2p(ep)T

with 7) = 1/(4¢(cp)). By (12) we have

Z(t)+ 7149, tew., 7171,

Zt+7)<(1+8p(cp)T)Z(t) + 74P, tew, 717 (79)
SinceZ(0) = 0, this implies
Z(t) < cz P, t e w;, T < 7'6; (80)

herec; = cz(T, v(cp)) is a constant.
While (78) holds, it follows by Lemma 6.8 that, i< 7/ = 7{/(¢(cp)), then
the difference solution is bounded i} norm by some constant

5W’::5M/C77¢(CD)7”Uﬂnﬂﬂkhvﬂvm)HHah)

Since the differential solution is smooth, we can assume that it is boundé;ﬂ in
by the same constant.

Now, due to Gagliardo—Nirenberg multiplicative estimate (10) and Proposi-
tion 8.1, we obtain forr < 7, 7/

lellon + 10llcn < degez'Pew2ea (72 + WH)Y2 t e @y,
herecy is the constant defined in Proposition 8.1.

To complete the proof it remains to show estimate (78). We use the mathe-
matical induction method. Estimate (78) is satisfiedtfer 0, sincep(0,t) =
uO(z), q(0,t) = v (z). Suppose that it holds for layets = s7, s =
0,1,...,4. Then by Lemma 6.8 it follows that

IpE e, < ews lla@)lmn <ew, 7 <75 =15(e(cp))-
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Herecw = cw (T, ¢(cp), |u®| g, |0 1s). Applying Lemma7.1 and
Remark 7.2 we see that there exists a unique difference solution on the upper layer
tj+1 and that

Ip(tir)laey < 2ew,  lla(tj) gy < 2ew, 7 <719,

herer)’ = 7'(cw, p(cw), 7). By the imbeddingd} — C}, inequality (11) we
get

Ip(tis)llen <2vV2ew,  la(tim)lon <2V2ew, 7<7"
Therefore, in a similar way as above one can obtain

Z(tjr1) < Z(t;) + 720(0)[Z(tj41) + Z(t5)] + 720, T <7
here¢ = é(cp, cw) is a constant. The same arguments as above imply

Z(tj+1) < (14 8p(¢)1)Z(tj) + 749, T <1 =1/(4p()), 7.
EstimatingZ(t;) by (80) we have

Z(tjq1) < ¢, <7 ", ¢ = E(CZ, ©(€)).
By multiplicative estimate (10) it follows that

mo_mm

Hg(tj-i-l)HC,h + H(s(tj-l-l)HC,h < é(7—2 + h2)1/27 TS T),Ty »

= E(CG, CW, Cd, E) Since

o

lptj+0llen + late)llon < llulte)lion +lo(t)llen +

lletir)llon + 10(ti1)llen,

it is sufficient to choosey > 0 andhg > 0 such thatry < min{7g, 79, 7", 75"}
andé (g + h3)'/? < ¢p/2 to prove

Ip(tj+D)llon + llatit)len <ep, 7 <70, h<ho,
and, hence, we get (78). A
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Theorem 8.4 Assume that the conditions of Theorem 8.3 are satisfied. Then, for
both initial boundary-value problems, we have fof @

el + 10l = O (rtrelgx max H‘Ifj!m,h) , Th—0. (81)
T J=4

Proof: The proof is similar to that of Theorem 8.3. We first note, that by The-
orem8.3, ifr < 7}, h < hg, then (78) is satisfied. Herg, hy > 0 are some
constants. Then it follows by Lemma 6.8 thatri< 7' = 7J(¢(cp)), then the
difference solution is bounded i norm by some constant

ew = ew (T, p(cp), HU(O)HH{m HU(O)HHl,h)~

Since the differential solution is smooth, we can assume that it is boundé;ﬂ in
by the same constant.
Due to Corollary 6.3, we can apply (56) to get

O 0y, O O

1€l mn < llelln + 7l (2w’ 0,0 = (0, 0% 4, ) mon +
Tl s
101 < 181z + 7l fo (00,0 = fo(p, 2% @ @) +
T||‘1’2||H1,h-
One can employ inequality (63) in Lemma 6.6 to estimate the nonlinear error
£ (@, 0,0%) — f(5, % 4, @) | rp < To(ep) (1 + dew)
(ellzzn + el + 18 e+ 18llrn) 5 =1,2.

DenoteZ(t) = [lellin + 13]lp aNA® = max max{|[ Wi o, |12 s}
Then fort € w,

Z(t+71)< Z(t)+171dp(cp) (L +dew) [Z(t +7) + Z(t)] + 7 2.
SinceZ(0) = 0, by the same arguments we used proving (80) one obtains
Zt)<ez®,  tew. 1< =7"(p(cD), ew);
herec; = cz(T, p(cp), cw) is a constant. We defing = min{7}, 7/, 70'}. A
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Remark 8.5 Assume that the conditions of Proposition 8.2 are satisfied. Then
(for periodic boundary-value problem) Theorem 8.4 implies that

lellgin + 116 grp = O(T2 + B?), 7,h — 0, t € ,,

and, due to the imbedding} — C), inequality (11), we improve the ratio of
convergence:

lellen + 10llen = O(T% + h?), T,h — 0, tcw;r.

We have proved the convergence of difference schemes. It remains to con-
sider the stability.
Let p1, g1 be the solution of finite difference scheme (35), (36), (42) or (40),
(41), (42), respectively, with the initial functioméo) (x) andvio) (x). Let alsops,
g2 be the solution of the same difference problem with another initial functions
ne (x) andv " ()
2 2 '

Theorem 8.6 Assume that nonlinear function$, j = 1,2, satisfy(31) with
|m| = 1 and (32) or (33), respectively. Then, for both difference problg35s),
(36), (42)and (40), (41), (42)there exist constants, hg > 0 such that

lp1 — p2llen + la — @2llen <

1/2 (82)

es (It = w1 + [l = oi)ln)

if 7 <79, h < hg,t € ©;. The constantg does not depend on the grid steps
andh.

Proof: We denoteZ (t) = |[p1 — p2l|n + |[¢1 — g2]|n- Similarly as in the proof of
Theorem 8.3, we come to the inequality analogous to (79):

Z(t+71)<(14+8p(cp)T)Z(t), t€w; T<Tp.
This implies
o1 = palln + llan = aslln < ez (17d” =] + |0l = wi)1n)

herecz is a constant antle @, .
To complete the proof we employ Gagliardo—Nirenberg multiplicative esti-
mate (10). A
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Theorem 8.7 Suppose that nonlinear functiorfs, j = 1, 2, satisfy(31) and(32)
or (33), respectively. Then, for both difference problgB), (36), (42)and (40),
(41), (42) there exist constantg, ho > 0 such that

Ip1 = p2llrp + llar — q2lln <
© _ © o _ 0 (83)
es (I = u§ ap + 08" = o8 lm)
if 7 <79, h < hg,t € ©;. The constantg does not depend on the grid steps
andh.

Proof: We denoteZ(t) = |[p1 — pallmrp + lla1 — q2l|g1p. Similarly as in the
proof of Theorems 8.4 and 8.6, we get

Z(t) < csZ(0), T < 710, t € w;.

A

Remark 8.8 Assume that the conditions of Theorem 8.7 are satisfied. Then due
to the imbeddinglI}L — ()}, inequality(11), the correspondent scheme is stable in
Ch.

Remark 8.9 Due to Proposition 4.2 and Proposition 4.3, we have proposed and
justified the algorithm for the numerical solution of derivative nonlinear 8¢hr
dinger equation(3). Note that, while the convergence and stability of difference
schemes is proved ifi norm, by the relation

0
U:a—Z—z’%|u|2u, 0<z<l,
(see(22) in Proposition 4.3) it follows that the whole method converges and is

stable inC' norm, for both initial boundary-value problems (8).
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